
2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 20-23, 2013, New Paltz, NY

HIERARCHICAL AND COUPLED NON-NEGATIVE DYNAMICAL SYSTEMS
WITH APPLICATION TO AUDIO MODELING
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ABSTRACT

Many kinds of non-negative data, such as power spectra and count
data, have been modeled using non-negative matrix factorization.
Even though this modeling paradigm has yielded successful appli-
cations, it falls short when the data have certain hierarchical and
temporal structure. In this study, we propose a novel dynamical
system model that can handle these kinds of complex structures that
often arise in non-negative data. We show that our model can be ex-
tended to handle heterogeneous data for data-driven regularization.
We present convergence-guaranteed update rules for each latent fac-
tor. In order to assess the performance, we evaluate our model on
the transcription of classical piano pieces, and show that it outper-
forms related models. We also illustrate that the performance can
be further improved by making use of symbolic data.

Index Terms— Non-negative matrix factorization, Linear dy-
namical systems, Coupled factorization, Audio modeling

1. INTRODUCTION

Non-negative data arise in a variety of important signal process-
ing domains, such as power spectra of signals, pixels in images,
and count data. Non-negative matrix factorization (NMF) and its
variants have seen a wide variety of applications to non-negative
data analysis in recent years. Given the data matrix V, the goal
is to compute a decomposition of the form V ≈ WU where
V ≡ {vfn}, W ≡ {wfk}, and U ≡ {ukn} are non-negative
matrices of size F ×N , F ×K, and K ×N , respectively [1]. One
of the popular approaches for estimating the factors W and U is
minimizing a cost function between V and WU:

(W,U)? = argmin
W,U

d(V||WU), (1)

where d(·) is a suitable cost function that is usually selected as Eu-
clidean, Kullback-Leibler (KL), or Itakura-Saito (IS) divergences.

NMF-based modeling has been shown to be useful in various
domains, including signal processing, finance, bioinformatics, and
natural language processing. Even though this modeling paradigm
has yielded successful applications, it does not model the hierarchi-
cal and dynamical structures that often arise in non-negative data. In
this study, we present a novel dynamical system that aims to handle
these complex structures. The proposed model is applicable to any
kind of non-negative data with temporal and hierarchical properties.

The research presented in this paper was conducted while Umut
Şimşekli was an intern at MERL. The authors thank Dr. Cédric Févotte for
fruitful discussions.

There have been various studies on such structured data revolv-
ing around NMF, mostly applied to audio since audio signals have
prominent temporal and hierarchical structure. When applied to au-
dio signals, NMF decomposes the magnitude or power spectra V
into a dictionary of spectral templates W and their corresponding
excitations U. One property of audio signals is that certain spectral
templates tend to be active simultaneously. This property requires
the columns of U to have certain structure where the NMF model
falls short. In order to enforce this structure to the NMF model,
Lefèvre et al. [2] introduced a penalty term on the activations that
favors sparsity at the group level. Grais and Erdoğan [3] proposed a
method that regularizes the columns of U by using Gaussian mix-
ture models. Şimşekli and Cemgil [4] presented a coupled factor-
ization model where they hierarchically decomposed the excitation
matrix U into basis and weight matrices where the basis matrix
aims to capture the hierarchical structure of the spectral dictionary.

Another drawback of the basic NMF model is that it assumes
that the activations at a given time (a column of U) are indepen-
dent of the activations at any other time, which conflicts with many
time-series data including audio signals. To overcome this problem,
Smaragdis proposed a convolutive factorization model [7] where
the spectral templates encapsulate temporal information in addition
to the spectral information. Mysore et al. [8] modeled the temporal
structure by using a hidden Markov model (HMM) where each state
of the Markov chain has a corresponding spectral dictionary. Oze-
rov et al.’s factorial scaled hidden Markov model [9] and Nakano
et al.’s NMF with Markov-chained bases [10] intend to represent
time-varying spectra as state transitions through a limited and fixed
number of spectral patterns.

Rather than grafting NMF onto disparate models such as dis-
crete HMMs, a number of approaches have introduced dynamics in
a way that is more consistent with the NMF approach. Dikmen and
Cemgil [11] related the columns of the excitation matrix U by using
gamma Markov chains. Févotte proposed a similar model in [12].

This basic approach was generalized in Févotte et al. [6] to a
new non-negative dynamical system model (NDS) that employs a
full transition matrix to represent statistical dependencies over time.
This model shares the benefit of an HMM in that it can represent
complex dynamics, but also has the advantage of having a continu-
ous hidden state that can gradually evolve and adapt to changes in
gain. One limitation of this model is that it is difficult to indepen-
dently control the sparsity of the representation and the sparsity of
the dynamics.

