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ABSTRACT

This paper presents a nonparametric Bayesian extension of non-
negative matrix factorization (NMF) for music signal analysis.
Instrument sounds often exhibit non-stationary spectral characteris-
tics. We introduce infinite-state spectral bases into NMF to represent
time-varying spectra in polyphonic music signals. We describe our
extension of NMF with infinite-state spectral bases generated by
the Dirichlet process in a statistical framework, derive an efficient
optimization algorithm based on collapsed variational inference, and
validate the framework on audio data.

Index Terms— Nonnegative matrix factorization (NMF),
Dirichlet process, Collapsed variational Bayes, Nonparametric
Bayes

1. INTRODUCTION

Nonnegative matrix factorization (NMF) [1] is an unsupervised de-
composition technique allowing the representation of two-dimensio-
nal nonnegative data as a linear combination of a few meaningful
elementary bases. In particular, NMF has been applied successfully
to music spectrograms in audio signal processing, with such appli-
cations as automatic music transcription or sound source separation.
NMF is able to project all signals that have a similar spectral shape
on a single basis, allowing one to represent a variety of phenomena
efficiently using a very compact set of spectrum bases.

While real world sounds typically exhibit non-stationary spec-
tral characteristics, the standard NMF implicitly assumes that each
elementary component (which is expected to correspond to a single
note activation) of a signal under analysis is represented by a ”rank
1” spectrogram. This means that the spectrum of each note is as-
sumed to be constant over time up to a scale factor. Thus, learning
an important spectral variability with standard NMF would require
to use a large number of bases, and some post-processing to group
the bases into single events.

Several approaches have been proposed to overcome this prob-
lem. For example, nonnegative matrix factor deconvolution [2]
introduces temporal-spectral bases, while [3] considers an exten-
sion of NMF where temporal activations are replaced with time-
frequency activations based on a source/filter model. Another kind
of approaches based on state variations of the spectral patterns has
been an active area of research to model sounds whose spectral
characteristics evolve other time, such as the piano with attack and
release parts. Factorial scaled hidden Markov model [4] or NMF
with Markov-chained bases [5] intend to represent time-varying
spectra as state transitions through a limited and fixed number of
spectral patterns. However, the important problem of the automatic

determination of the number of states remained to be solved. For
example, while a piano note is likely to be well expressed with a few
spectral patterns, one would expect a singing voice to require many.
The number of states is thus an important factor to characterize
the diversity of each instrument. Hopefully, the adequate number
of states should be assigned in response to the tested instrumental
sounds.

This paper proposes to extend NMF to represent time-varying
spectral patterns of instrument sounds by introducing infinite-state
spectral bases. The number of states of basis is adaptively opti-
mized depending on the instrument sounds. Bayesian NMF with
deformable bases is explained in Section 2. Section 3 presents the
infinite-state spectrum model, an extension of NMF with deformable
bases. Section 4 derives an efficient optimization algorithm based
on collapsed variational inference. Validation experiments are pre-
sented in Section 5.

2. BAYESIAN NONNEGATIVE MATRIX FACTORIZATION
WITH DEFORMABLE BASES

NMF applied to audio signal analysis is based on a signal model
where the magnitude or power spectrogram Y = (Yω,t)Ω×T ∈
R

≥0,Ω×T , where ω = 1, . . . , Ω is a frequency bin index, and
t = 1, . . . , T is a time frame index, is factorized into nonnegative
parameters,H = (Hω,d)Ω×D ∈ R

≥0,Ω×D andU = (Ud,t)D×T ∈
R

≥0,D×T . This can be written as
Yω,t ≈

X
d

Hω,dUd,t , (1)

where D is the number of bases hd = [H1,d, . . . , HΩ,d]. The term
component is used to refer to one basis hd and its time-varying gain
Ud,t. The bases can be considered as spectral patterns which are
frequently observed.

Hopefully, one factorized component should represent a sin-
gle event, but audio events actually often have varying spec-
tral patterns. We thus propose to consider deformable bases
H = {(H(k)

ω,1)Ω×K , . . . , (H
(k)
ω,D)Ω×K}, where (H

(k)
ω,d)Ω denotes

the k-th possible state for the spectral basis of the d-th component.
If we let Z = (Zd,t)D×T ∈ N denote which spectral basis state
of the d-th component is activated at time t, NMF with deformable
bases can be written as

Yω,t ≈
X

d

H
(Zd,t)

ω,d Ud,t . (2)

Assuming that the generalized Kullback-Leibler divergence is used
as the divergence measure, the model can be expressed as the fol-
lowing generative model, similarly to [6]:

