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ABSTRACT

Progress in solving the cocktail party problem, i.e., separat-
ing the speech from multiple overlapping speakers, has re-
cently accelerated with the invention of techniques such as
deep clustering and permutation free mask inference. These
approaches typically focus on estimating target STFT mag-
nitudes and ignore problems of phase inconsistency. In this
paper, we explicitly integrate phase reconstruction into our
separation algorithm using a loss function defined on time-
domain signals. A deep neural network structure is defined
by unfolding a phase reconstruction algorithm and treating
each iteration as a layer in our network. Furthermore, instead
of using fixed STFT/iSTFT time-frequency representations,
we allow our network to learn a modified version of these
representations from data. We compare several variants of
these unfolded phase reconstruction networks achieving state
of the art results on the publicly available wsj0-2mix dataset,
and show improved performance when the STFT/iSTFT-like
representations are allowed to adapt.

Index Terms— Source separation, iterative phase recon-
struction, learnable representations

1. INTRODUCTION

Progress in separating multiple overlapping speakers using
a single microphone, often referred to as the cocktail party
problem, has accelerated greatly with the advent of deep neu-
ral network based techniques [1]. In particular, discrimina-
tive time-frequency masking techniques such as deep cluster-
ing [2], permutation-free mask inference [2, 3, 4], and their
combination under the chimera framework [5, 6] have sig-
nificantly advanced the state of the art. These methods only
modify magnitude spectrograms, and use the mixture phase
to synthesize the separated speech via a simple inverse short-
time Fourier transform (iSTFT).

As magnitude processing improves and begins to ap-
proach oracle performance, i.e., the upper bound of source
separation performance using the noisy phase, interest in pro-
cessing phase for source separation has increased. Recent
proposed approaches include avoiding phase processing by
using time domain waveforms as the input/output of learned
separation networks [7, 8, 9], or estimating complex (real

+ imaginary) time-frequency masks [10]. However, at the
present time, techniques operating on magnitude spectro-
grams are the state of the art in speaker separation and other
audio source separation tasks, e.g., speech enhancement [11]
and music separation [12]. Thus, an approach that incor-
porates phase processing into these magnitude estimation
networks would be highly valuable.

When combined with the noisy phase, separated source
magnitudes may be inconsistent, i.e., no corresponding time-
domain signal may exist [13, 14]. Iterative reconstruction
techniques such as Griffin-Lim [15] and multiple input
spectrogram inversion (MISI) [16] attempt to recover each
source’s clean phase by fixing its magnitude estimate and
running alternating STFT and iSTFT iterations starting from
the noisy phase. Applying iterative phase reconstruction as a
post processing to a magnitude enhancement network often
results in modest improvements in source separation perfor-
mance [17, 6]. This has inspired recent techniques where
phase reconstruction is computed by a generative network
[18] or by a phase subnetwork trained in tandem with a mag-
nitude subnetwork for audiovisual speech enhancement [19].

This paper presents an extension to recent work by Wang
et al. [9], which learns a time-frequency mask estimation net-
work by training through multiple unfolded MISI phase re-
construction iterations. Following the deep unfolding frame-
work [20], each phase reconstruction iteration is treated as
a neural network layer. In [9], the phase reconstruction lay-
ers are fixed, i.e., they have no learnable parameters imple-
menting the STFT, iSTFT, absolute value, and angle opera-
tions necessary to perform phase reconstruction. Similarly to
[7, 8] in which STFT-like encoders are implemented as convo-
lutional layers (and iSTFT-like decoders are implemented as
transposed convolution layers), we here allow the DFT/iDFT
basis matrices of the STFT/iSTFT layers to be adapted based
on data. The learning of these phase reconstruction layers
happens in tandem with a mask inference network for estimat-
ing the separated source magnitudes, and the entire system
can be trained end-to-end. This allows the magnitude estima-
tion network to produce outputs suitable for subsequent iter-
ative phase reconstruction. We evaluate multiple variations
of this underlying approach and show improvements over the
fixed unfolded phase reconstruction approach of [9] on the
public wsj0-2mix corpus, leading to a new state of the art.



