
Vectorized Beam Search for CTC-Attention-based Speech Recognition

Hiroshi Seki1, Takaaki Hori2, Shinji Watanabe3, Niko Moritz2, Jonathan Le Roux2

1 Toyohashi University of Technology, Japan.
2 Mitsubishi Electric Research Laboratories (MERL), USA.

3 Johns Hopkins University, USA.
h123346@edu.tut.ac.jp, thori@merl.com, shinjiw@jhu.edu, moritz@merl.com, leroux@merl.com

Abstract
This paper investigates efficient beam search techniques for
end-to-end automatic speech recognition (ASR) with attention-
based encoder-decoder architecture. We accelerate the decod-
ing process by vectorizing multiple hypotheses during the beam
search, where we replace the score accumulation steps for each
hypothesis with vector-matrix operations for the vectorized hy-
potheses. This modification allows us to take advantage of the
parallel computing capabilities of multi-core CPUs and GPUs,
resulting in significant speedups and also enabling us to process
multiple utterances in a batch simultaneously. Moreover, we
extend the decoding method to incorporate a recurrent neural
network language model (RNNLM) and connectionist temporal
classification (CTC) scores, which typically improve ASR ac-
curacy but have not been investigated for the use of such paral-
lelized decoding algorithms. Experiments with LibriSpeech and
Corpus of Spontaneous Japanese datasets have demonstrated
that the vectorized beam search achieves 1.8× speedup on a
CPU and 33× speedup on a GPU compared with the original
CPU implementation. When using joint CTC/attention decod-
ing with an RNNLM, we also achieved 11× speedup on a GPU
while maintaining the benefits of CTC and RNNLM. With these
benefits, we achieved almost real-time processing with a small
latency of 0.1× real-time without streaming search process.
Index Terms: speech recognition, beam search, parallel com-
puting, encoder-decoder network, GPU

1. Introduction
With the success of deep learning [1–5] and the popularization
of speech interfaces such as smartphones and smart speakers,
there has been unprecedented interest in the development of au-
tomatic speech recognition (ASR) systems. In practice, rapid
execution of ASR decoding is essential for satisfactory user ex-
perience. Reduction of sequence length [5–8] and parallel com-
puting [9–11] have been the main directions investigated to en-
able rapid computation of likelihoods and efficient traversal of
the search space.

Beam search [12] is a breadth-first search algorithm which
imposes restrictions on the search space to reduce both memory
requirements and computation time. During the search process,
hypotheses are expanded from a root node with possible hidden
Markov model (HMM) states, phones, or characters. The ex-
panded hypotheses at each depth level (or time-step in the case
of time-synchronous beam search for ASR) are stored in a FIFO
(first-in, first-out) queue for further expansion at the next depth
level. In the beam search, each hypothesis is scored accord-
ing to some models, and only the top B hypotheses are kept in
the queue. Other hypotheses are pruned out and no longer ex-
panded. The number B is called beam width. This pruning step
plays an important role to reduce the computation time.

In typical ASR decoding, a major part of the computation
is dedicated to scoring hypotheses using acoustic and language
models such as Gaussian mixture models (GMMs), deep neu-
ral networks (DNNs), and recurrent neural networks (RNNs).
Thread parallelism and GPU-based execution are effective to
accelerate matrix multiplications and element-wise operations
required for acoustic score computation. Dixon et al. proposed
GPU-based computation of acoustic scores [9]. For further
speedup, the search steps for traversing the decoding graph and
expanding hypotheses can be parallelized. Chong et al. [10]
and Chen et al. [11] extended the search algorithm by execut-
ing graph traversal on a GPU. These studies focused on efficient
computation of weighted finite-state transducer (WFST) based
decoding.

In contrast with these earlier studies, we focus on develop-
ing a faster beam search algorithm for attention-based encoder-
decoder networks [6, 13]. First, we vectorize the B current hy-
potheses in the queue and compute posterior probabilities at
once for the next time step. This approach can eliminate the
for-loop program with regard to the beam width originally man-
aged by the FIFO queue, and exploit parallelism for scoring the
hypotheses more effectively. Recently, this type of implementa-
tion can be found in Tensorflow [14] for general-purpose beam
search decoding1. However, such vectorization approach has
not been investigated in detail for speech recognition tasks. In
this paper, we demonstrate the efficacy of the vectorized beam
search using major ASR benchmarks such as LibriSpeech [15]
and the corpus of spontaneous Japanese (CSJ) [16].