In order to address both temporal dependencies and dependen-
cies among activations at a given time, we introduce a new genera-
tive model based on NDS. The new model introduces an additional
layer of hidden variables between the model of temporal dynam-
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Figure 1: The graphical models for (a) the original NMF model [5], (b) non-negative dynamical system (NDS) [6], (c) coupled matrix
factorization (CMF) model [4], and (d) hierarchical NDS (HNDS) and coupled hierarchical NDS (CHNDS). The nodes represent the random
variables, the arrows determine the conditional independence structure, and the shaded the nodes represent the observed variables. The left
part of (d) corresponds to HNDS, defined in Eq. 2-4.

ics and the observations. This is analogous to the use of GMMs in
a discrete HMM with continuous observations, where the mixture
components can be seen as a layer of additional latent variables.
Such a hierarchical model can represent the statistical dependencies
of the activations (different rows of U) for a given state of the dy-
namics. Moreover, in the proposed model, each layer has its own
parameters to control sparsity, so that the sparsity of the dynamics
can be controlled independently of the sparsity of the rest of the
model.

We also introduce an extension of the model that enables the use
of heterogeneous data in the manner of [4]. This extension allows
the model to learn from data sources with information pertaining to
different levels of the model. This type of transfer learning has been
shown to improve the performance of multi-level models [4].

The model was evaluated on a polyphonic transcription task
consisting of acoustic power spectra of classical piano pieces. The
proposed model outperforms previous models in terms of detection
of the piano-roll note values, as quantified by the F-measure. In ad-
dition, we introduce transfer learning using the symbolic piano-roll
representation of different piano pieces, and show that performance
is further improved. The rest of the paper makes use of the fol-
lowing notation: bold capital letters denote matrices (e.g., A), aj
denotes the j th column of A, and aij denotes a single entry of A.

2. THE MODEL

We define a novel probabilistic model referred to as hierarchical
non-negative dynamical system (HNDS):

hin =
(∑

j

aijhj(n−1)

)
εhin, εhin ∼ G(εhin;αi, βi) (2)

ukn =
(∑

i

bkihin
)
εukn, εukn ∼ G(εukn; γk, θk) (3)

vfn =
(∑

k

wfkukn
)
εvfn, εvfn ∼ E(εvfn; 1) (4)

where G and E denote the gamma and exponential distributions,
respectively, and G is defined using shape and inverse scale param-
eters. The columns of H form a Markov chain which represents
all temporal dependency via the transition matrix A ∈ RI×I and

the random innovations εhin. In NDS, the variables H are directly
used as activations of the basis functions W. Here, the intermediate
variables U serve as the activations and are expressed as a random
linear transformation of H, the distribution of which is governed
by the innovations εukn. We assume independent scale-invariant Jef-
freys prior on h1: p(hi1) ∝ 1

hi1
, and for further regularization and

numerical stability, we assume exponential priors on A, B, and W:
aij ∼ E(aij ;λA), bki ∼ E(bki;λB), wfk ∼ E(wfk;λW ). For
simplicity, we constrain the innovations ε to have mean 1 by taking
αi = βi, γk = θk. The graphical models for the proposed HNDS
model and related models are given in Fig. 1.

Note that the innovations εukn control the strength of the dynam-
ics: as their variance increases the model gradually reduces to NMF.
If we neglect the innovations εhin and εukn (set them to 1), whereas
NDS reduces to the NMF-like factorization V ≈WH, HNDS re-
duces to the factorization V ≈ WBH, where in both cases H is
constrained by the Markovian dynamics.

In audio terms, vfn denotes the observed power spectra, wfk
denotes the spectral dictionary, and ukn denotes the activations.
The indices f , n, and k denote the frequency bins, the time frames,
and the spectral templates, respectively. For audio, we use multi-
plicative exponential noise on the observations, which is equivalent
to choosing the IS divergence as the cost function in Eq. 1 [5].

For the particular case of polyphonic music modeling, we can
suppose that each column of W represents the spectral information
of a single note, B captures the chord structure of a given piece as
its columns model the different combinations of the notes, H deter-
mines which chords are active at a given time frame, and A captures
the chord progressions. The innovation term εukn imparts the HNDS
model with the ability to handle variations in the relative strength of
the notes within each chord, such as in the case of different voicings
of the same chord.