2. MASK INFERENCE NETWORK

An overall block diagram of our system is shown in Fig-
ure 1. In this section, following [6, 9], we describe how to
train a mask inference network to estimate a magnitude rep-
resentation of high enough quality that a subsequent iterative
phase reconstruction network can lead to improved perfor-
mance. Let X ∈ CF×T be the complex spectrogram contain-
ing the mixture of C sources Sc ∈ CF×T for c = 1, . . . , C.
Our goal is to estimate a real valued mask for each source
M̂c ∈ RF×T by learning a nonlinear function Φ(·) from an
input feature space (typically log-magnitude, independently
whitened in each dimension), i.e.,

M̂1, . . . , M̂C = Φ(log |X̃|). (1)

Here Φ(·) is learned by the mask inference network in Fig-
ure 1 to minimize the truncated phase sensitive approximation
(tPSA) objective [11] in a permutation-free manner [2, 3, 4]:

LtPSA = min
π∈P

∑
c

∥∥∥M̂π(c) � |X|

− T
γ|X|
0 (|Sc| � cos(∠Sc − ∠X))

∥∥∥
1
, (2)

where P is the set of all possible permutations over the set of
sources {1, . . . , C}, � denotes element-wise product, ∠Sc is
the true phase of source spectrogram c, and ∠X is the mix-
ture phase. The `1 norm is used in (2) as opposed to the
mean square error because it was found to empirically per-
form better in [6]. The truncation function in (2) is defined
as Tba(x) = min(max(x, a), b), where a = 0 and b = γ|X|.
For the sigmoid and softmax activation functions often used
for mask inference [4, 6], γ is typically set to γ = 1, how-
ever, setting γ > 1 can account for phase cancellation, but
requires a modified activation function for the output of the
mask layer. The study in [9] noted improved performance
by setting γ = 2, and defining a convex softmax nonlinear-
ity where the final fully-connected layer uses a softmax to
output a probability distribution [p0, p1, p2] over a set of po-
tential mask values {0, 1, 2} for each time frequency bin of
each source, which is then used to compute the expected mask
value y = [p0, p1, p2][0, 1, 2]T . Intuitively, the potential mask
values {0, 1, 2} correspond to three outcomes: (1) the source
is not present (y = 0), (2) the source is dominant (y = 1), or
(3) the source is involved in phase cancellation (y = 2).

As proposed in [6], separation performance can be fur-
ther improved by adding a deep clustering branch to the mask
network and using the multi-task training objective

Lchi++
α

= αLDC + (1− α)LtPSA (3)

where LDC is the whitened k-means objective defined in [6]
and the weight α is typically set to a high value, e.g., 0.975.
Although the deep clustering branch is not used during infer-
ence time, it acts as an effective regularizer during training.

Time-frequency objectives such as (2) and (3) do not ac-
count for phase inconsistencies, so [9] proposed the waveform
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Fig. 1. Proposed speech separation system. C ′ is equal to 3C
for convex softmax and to C for other nonlinearities.

approximation objective

LWA = min
π∈P

∑
c

∥∥∥ŝπ(c) − sc
∥∥∥

1
, (4)

that operates directly on the reconstructed time domain sig-
nals ŝ1, . . . , ŝC . The time domain signals can be obtained via
a single iSTFT or by further using an unfolded MISI network
as described next.

3. ITERATIVE PHASE RECONSTRUCTION
NETWORK

The MISI algorithm modifies the classic Griffin-Lim ap-
proach to phase reconstruction specifically for source separa-
tion by enforcing the constraint that the sum of the separated
and reconstructed sources should equal the mixture. Algo-
rithm 1 describes an extension of the MISI algorithm consid-
ered here, where the STFT and iSTFT operations are general-
ized to STFT-like and iSTFT-like operations that incorporate
parameters. These parameters are part of a parameter set Θ.

3.1. STFT/iSTFT Convolution Layers

For real-valued sequences such as audio signals, an N point
DFT has N/2 + 1 unique complex coefficients. The DFT can
be implemented using only real valued operations by stacking
the real and imaginary components and defining the elements
of the basis matrix W ∈ R(N+2)×N as

Wi,n=

{
w(n) cos(2πki/N), i ∈ [[1, N2 +1]]
−w(n) sin(2πki/N), i ∈ [[N2 +2, 2N+2]]

(5)

where we have incorporated the analysis window w(n) into
the basis matrix. By treating W as the weight matrix in a



one-dimensional convolution layer, and setting the stride pa-
rameter of this layer equal to the hop size, we can efficiently
create STFT-like layers with learnable basis matrices. The in-
verse DFT matrix can be defined similarly to (5) by using the
synthesis window and accounting for the appropriate normal-
ization terms. We can again implement a trainable iSTFT-like
layer using transposed convolutions.