Second, we extend the beam search to incorporate scores
from a recurrent neural network language model (RNNLM) and
connectionist temporal classification (CTC) [17–19]. Hybrid
approaches that employ attention models, CTC, and RNNLMs
have been widely used for end-to-end ASR and shown to im-
prove the recognition accuracy [5, 7, 20, 21], but the effective-
ness of parallel search algorithms for such hybrid models is not
well investigated. The beam search for the standard attention
decoder needs to be performed in an output-label-synchronous
manner. A method to combine CTC with the attention decoder
uses CTC prefix scores [22], which allows us to compute the
CTC scores label-synchronously together with the attention de-
coder. However, the CTC-based forward probabilities need to
be accumulated along the entire sequence of input frames to ob-
tain the prefix scores [23]. This process can be parallelized over
multiple hypotheses but not over the input frames. Therefore,
if the utterance is long, computation requirements increase, in
a quadratic order of the length. To overcome this problem, we
propose a frame windowing technique based on the attention
weights given by the attention decoder, which can significantly

1https://www.tensorflow.org/api_docs/python/
tf/contrib/seq2seq/BeamSearchDecoder



reduce the number of frames considered for computing the pre-
fix scores.

Finally, we further investigate the efficacy of batch process-
ing that decodes multiple utterances simultaneously, where the
encoder network generates the hidden vectors of S utterances at
once, and the decoder network processes S × B hypotheses in
a mini batch.

2. Beam search
2.1. Definition

Let Hl = {hl1, . . . , hlb, . . . , hlB} be a set of hypotheses in the
FIFO queue at decoding time step l. Hypothesis hlb has its own
label history accumulated up to time step l:

hlb = y1b · y2b · · · ylb, (1)

where ykb ∈ U denotes the k-th output label of hlb, and U =
{u1, . . . , uU} is an output label set with U elements.

At the next time step l + 1, for each hypothesis hlb, the
decoder network generates U new labels with their posterior
probabilities, leading to U expanded hypotheses:

h̄l+1
b,i = hlb · ui, 1 ≤ i ≤ U. (2)

Each hypothesis hlb has a score α which is an accumulation of
log posterior probabilities up to decoding time step l. The score
for the expanded hypotheses can be computed by adding the
output of the decoder network:

α(h̄l+1
b,i ) = α(hlb) + log patt(yl+1

b = ui|hlb, X), (3)

where patt(yl+1
b |h

l
b, X) is a set of posterior probabilities gen-

erated by the decoder network and patt(yl+1
b = ui|hlb, X) the

posterior probability for the i-th label ui. X denotes an input
sequence. Following the notations in [24],

patt(yl+1
b |h

l
b, X) = Generate(c̄l+1

b , rlb), (4)

r̄l+1
b,i = Recurrency(rlb, c̄

l+1
b , ui), (5)

where rlb and c̄l+1
b are the decoder state and the context vector

for hlb, respectively, and r̄l+1
b,i the decoder state for h̄l+1

b,i . Please
refer to [24] for detail.

To reduce the search space, the expanded hypotheses are
pruned at each time step. Pruning is performed in a two-step
procedure, locally then globally. During local pruning, for each
hypothesis hlb, the set of U expanded hypotheses {h̄l+1

b,i |1 ≤
i ≤ U} is pruned to its top B hypotheses based on the high-
est local scores patt(yl+1

b = ui|hlb, X). Given an array V of
scores, we denote by Top(V,B) the function which returns the
B elements in V with highest values, together with their indices
in V . Local pruning can then be represented as:

R̄l+1
b , ζl+1

b = Top([log patt(yl+1
b = ui|hlb, X)]1≤i≤U , B),

(6)

resulting in a set of B hypotheses (again, for each hlb), with
scores:

Q̄l+1
b = [α(hlb) + log patt(yl+1

b = u
ζl+1
b,j
|hlb, X)]1≤j≤B .