Yω,t =
X

d

Cω,t,d , Cω,t,d ∼ Poisson(Cω,t,d | H
(Zd,t)

ω,d Ud,t) .
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It is possible to introduce various prior structures for H and U
according to the data and the requirements of the considered appli-
cations. For the spectral bases H , we here propose to use a Gamma
distribution, which is the conjugate prior to the Poisson distribution:

H
(k)
ω,d ∼ Gamma(aω, bω) , (3)

the primary motivation for this choice being computational conve-
nience. To promote temporal continuity, often encountered in real-
world sounds, we introduce the following prior distribution on the
time-varying gains U , similarly to [7]:

Wd,t | Ud,t ∼ Gamma(α, αUd,t) , (4)
Ud,t+1 | Wd,t ∼ Gamma(β, βWd,t) , (5)

where W = (Wd,t)D×T are auxiliary variables. If we set α and β
to large values, the prior will enforce the temporal smoothness ofU .

3. INFINITE-STATE SPECTRUMMODEL

It is important to determine the number of states for each component.
For example, a piano note would be often characterized by several
spectral patterns such as “attack”, “decay”, “sustain” and “release”.
Three or four bases may thus be needed to represent the spectrogram
of the piano. As another example, singing voices and stringed instru-
ments feature a particular musical effect, vibrato. Vibrato may need
to be expressed using many spectral patterns. Thus, it is desirable
to automatically determine the appropriate number of deformable
bases for fitting to each instrument sound. To achieve this, we in-
troduce the Dirichlet process (DP) into the deformable bases. DP
is popularly used as a nonparametric prior in hierarchical Bayesian
specification [8, 9]. Several practical methods for the construction
of DP have been derived [8, 10].

Let us first show how to construct it here based on a symmetric
Dirichlet prior. We consider the sequence {Zd,1, . . . , Zd,T } of state
indices for the d-th component as a sequence of discrete indicator
variable, where each Zd,t can take on values 1, . . . , K with propor-
tions given by ıd = {πd,1, . . . , πd,K}. The joint distribution of the
sequence is multinomial

p(Zd,1, . . . , Zd,T | ıd) =

KY
k=1

π
n
(k)
d

d,k , (6)

where n
(k)
d =

PT
t′=1 δ(Zd,t′ − k) and δ(·) denotes the Kronecker-

delta function to count the number of times n(k)
d thatZd,t′ = k (t′ =

1, . . . , T ) has been drawn. Let us give the mixing proportions a
symmetric Dirichlet prior, which is a conjugate prior of the multino-
mial distribution, with positive concentration hyperparameter ‚ =
{γ1, . . . , γD}:

p(πd | γd) ∼ Dirichlet(γd/K, . . . , γd/K) . (7)

The critical property of the DP is shown in the conditional proba-
bility of Zd,t given the setting of all other indices in the sequence
{Zd,1, . . . , Zd,t−1, Zd,t+1, . . . , Zd,T } (denoted Zd,−t) underK →
∞:
p(Zd,t = k | Zd,−t, γd)

=

8><
>:

n
(k)
d,−t

T − 1 + γd
(k ∈ {1, . . . , K} i.e. represented)

γd

T − 1 + γd
(for all unrepresented k, combined)

where n
(k)
d,−t counts the number of times that Zd,t′ = k has been

drawn in Zd,−t. As we can see, Zd,t tends to choose an already
popular state. The concentration parameter γd controls the tendency

to populate a previously unrepresented state. Each component thus
tends to keep an adequate number of states depending on the ob-
served signals.

Another formulation of the DP has also been proposed in terms
of a stick-breaking construction [10]:

Vd,k ∼ Beta(1, γd) , πd,k(Vd) = Vd,k

k−1Y
j=1

(1 − Vd,j) , (8)

where Vd = {Vd,1, Vd,2, . . . }. This construction is regarded as
breaking pieces off a unit-length stick successively with size deter-
mined by variable Vd,k ∈ [0, 1] drawn from Beta(1, γd). The k-th
broken piece shows the proportion πd,k.

Note that the present model can be considered as an HMM with
uniform transition probabilities. Future work will include the intro-
duction of the hierarchical DP [11] to incorporate transition prob-
abilities in order to more accurately model the succession of spec-
tral patterns. Also note that although the number of components D
needs here to be given by hand, it should ideally be determined adap-
tively according to the input data for example using the techniques
described in [12, 13].