3.2. Unfolded MISI

Depending on the number of unique STFT
(k)
Θ and iSTFT

(k)
Θ

operators in Algorithm 1, we can implement the unfolded
phase reconstruction network from Figure 1 in the following
variations:
• Post [6]: A mask inference network is trained using the

chimera objective (3), and MISI is only used as a post
processing step, i.e., no back propagation through MISI;

• Fixed [9]: The mask inference network of Figure 1 is
trained using the objective (4) while keeping the STFT
and iSTFT layers fixed;

• Tied (Proposed): Together with the mask inference net-
work, the DFT/iDFT matrices of the phase reconstruc-
tion network are also adapted after being initialized as
in (5). Only one DFT-like weight matrix and one iDFT-
like weight matrix are learned for the entire network and
shared across the unfolded phase reconstruction layers;

• Untied (Proposed): The forward and inverse transform
parameters are untied and independently learned for each
STFT-like and iSTFT-like layer.

Even when the number of MISI iterations is zero, we can
still learn to adapt the first forward transform representation
applied to the mixture and the last inverse transform repre-
sentation used to reconstruct the estimated waveforms. It is
also interesting to point out that the phase reconstruction net-
work structure in Figure 1 is composed of alternating convo-
lutional layers and residual/skip connections, a general struc-
ture broadly shared by several recent audio source separa-
tion architectures such as those based on WaveNets [21] and,
ResNets [12]. This is an exciting side effect of explicitly us-
ing the deep unfolding framework [20] to create network ar-
chitectures. For example, even as we begin to replace portions
of the network architecture such as the magnitude and phase
functions with more traditional neural network nonlinearities
(such as sigmoid and relu as was done in [8]), we retain some
intuition as to what the network is learning.

4. RESULTS

We use the public wsj0-2mix dataset [2], which contains
30 h of two-speaker mixtures for training, 10 h for vali-
dation, and 5 h for testing with a sampling rate of 8 kHz
and signal to noise ratios (SNRs) between 0 and 5 dB. We
use the same spectral analysis parameters for both the log-

Input: Mixture signal x in the time domain, estimated masks M̂c for
c = 1, . . . , C, and number of iterations K

X = STFT(0)
Θ (x);

S̃
(0)
c = M̂c �X , for c = 1, . . . , C;

for k = 1, . . . ,K do
ŝ
(k−1)
c = iSTFT(k−1)

Θ (S̃
(k−1)
c ), for c = 1, . . . , C;

δ(k−1) = x−
∑C

c=1 ŝ
(k−1)
c ;

S̃
(k)
c = |S̃(0)

c |ej∠STFT(k)
Θ

(
ŝ
(k−1)
c + δ(k−1)

C

)
, for c = 1, . . . , C;

end
return ŝ(K)

c = iSTFT
(K)
Θ (S̃

(K)
c ), for c = 1, . . . , C;

Algorithm 1: Unfolded MISI. STFT(k)
Θ extracts a complex

spectrogram of a signal, and iSTFT(k)
Θ reconstructs a time-

domain signal from a complex spectrogram.

magnitude features input to the mask network and for the
initial STFT/iSTFT layers in the phase reconstruction net-
work: window size of 32 ms (256 samples) with a stride of
64 samples and square root Hann analysis/synthesis windows
designed for perfect reconstruction after overlap-add.

The mask inference network uses the architecture from
[6, 9] with four 600 unit BLSTM layers and dropout of 0.3
applied to the first three layers. During training, input se-
quences are limited to 400 frames (approximately 3.2 s), and
optimization is performed using the ADAM algorithm [22].
We train the network for 100 epochs, and if the loss func-
tion on the validation set does not decrease for five consecu-
tive epochs the learning rate is decayed by 0.5. Furthermore,
we achieved a significant performance boost by following the
curriculum learning strategy proposed in [9] for each of the
unfolded MISI approaches described in Section 3.2:
1. We first train only the mask network using the chimera

objective (3) and an initial ADAM step size of α = 10−3.
2. Next, we discard the deep clustering portion of the

chimera network and train using the waveform approx-
imation objective (4) by adding forward and inverse
time-frequency representation layers (but no MISI layers
yet) with an initial ADAM step size of α = 10−4.