(7)

Local pruning is typically repeated in a for-loop manner to ex-
pand all hypothesis ofHl.

During global pruning, theB×B expanded hypotheses are
further pruned down toB hypotheses by picking the hypotheses
withB highest scores among allB×B hypotheses, with indices

Figure 1: Procedure of vectorized beam search at time step l.
Hypotheses are expanded and added with scores of RNNLM as
shallow fusion. The candidate hypotheses are pruned by apply-
ing local and global pruning.

ξl+1 = [(bl+1
k , jl+1

k )]1≤k≤B as follows:

Ql+1, ξl+1 = Top
(
Q̄l+1, B

)
, (8)

Hl+1 = {hlb · uζl+1
b,j
|(b, j) ∈ ξl+1}. (9)

2.2. Implementation

The decoder network in Eq. (4) takes previous label informa-
tion at step l as input to output the posterior probabilities at step
l+1. Other than the previous label, the networks with recurrent
connections have internal states (e.g., r̄l+1

b,i and c̄l+1
b in Eqs. (4)

and (5), and the attention weights) which will be used in a future
step. These states need to be pruned together with the hypothe-
ses. At the implementation level, each hypothesis is represented
as a dictionary data structure including these states and stored
in the FIFO queue, allowing pruning to be performed at once
for all variables.

3. Vectorized beam search
3.1. Definition

In this section, we reformulate the beam search algorithm of
Section 2 by vectorizing the hypotheses and eliminating the
loop on the beam size B. We further process S utterances in
a batch for reducing computation time in an offline decoding
scenario. In online decoding, batch size S is set to 1. Figure 1
shows an overview of the proposed hypotheses expansion and
pruning techniques at step l.

For this purpose, we vectorize each element in the dictio-
nary consisting of the internal states as described in Section 2.2.
At step l = 0, the previous labels are defined as a vector of
“start-of-sequence” symbols:

y0
[S×B] = [<sos>, . . . ,<sos>]ᵀ, (10)

and the accumulated scores are defined as:

Q0
[S×B] = [0, . . . , 0]ᵀ, (11)

where the subscript square brackets show the array size, e.g.,
Q0

[S×B] is a 1-D array of length S × B. By concatenating S
utterances, the encoder network can compute the hidden repre-
sentations for S utterances at once. The encoder output is then
duplicated toB hypotheses to match the number of hypotheses.
The decoder network then computes the posterior probabilities
for all B beam hypotheses of the S utterances in a batch. Let



γl+1
[S×B,U ] be the calculated posterior probabilities for the U ex-

panded hypotheses at step l + 1 from the S × B hypotheses
at step l. The attention-based decoder network calculations in
Eqs. (4) and (5) are replaced by:

γl+1
[S×B,U ] = Generate(c̄l+1

[S×B], r
l
[S×B]), (12)

r̄l+1
[S×B,U ] = Recurrency(rl[S×B], c̄

l+1
[S×B],u[U ]), (13)

where operations are broadcasted appropriately.
After hypothesis expansion, local pruning is applied to re-

duce the number of hypotheses from U to B for all B hy-
potheses and S utterances, followed by global pruning to re-
duce to B hypotheses for each of the S utterances. We define
Top(V,K, dim) as above, with an additional argument indicat-
ing the dimension along which selection is performed2 (as in
Python, 0 indicates the first dimension). The accumulated score
at time step l + 1 after local pruning is obtained as:

R̄l+1
[S×B,B], ζ

l+1
[S×B,B] = Top(log γl+1

[S×B,U ], B, 1), (14)

Q̄l+1
[S×B,B] = αl[S×B] + R̄l+1

[S×B,B], (15)

where the sum is appropriately broadcasted. Here, ζl+1
(s,b) =

[ζl+1
(s,b),j ]1≤j≤B are the indices of the top B output label can-

didates for hypothesis b of utterance s. The accumulated score
Q̄l+1

[S×B,B] is re-sized to Q̄l+1
[S,B×B] for global pruning on the

B ×B candidates for each of the S utterances:

Q̄l+1
[S,B×B] = Resize(Q̄l+1

[S×B,B]), (16)
¯̄Ql+1
[S,B], ξ

l+1
[S,B] = Top(Q̄l+1

[S,B×B], B, 1). (17)

Here, ξl+1
s =[(bl+1

s,k , j
l+1
s,k )]1≤k≤B is the list of two-dimensional

indices of the topB output label candidates within the reshaped
B ×B scores for utterance s.