4. VARIATIONAL INFERENCE ALGORITHM

Inference algorithms for models with DP prior are mostly based on
sampling methods. However, a variational Bayesian (VB) approach
is often preferable for large-scale problems. Even though we target a
short sequence of music, its spectrogram comprises a large number
of parameters. We thus prefer here the framework of VB inference.

Some approaches have been proposed for variational inference
involving DP [9, 14]. In the context of VB, DP is usually approxi-
mated by finite symmetric Dirichlet prior (FSD) or truncated stick-
breaking construction (TSB) [15]. In this paper, we will discuss only
the TSB for the sake of brevity. TSB is obtained by using a fixed
value K and setting ∀d, p(Vd,K = 1) = 1; this implies that the
mixture proportions πd,k are equal to zero for k > K. Note that the
proposed model does have “infinite-state” spectral bases, and that the
finite approximation is only linked to the use of variational inference.
As a matter of fact, we do not have to make such an approximation
if we use sampling methods, such as Gibbs sampling.

The VB approach in general assumes a factorized form for the
posterior distribution. That can be regarded as assuming that the pa-
rameters are independent of each other. Here, because of the strong
impact of ıd on Zd, it seems difficult to make such an assump-
tion without impeding the performance of the inference. As shown
by [14], a collapsed approach based on integrating out ıd can be
applied to overcome this problem, and we thus use collapsed varia-
tional Bayes instead of standard VB. Here, we integrate out ıd and
then the joint collapsed model is given by

P (Y , C, H, U , Z, W )

= p(Y | C)p(C | H, U , Z)p(Z)p(H)p(U , W ) (9)

where p(Z) is given by (marginalizing out ıd from Eq. (8))

p(Z) =
Y
d

Y
k

Γ(1 + n
(k)
d )Γ(γd +

P
k′>k n

(k′)
d )

Γ(1 + γd +
P

k′≥k n
(k′)
d )

. (10)

We want to maximize the log marginal likelihood L(Y ). As it is
difficult to do it directly, VB uses a lower bound B(Y ) for L(Y )
based on the assumption that parameters are independent of each
other. The lower bound is given by

B(Y ) =
X
Z

Z
Q(Ξ) log

P (Y , C, H, U , Z, W )

Q(Ξ)
dCdHdUdW

1973



(a) Original spectrogram (b) Estimated component: F

(c) Estimated component: A� (c) Estimated component: D�

Fig. 1. Original spectrogram of vocal signals (a), estimated model
P

k E[H
(k)
ω,d]q(Zd,t = k)E[Ud,t] (not E[Cω,t,d]) of each component (b),

(c) and (d). We set the number of bases toD = 3 and truncated level toK = 30. Owing to parsimony and temporal smoothness, the proposed
method was able to decompose a note with vibrato in an unsupervised way.

where Q(Ξ) = q(C)q(Z)q(H)q(U)q(W ). In the following, for
the sake of brievity, we only sketch the update rules. Let us first
focus on the update rules for q(Z). We find the update:

q(Zd,t) ∝ exp
“

EQ
m �=t q(Zd,m) [log p(Zd,t | Zd,−t)]

”
× exp

„
E

q(ΘZd,t
)q(C)

[log p(Ct,d | ΘZd,t)]

«
(11)

whereΘZd,t = {h
(Zd,t)

d , Ud,t}. Integrating out parameters often re-
sults in expensive computational cost. This can however be avoided
by using a Gaussian approximation [14]. This approximation can
be applied to random variables n

(k)
d,−t, n

(≥k)
d,−t which are sums over

Bernoulli variables. Thanks to the central limit theorem, these sums
can be effectively approximated using Gaussian distributions. In or-
der to apply this framework, we use the following second order Tay-
lor expansion: E(log ρm) ≈ log(E[ρm])−V[ρm]/2E[ρm]2 for any
probabilistic variable ρm. We have as for the first term of Eq. (11)

EQ
m�=t q(Zd,m) [log p(Zd,t | Zd,−t)]

≈ log
“
1 + E[n

(k)
d,−t]

”
− V[n

(k)
d,−t]

2(1 + E[nk
d,−t])

2

+
X
j<k

(
log

“
γd + E[n

(>j)
d,−t]

”
− V[n

(>j)
d,−t]

2(γd + E[n>j
d,−t])

2

)

−
X
j≥k

(
log

“
1 + γd + E[n

(≥j)
d,−t]

”
− V[n

(≥j)
d,−t]

2(1 + γd + E[n≥j
d,−t])

2

)
.