In addition to the basic model, we propose an extension to do
transfer learning using heterogeneous data. Recent studies suggest
that providing additional sources of information to audio models
can increase the performance on different tasks [4, 13]. Such a
transfer-learning paradigm is compelling for music signals because
large amounts of symbolic music data are available. Symbolic mu-
sic data in the form of U′ ≡ {u′km} encodes whether the note k
is active at time frame m or not. If V and U′ have similar har-
monic properties like tonality, it is reasonable to assume that U′
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Table 1: Update rules for U and H. The factors can be updated at each iteration to the value
√
b2−4ac−b

2a
where each factor has different a,

b, and c values. The update rules for H′ are identical to those of H up to replacing the parameters αi, βi, γk, and θk with κi, ρi, νk, and τk.

a b c

ukn
∑
f

wfk

v̂fn
+ θk

ûkn
1− γk −u2

kn

∑
f

vfn

v̂2
fn
wfk

hin (n = 1)
∑
j

αj

ĥj(n+1)
aji +

∑
k
γk
ûkn

bki 1 −ĥ2
in

[∑
k
ukn

û2
kn
θkbki +

∑
j

hj(n+1)βj

ĥ2
j(n+1)

aji
]

hin (1 < n < N)
∑
k
γk
ûkn

bki +
βi
ĥin

+
∑
j

αj

ĥj(n+1)
aji 1− αi −ĥ2

in

[∑
k
ukn

û2
kn
θkbki +

∑
j

hj(n+1)βj

ĥ2
j(n+1)

aji
]

hin (n = N)
∑
k
γk
ûkn

bki +
βi
ĥin

1− αi −ĥ2
in

[∑
k
ukn

û2
kn
θkbki

]

has a similar underlying probabilistic model where it shares the so-
called ‘chord dictionary’ B and ‘chord transition’ matrix A with U.
Hence we extend HNDS to the coupled hierarchical non-negative
dynamical system (CHNDS) by introducing the following terms:

h′im =
(∑

j

aijh
′
j(m−1)

)
εh
′
im, εh

′
im ∼ G(εh

′
im;κi, ρi) (5)

u′km =
(∑

i

bkih
′
im

)
εu
′
km, εu

′
km ∼ G(εu

′
km; νk, τk) (6)

where H′ ∈ RI×M denotes the chord activations for U′. Note
that the symbolic music U′ does not necessarily belong to the same
piece nor does it have the same number of time frames as V. It is
used as side information that can contribute to the estimation of the
latent factors. As before, we set κi = ρi, and νk = τk. CHNDS
reduces to the model in [4] if we discard the Markovian prior on H

and the noise terms εhin, εh
′
im, εukn, and εu

′
km.

3. INFERENCE

In this section, we present convergence-guaranteed update rules for
maximum a-posteriori (MAP) estimation in the proposed model. In
particular, we use the majorization-minimization (MM) algorithm
[12] which monotonically decreases the intractable MAP objective
function by minimizing a tractable upper-bound constructed at each
iteration. This algorithm is a block-coordinate descent algorithm
which alternatively updates each latent factor given its current value
and the other factors. For more details, the reader is referred to [12].

The MM algorithm yields multiplicative update rules for W,
A, and B. The update rule for W is given as follows:

wfk ← wfk

√√√√ ∑
n

vfn

v̂2
fn
ukn∑

n
ukn
v̂fn

+ λW
, (7)

where v̂fn =
∑
k wfkukn. The update rule for A contains terms

that come from both the audio and symbolic data models:

aij ← aij

√√√√√√√√
βi

N∑
n=2

hinhj(n−1)

ĥ2
in

+ ρi
M∑
m=2

h′imh
′
j(m−1)

ĥ
′2
im

αi
N∑
n=2

hj(n−1)

ĥin

+ κi
M∑
m=2

h′
j(m−1)

ĥ′im
+ λA

(8)

where ĥin =
∑
j aijhj(n−1) and ĥ′im =

∑
j aijh

′
j(m−1). The

update rule for B is as follows:

bki ← bki

√√√√√θk
∑
n
ukn

û2
kn
hin + τk

∑
m

u′
km

û
′2
km

h′im

γk
∑
n
hin
ûkn

+ νk
∑
m

h′im
û′
km

+ λB
(9)

where ûkn =
∑
i bkihin and û′km =

∑
i bkih

′
im. Note that the

update equations for the HNDS model can be obtained by setting
κi = ρi = νk = τk = 0, ∀i, k, which is equivalent to having
infinite noise variance on the symbolic data.

The update equations of U, H, and H′ involve finding roots
of second order polynomials. The corresponding update rules are
given in Table 1.

4. EXPERIMENTS

In order to illustrate the performance of our model, we conducted
several experiments on transcription of polyphonic piano pieces,
where the aim is to recognize the notes and the time intervals in
which they are played. Although HNDS and CHNDS can be ap-
plied to many other applications, we choose to evaluate it on this
transcription problem as the activation matrix U is then likely to
have a physical interpretation which will enable us to introduce
symbolic data as side information.