As in Section 2, the other variables are pruned by tracking
the selected indices, for example as follows for the hypotheses:

Hl+1
[S×B] = {hl(s,b) · uζl+1

(s,b),j
|1≤s≤S, (b, j)∈ ξl+1

s }. (18)

3.2. Shallow fusion of external modules

During beam search, RNNLM and CTC scores can be inte-
grated via shallow fusion. Prior work [5] combines these scores
by defining the final log probability log phyb as a weighted sum
of CTC prefix score log pctc, decoder network score log patt,
and RNNLM score log plm:

log phyb(yl+1
b |h

l
b, X) = λ log pctc(yl+1

b |h
l
b, X)

+ (1− λ) log patt(yl+1
b |h

l
b, X)

+ κ log plm(yl+1
b |h

l
b), (19)

where λ and κ are hyper-parameters controlling each score’s
contribution. Please refer to [25] for further details. log patt in
Eq. (3) is replaced by log phyb to include the RNNLM and CTC
scores.

3.3. Efficient computation of CTC prefix scores

A CTC prefix score for hypothesis hlb is defined as:

log pctc(hlb, . . . |X) , log
∑

ν∈(U∪{<eos>})+
pctc(hlb · ν|X), (20)

where ν represents all possible label sequences except the
empty string, and <eos> indicates the end of sentence. Since

2PyTorch supports this function as torch.topk.

it is not feasible to consider all possible label sequences, we
compute Eq. (20) as:

pctc(hlb, . . . |X) ∝
∑
t

φt−1(hl−1
b )p(zt = hlb|X), (21)

where φt−1(hl−1
b ) is the CTC forward probability up to time

frame t−1 for label sequence hl−1
b . p(zt|X) denotes the poste-

rior probability distribution at time frame t obtained by a CTC
network. In CTC, the probability of all possible future label
sequences can be considered a constant independent of hl−1

b .
Hence, we ignore the future part of the prefix score.

Eq. (21) can be parallelized over hypothesis index b, but still
includes a recursion over time frames, which cannot be paral-
lelized efficiently. This can be a computational bottleneck for
long utterances. To avoid this, we propose a windowing tech-
nique based on attention weights obtained by the decoder net-
work. Considering that the forward probabilities provide simi-
lar input-output alignments to those given by the attention de-
coder, it is reasonable to limit the frames for the summation
around the center frame of attention weights, where the center
frame can be computed as an expected value of attended frames
using the inner product of the attention weight vector and the
frame index vector. We thus limit the range of t in Eq. (21) to
f lstart ≤ t < f lend, where

f lstart = max(min(f l−1
end , t̂l −M), 1) (22)

f lend = max(t̂l +M,T ). (23)

t̂l denotes the center frame at the l-th label, and M is a prede-
fined margin parameter. In Eq. (22), we set the starting frame
of the window not to be bigger than the previous end frame
f l−1
end to avoid disconnecting the recursion of the forward prob-

abilities. In addition, if t̂l < t̂l−1, we set f lstart = f l−1
start and

f lend = f l−1
end to maintain the monotonic alignment property.