3. Starting from the network with k − 1 MISI layers, we
train a network with k MISI layers and an initial ADAM
step size of α = 10−4. Repeat up to K = 5, where
performance begins to saturate.

We report scale-invariant SDR (SI-SDR) on the wsj0-
2mix test set, as opposed to the version computed using the
bss eval software package for reasons discussed in [23]. Fig-
ure 2 compares network architectures for different numbers
of MISI layers for both the sigmoid and convex softmax
activations. As first reported in [9], training the mask infer-
ence network through fixed MISI layers provides a significant
boost in performance compared to using phase reconstruction
only for post processing. Furthermore, learning the time fre-
quency representations in the phase network provides a boost
in performance for all numbers of iterations/layers with un-
tied performing better than tied. Finally, we note that for the



Fig. 2. Performance of different MISI reconstruction con-
figurations. Solid lines correspond to sigmoid activation and
dashed lines to convex softmax at the mask network output.

Table 1. SI-SDR (dB) comparison with other recent systems
on the wsj0-2mix test set.

Approach MISI Iterations SI-SDR [dB]
TasNet-BLSTM [8] - 11.1
Chimera++ [6] 0 11.2

5 11.5
Fixed (convex softmax) [9] 0 11.8

5 12.6
Tied-MISI (sigmoid) 0 12.2

5 12.6
Untied-MISI (sigmoid) 5 12.8
Oracle Algorithms
Magnitude Ratio Mask 0 12.7

5 13.7
Ideal Binary Mask 0 13.5

5 13.4
Phase Sensitive Mask 0 16.4

5 18.3
Ideal Amplitude Mask 0 12.8

5 26.6

fixed case, as first shown in [9], using the convex softmax ac-
tivation provides a performance boost compared to sigmoid,
as allowing the mask network to predict values greater than 1
allows for time-frequency magnitude values which are closer
to those obtained from actual time-domain signals. However,
for the conditions with learned time-frequency representa-
tions (tied/untied), the difference in performance between
activation functions almost disappears. We hypothesize this
is because the network learns time-frequency representations
that are appropriately scaled for the mask network output,
something not possible with fixed STFT/iSTFT representa-
tions. The biggest SI-SDR gain for the tied/untied cases also
happens when no phase reconstruction is performed (i.e., 0
MISI iterations), achieving over 12.2 dB SI-SDR by learning
just one forward transform and one inverse transform. Two
MISI iterations are required to match such performance when
using the fixed STFT/iSTFT representations.

Table 1 compares the performance of the iterative phase
reconstruction algorithms proposed in this paper, with some
recent competitive approaches, and oracle approaches both

Fig. 3. Adapted forward and inverse filters for the Tied-MISI-
5 condition. Labeled by original center frequency (Fc).

Fig. 4. Example filters for MISI layers from the Untied-MISI-
5 condition. Labeled by original center frequency (Fc).

with and without MISI. Our results improve upon the best
known previous results from [9] by 0.4 dB for 0 MISI itera-
tions and 0.2 dB for 5 MISI iterations, approaching the per-
formance of some oracle masks.

Figure 3 compares some learned time frequency represen-
tations to their corresponding original STFT versions. Some
changes in the shape of the analysis/synthesis windows can be
observed. It also illustrates that some original high frequency
representations (e.g., the far right column in Figure 3) learn to
focus on low frequency signal components. This is consistent
with the results of [7, 8] where many learned time-frequency
filters focus on the low frequency range. Figure 4 displays
learned filters for two MISI layers in an untied network con-
figuration. While the filters are significantly different from
those in the STFT/iSTFT, they are more difficult to interpret.

5. CONCLUSION

We proposed an approach to speech separation based on deep
unfolding of the MISI iterative phase reconstruction algo-
rithm. By learning time-frequency representations from data,
we obtain quantitative improvements in separation perfor-
mance. Future work includes improving the initial phase
estimates over the noisy phase and exploring the application
of the proposed techniques to other domains such as speech
enhancement, music, or environmental sound separation.
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