In our experiments, we use the MIDI Aligned Piano Sounds
(MAPS) database [14]. In order to train the spectral dictionary W,
we use K = 88 monophonic piano sounds with 44.1 kHz sampling
rate. In all experiments, the audio is subdivided into frames of 93
ms with 50% overlap, and only frequencies in the 0 to 4.3 kHz
range are used, for a total of F = 400 frequency bins. As the test
set, we use 10 excerpts of 10 seconds (N = 217 frames) that are
gathered from 2 different pieces from Bach.

In order to evaluate the transcription performance, we first
threshold the estimated activation matrix U and compare the re-
sulting binary matrix with the true transcription by computing
the precision, recall, and F-measure values defined as follows:
precision = true positive/(true positive + false positive), recall =
true positive/(true positive + false negative), and F-measure =
(2× precision× recall)/(precision + recall). The precision de-
notes the ratio of the number of correct notes to that of retrieved
notes. Similarly, the recall denotes the ratio of the number of cor-
rect notes to that of true notes.

In all experimental settings, we follow a semi-supervised ap-
proach where we initially train the spectral dictionary W by using
the isolated note sounds. Then, during testing, we hold W fixed
and estimate the other variables (including A and B). In the first
part, we conduct the transcription experiments by using the HNDS
model. In this model, the free parameters provide a great amount
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Figure 2: Estimated A and B by HNDS and CHNDS (for Bach
BWV 847). It can be observed that introducing symbolic data re-
sults in better-behaved estimation of A and B.

of flexibility, yet, they make it harder to train the model as the in-
ference algorithm may get stuck in local optima. This provides a
motivation to introduce further constraints on the model.

In the second part, we introduce symbolic music data (i.e.
MIDI) to the model for data-driven regularization, where we make
use of the CHNDS model. Since the symbolic data matrix U′ is
expected to have a similar form to that of an activation matrix, we
construct U′ using a damping factor as follows: u′km = δu′k(m−1)

with 0 < δ < 1, provided the note k is active at both time frames
m − 1 and m. This representation mimics the structure of U. In
these experiments, the symbolic data and the audio data do not be-
long to the same piece, but they have similar chord structure.

We compare the performance of the proposed model with ex-
isting factorization models, namely the Itakura-Saito NMF [5], the
coupled matrix factorization (CMF) [4], and the non-negative dy-
namical system (NDS) [6]. Examples of A and B matrices esti-
mated by HNDS and CHNDS are shown in Fig. 2. For NDS, HNDS
and CHNDS, we experiment on three different regimes. Other than
the default regime where A is a full matrix, in a second regime we
constrain A to be diagonal, and in a third regime we further con-
strain A to be equal to the identity matrix. Note that the NDS model
reduces to smooth NMF [12] when A is chosen as identity. For all
models, we investigate various parameter settings and threshold val-
ues. The results with best F-measure values are given in Table 2.

5. DISCUSSION

The results show that our proposed model, HNDS, outperforms the
other related models in terms of F-measure. It can be observed that
constraining the A matrix yields better performance for all meth-
ods. The models attain the best performance when A is constrained
to be the identity. This was to be expected: constraining the model
is likely to make the estimation better-behaved, especially as A and
B are here estimated on the test data, which is limited; this was
also particularly likely to occur on this data, which is well-suited to
methods like smooth NMF due to its rather simple dynamics.

Introducing symbolic data (CHNDS) further improves the per-
formance by guiding the estimation of B. We can observe that guid-
ance by a reference transcription helps preventing the occurrence of
spurious notes that other models introduce, thus improving the pre-
cision value. The best results are achieved by CHNDS with A = I
and the following parameter settings: αi = 4, γk = 1.5, κi = 0.1,
νk = 2, λW = λA = λB = 1, and I = 50.

On this particular data, we found that constraining the transition
matrix led to the best results. We plan to investigate the performance
of our model on data with richer dynamics, where we hope to better
exploit the flexibility of a full transition matrix.

Table 2: Precision (%), Recall (%), and F-measure comparison of
the proposed model and related models.

Method Precision Recall F-measure

IS-NMF [5] 58.66 65.01 61.67

Coupled MF [4] 66.81 70.08 68.50

NDS [6] 66.78 79.93 72.77
NDS (diag. A) 67.77 85.92 75.77
NDS (A = I) 74.95 89.40 81.54

HNDS [Proposed] 78.27 86.10 82.00
HNDS (diag. A) 79.62 86.19 82.77
HNDS (A = I) 80.93 86.50 83.62

CHNDS [Proposed] 81.47 82.42 81.94
CHNDS (diag. A) 79.12 85.22 82.06
CHNDS (A = I) 84.50 84.78 84.64
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