4. Experiments
4.1. Experimental setup

We used English and Japanese speech corpora, Lib-
riSpeech [15] and CSJ [16]. As input features, we used 80-
dimensional log Mel filterbank coefficients and pitch feature
with its delta and delta delta features (80+3=83 dimensions)
extracted using Kaldi tools [26]. For the LibriSpeech corpus,
we used a VGG network followed by a 5-layer BLSTM as the
encoder network. The 1st and 2nd pooling layers of VGG net-
work subsampled the hidden vector by a factor of 2 [27]. Each
BLSTM layer had 1024 cells in each direction. The decoder
network had a 2-layer LSTM with 1024 cells. The number
of labels was set to 5,000, consisting of subwords obtained by
the SentencePiece method [28]. For the CSJ corpus, we used
a VGG network followed by 4-layer BLSTM as the encoder
network with the same subsampling technique. Each BLSTM
layer had 1024 cells in each direction. The decoder network
had a 1-layer LSTM with 1024 cells. The number of labels
was set to 3,260 including Japanese Kanji/Hiragana/Katakana
characters and special tokens. Beam search decoding was per-
formed using an Intel Core i7-8700K processor with 3.70 GHz
for CPU-based experiments and an Nvidia Titan Xp card for
GPU-based experiments. In the case of RNNLM shallow fu-
sion and CTC/Attention joint decoding, we used λ = 0.5 and
κ = 0.5 on LibriSpeech, and λ = 0.3 and κ = 0.3 on CSJ.
Beam width B was set to 20 in decoding under all conditions.
Note that the baseline system for CPU decoding limits the num-



Table 1: Baseline performance on LibriSpeech.
test-clean test-other

%WER RTF %WER RTF
ATT 5.7 1.13 17.2 1.12
+RNNLM 5.2 1.14 16.2 1.14
+CTC 4.6 1.24 13.7 1.26

Table 2: Baseline performance on CSJ.
eval-1 eval-2 eval-3

%CER RTF %CER RTF %CER RTF
ATT 8.5 1.28 6.1 1.29 7.0 1.26
+RNNLM 7.9 1.30 5.8 1.31 6.7 1.28
+CTC 7.3 1.36 5.2 1.40 6.2 1.34

Table 3: Effect of vectorization on speed for LibriSpeech. Speed
is measured in RTF on the test-clean set.

ATT +RNNLM +CTC
Baseline (CPU) 1.13 1.14 1.24
Vectorized (CPU) 0.62 0.64 0.71
Vectorized (GPU) 0.03 0.03 0.51

Table 4: Effect of vectorization on speed for CSJ. Speed is mea-
sured in RTF on the eval-1 test set.

ATT +RNNLM +CTC
Baseline (CPU) 1.28 1.30 1.36
Vectorized (CPU) 0.68 0.70 0.74
Vectorized (GPU) 0.04 0.04 0.62

ber of labels scored by CTC to B × 1.5 for efficient compu-
tation, where the labels are selected using the attention model
scores. The same technique was also used in the vectorized
beam search for CPU decoding, but not for GPU decoding. We
trained RNNLMs using the transcriptions of LibriSpeech and
CSJ. Each model had a 2-layer LSTM with 650 cells. We used
the end-to-end speech processing toolkit ESPnet [25] for train-
ing ASR models and testing decoding algorithms.

4.2. Baseline performance

Tables 1 and 2 show baseline ASR performance for the Lib-
riSpeech and CSJ tasks. Recognition accuracy is represented
as word error rate (%WER) for LibriSpeech test sets (test-clean
and test-other) and character error rate (%CER) for CSJ test
sets (eval-1, eval-2, and eval-3). The decoding speed is mea-
sured in real-time factor (RTF), which is the ratio of decod-
ing time to the utterance length, and therefore a smaller RTF
indicates faster decoding. We tested different decoder condi-
tions including attention decoder only (ATT), attention decoder
with RNNLM (+RNNLM), and CTC/attention joint decoding
with RNNLM (+CTC). The recognition errors were reduced by
adding an RNNLM and CTC, but the decoding time increased
with these components. Note that the baseline decoder in ESP-
net is written in pure Python code and not optimized in terms of
speed. The speed is thus insufficient for real applications.

4.3. Performance of vectorized beam search

We measured the decoding speed when using the vectorized
beam search. Tables 3 and 4 show the RTFs with and without
vectorization for the LibriSpeech and CSJ tasks. We evaluated
the speed both on CPU and GPU. Note that since there is no
accuracy degradation by vectorization, we do not show WER or
CER here. As can be seen, the vectorized beam search provided
significant speed improvement from the baseline on both CPU
and GPU. In the case of the attention decoder with RNNLM, we
obtained 1.8× speedup on CPU and 33× speedup on GPU. In

Table 5: Effect of frame windowing for CTC prefix scores.
Speed is measured in RTF on the LibriSpeech test-clean and
CSJ eval-1 test sets.