As for the second term of Eq. (11), we find

E
q(ΘZd,t

)q(C)
[log p(Ct,d | ΘZd,t)]

= −
X

ω

E[H
(Zd,t)

ω,d Ud,t] +
X

ω

E[Cω,t,d log H
(Zd,t)

ω,d Ud,t] .

Next, we find the update for q(C):

q(C
ω,t,d) ∝ Multinomial(C

ω,t,d | Yω,t, λω,t,d) ,

λω,t,d =
exp

“P
k q(Zd,t = k)E[log H

(k)
ω,dUd,t]

”
P

d exp
“P

k q(Zd,t = k)E[log H
(k)
ω,dUd,t]

” .

We can then find the following update rule for q(H):

q(H
(k)
ω,d) ∝ Gamma(μ

(k)
ω,d, ν

(k)
ω,d) , (12)

μ
(k)
ω,d = aω +

X
t

E[Cω,t,d]q(Zd,t = k) ,

ν
(k)
ω,d = bω +

X
t

q(Zd,t = k)E[Ud,t] ,

similarly for q(U):
q(Ud,t)∝Gamma(ηd,t, τd,t) , (13)

ηd,t =
X
ω,k

E[Cω,t,d]q(Zd,t = k) + α + β ,

τd,t =
X
ω,k

E[H
(k)
ω,d]q(Zd,t = k) + αE[Wd,t] + βE[Wd,t−1] ,

and finally for q(W ):

q(Wd,t) ∝ Gamma(φd,t, ϕd,t) , (14)

φd,t = α + β , ϕd,t = αE[Ud,t] + βE[Ud,t+1] .

To avoid unexpected local solutions, we propose introducing a
weight parameter Υ into p(C | H, U , Z)Υ, and gradually increas-
ing the value of Υ to 1.

5. EXPERIMENTS

We present some results on the application of our algorithm to au-
dio signals, for fully unsupervised sound separation. All data were
downmixed to mono and downsampled to 16kHz. The magnitude
spectrogram was computed using the short time Fourier transform
with 32 ms long Hanning window and with 16 ms overlap.

The treatment of the hyperparameters is important. One possible
approach is introducing hyperpriors (such as non-informative priors)
on the hyperparameters, which we expect would lead to automatic
estimation of the hyperparameters. However, we could instead indi-
cate our wish to fix them so that the model is enforced by sparseness
and temporal smoothness. Here, the hyperparameters were set to
aω = bω = 0, α = β = 5, γ = 1.

At first, we generated synthetic data, a mixture of vocal signals
taken from RWC database (RWC-MDB-I-2001 No.45) [16]. The
sequence is composed of 3 notes (Major chord: D�，F and A� have
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(a) Original spectrogram, a mixture of piano (D�) and violin (A�)

(b) Estimated model: Violin (A�)

(c) Estimated model: Piano (D�)

Fig. 2. Original spectrogram (a), estimated model (b) and (c). Esti-
mated model:

P
k E[H

(k)
ω,d]q(Zd,t = k)E[Ud,t] (top) and q(Zd,t =

k)E[Ud,t] (bottom) of each component. We set the number of bases
to D = 2 and truncated level to K = 30. The number of states was
automatically optimized depending on the instrumental sounds.

overlapping harmonic components): first, each note is played alone
in turn, then all the combinations of two notes are played and fi-
nally all notes are played simultaneously. “synthetic” means that
each note is played four times and they are synthesized from the
same signal. The result is shown in Fig. 1. The proposed method
was confirmed to appropriately decompose a note with vibrato with
deformable bases.

Next, we generated as test data (Fig. 2), a mixture of the piano
(D�: RWC-MDB-I-2001 No. 1) and the violin (A�: RWC-MDB-
I-2001 No. 15). Each note is played alone in turn, then two notes
are played simultaneously. Each note is played twice and each time
synthesized from a different signal. The results are shown in Fig. 2.
The number of states is determined automatically depending on the
instruments.

6. CONCLUSION

We presented a nonparametric Bayesian extension of NMF, which
we call infinite-state spectrum model. The proposed model applied
to audio signals represents the time-varying spectrum of each note
event in polyphonic music. We derived an efficient optimization al-

gorithm based on collapsed variational inference, and presented ex-
perimental results showing that our model is fitted for the modeling
of non-stationary audio signals. In the future, we will extend this
model to an infinite-state Markov chain spectrum model with hier-
archical DP [11]. A remaining important problem for audio signal
analysis based on NMF is that of the automatic determination of the
number of components [12, 13]: future work will include the intro-
duction of an Indian buffet process prior into our model to overcome
this problem.
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