Margin parameter LibriSpeech CSJ
in Eqs. (22) and (23) %WER RTF %CER RTF

M =∞ 4.6 0.51 7.3 0.62
M = 60 4.6 0.14 7.3 0.17
M = 50 4.6 0.11 7.3 0.14
M = 40 4.6 0.09 7.3 0.12
M = 30 4.9 0.08 7.3 0.11
M = 20 5.2 0.07 7.6 0.09

Table 6: Speed improvement by batch processing. Speed is mea-
sured in RTF on the LibriSpeech test-clean and CSJ eval-1 test
sets. Frame windowing was applied with M = 40 for CTC.

Batch LibriSpeech CSJ
size +RNNLM +CTC +RNNLM +CTC
S = 1 0.03 0.09 0.04 0.12
S = 2 0.02 0.06 0.03 0.08
S = 4 0.02 0.05 0.03 0.06
S = 8 0.02 0.04 0.02 0.05

joint decoding with CTC, the vectorization increased the speed
by 1.7 and 2.4 on CPU and GPU, respectively. However, the
improvement in GPU decoding was relatively small unlike the
case of attention decoder with RNNLM, since there is a bottle-
neck in CTC score computation as described in Section 3.3.

4.4. Frame windowing for CTC prefix scores

To reduce the CTC score computation, we implemented the
frame windowing technique proposed in Section 3.3. Table 5
shows the relationship between the error rate and the decoding
time when changing margin parameter M . In both LibriSpeech
and CSJ, even when reducing M to 40, the error rate did not in-
crease at all while achieving almost 5× faster decoding. These
results demonstrate that frame windowing is quite effective for
computing CTC prefix scores in joint decoding.

4.5. Evaluation of batch decoding

The vectorized beam search can be applied not only for single
utterances but also multiple utterances in a batch. We evaluated
the decoding speed when we increased the batch size S. Table 6
shows RTFs for different values of S. We obtained RTF reduc-
tions as the batch size increased, which demonstrates that the al-
gorithm successfully works also in batch processing. However,
the reduction ratios were relatively small for the larger batch
sizes. This could be due to some overhead for GPU memory
allocation during the beam search since the batch processing
requires an S× larger space. We will consider this problem in
future work.

5. Conclusions
In this paper, we investigated a vectorized beam search tech-
nique to speed up attention-based end-to-end speech recogni-
tion. By vectorizing hypotheses, we achieved a speedup com-
pared with the original beam search algorithm of 1.85× on the
LibriSpeech corpus, and 1.79 × on the CSJ corpus. In the case
of GPU-based execution, we further achieved 18.8× speedup
on LibriSpeech and 17.5× speedup on CSJ. For CTC/attention
joint decoding, we proposed a frame windowing technique,
which reduced the decoding time by a factor of 5 on GPU. We
also examined the batch processing of multiple utterances, and
confirmed further speedups as the batch size increased.



6. References
[1] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke,

D. Yu, and G. Zweig, “The Microsoft 2016 conversational speech
recognition system,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Mar. 2017,
pp. 5934–5938.

[2] K. Audhkhasi, B. Kingsbury, B. Ramabhadran, G. Saon, and
M. Picheny, “Building competitive direct acoustics-to-word mod-
els for english conversational speech recognition,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Apr. 2018, pp. 4759–4763.

[3] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen,
Z. Chen, A. Kannan, R. J. Weiss, K. Rao, E. Gonina, N. Jaitly,
B. Li, J. Chorowski, and M. Bacchiani, “State-of-the-art speech
recognition with sequence-to-sequence models,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Apr. 2018, pp. 4774–4778.

[4] J. Li, G. Ye, A. Das, R. Zhao, and Y. Gong, “Advancing acoustic-
to-word CTC model,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Apr. 2018,
pp. 5794–5798.

[5] T. Hori, S. Watanabe, Y. Zhang, and C. William, “Advances in
joint CTC-Attention based end-to-end speech recognition with a
deep CNN encoder and RNN-LM,” in Proc. Interspeech, Aug.
2017, pp. 949–953.

[6] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Mar. 2016,
pp. 4960–4964.

[7] A. Zeyer, K. Irie, R. Schlüter, and H. Ney, “Improved training
of end-to-end attention models for speech recognition,” in Proc.
Interspeech, Sep. 2018, pp. 7–11.

[8] N. Moritz, T. Hori, and J. Le Roux, “Triggered attention for end-
to-end speech recognition,” in Proc. IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), May
2019.

[9] P. R. Dixon, T. Oonishi, and S. Furui, “Harnessing graphics pro-
cessors for the fast computation of acoustic likelihoods in speech
recognition,” Computer Speech & Language, vol. 23, no. 4, pp.
510–526, 2009.

[10] J. Chong, E. Gonina, Y. Yi, and K. Keutzer, “A fully data parallel
WFST-based large vocabulary continuous speech recognition on
a graphics processing unit,” in Proc. Interspeech, Sep. 2009, pp.
1183–1186.

[11] Z. Chen, J. Luitjens, H. Xu, Y. Wang, D. Povey, and S. Khudanpur,
“A GPU-based WFST decoder with exact lattice generation,” in
Proc. Interspeech, Sep. 2018, pp. 2212–2216.

[12] X. L. Aubert, “An overview of decoding techniques for large
vocabulary continuous speech recognition,” Computer Speech &
Language, vol. 16, no. 1, pp. 89–114, 2002.

[13] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Ben-
gio, “End-to-end attention-based large vocabulary speech recog-
nition,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Mar. 2016, pp. 4945–
4949.

[14] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow:
A system for large-scale machine learning,” in Proc. USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), Nov. 2016, pp. 265–283.

[15] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “LIB-
RISPEECH: An ASR corpus based on public domain audio
books,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Apr. 2015, pp. 5206–
5210.

[16] K. Maekawa, “Corpus of Spontaneous Japanese: Its design and
evaluation,” in Proc. ISCA & IEEE Workshop on Spontaneous
Speech Processing and Recognition, Apr. 2003.

[17] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: Labelling unsegmented se-
quence data with recurrent neural networks,” in Proc. Interna-
tional Conference on Machine learning (ICML), Jun. 2006, pp.
369–376.

[18] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-end
speech recognition using deep RNN models and WFST-based de-
coding,” in Proc. IEEE Workshop on Automatic Speech Recogni-
tion and Understanding (ASRU), Dec. 2015, pp. 167–174.

[19] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Batten-
berg, C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen et al.,
“Deep speech 2: End-to-end speech recognition in English and
Mandarin,” in Proc. International Conference on Machine Learn-
ing (ICML), Jun. 2016, pp. 173–182.

[20] A. Das, J. Li, R. Zhao, and Y. Gong, “Advancing connectionist
temporal classification with attention modeling,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Apr. 2018, pp. 4769–4773.

[21] A. Kannan, Y. Wu, P. Nguyen, T. N. Sainath, Z. Chen, and
R. Prabhavalkar, “An analysis of incorporating an external lan-
guage model into a sequence-to-sequence model,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Apr. 2018, pp. 1–5828.

[22] T. Hori, S. Watanabe, and J. R. Hershey, “Joint CTC/attention de-
coding for end-to-end speech recognition,” in Proc. Annual Meet-
ing of the Association for Computational Linguistics (ACL), Jul.
2017.

[23] A. Graves, “Supervised sequence labelling with recurrent neural
networks,” PhD thesis, Technische Universität München, 2008.

[24] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-attention based
end-to-end speech recognition using multi-task learning,” in Proc.
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Mar. 2017, pp. 4835–4839.

[25] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N.-E. Y. Soplin, J. Heymann, M. Wiesner, N. Chen et al., “ESP-
net: End-to-end speech processing toolkit,” in Proc. Interspeech,
Sep. 2018, pp. 2207–2211.

[26] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The Kaldi speech recog-
nition toolkit,” in Proc. IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), Dec. 2011.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[28] T. Kudo and J. Richardson, “SentencePiece: A simple and lan-
guage independent subword tokenizer and detokenizer for neural
text processing,” in Proc. Conference on Empirical Methods in
Natural Language Processing (EMNLP), Oct. 2018, pp. 66–71.


