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Abstract. This paper presents a new sparse representation for poly-
phonic music signals. The goal is to learn the time-varying spectral pat-
terns of musical instruments, such as attack of the piano or vibrato of
the violin in polyphonic music signals without any prior information. We
model the spectrogram of music signals under the assumption that they
are composed of a limited number of components which are composed
of Markov-chained spectral patterns. The proposed model is an exten-
sion of nonnegative matrix factorization (NMF). An efficient algorithm
is derived based on the auxiliary function method.
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1 Introduction

The use of sparse representation in acoustic signal processing has been a very
active area of research in recent years, with very effective algorithms based on
nonnegative matrix factorization (NMF) [1] and sparse coding. These are typi-
cally based on a simple linear model.

NMF, in particular, has been applied extensively with considerable success
to various problems including automatic music transcription, monaural sound
source separation [2]. NMF is able to project all signals that have the same
spectral shape on a single basis, allowing one to represent a variety of phenomena
efficiently using a very compact set of spectrum bases. However, because NMF is
also fundamentally a dimension reduction technique, a lot of information on the
original signal is lost. This is in particular what happens when assuming that
the spectrum of the note of a musical instrument can be represented through a
single spectral basis whose amplitude is modulated in time, while its variations
in time are actually much richer. For example, a piano note would be more
accurately characterized by a succession of several spectral patterns such as
“attack”, “decay”, “sustain” and “release”. As another example, singing voices
and stringed instruments feature a particular musical effect, vibrato, which can
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be characterized by its ”depth”, (the amount of pitch variation), and its ”speed”,
(the speed at which the pitch varies). Learning such time-varying spectra with
standard NMF would require to use a large number of bases, and some post-
processing to group the bases into single events.

In this paper, we propose a new sparse representation, “NMF with Markov-
chained bases” for modeling time-varying patterns in music spectrograms. Our
model represents a single event as a succession of spectral patterns. The proposed
model is presented in Section 2, together with the derivation of an efficient
algorithm to optimize its parameters. We present basic experimental results in
Section 3.

2 NMF with Markov-Chained Bases

2.1 Presentation of the Model

Most algorithms for unsupervised sound source separation are based on a signal
model where the magnitude or power spectrogram Y = (Yω,t)Ω×T ∈ R

≥0,Ω×T ,
where ω = 1, · · ·, Ω is a frequency bin index, and t = 1, · · ·, T is a time frame
index, is factorized into nonnegative parameters, H = (Hω,d)Ω×D ∈ R

≥0,Ω×D

and U = (Ud,t)D×T ∈ R
≥0,D×T . This can be written as

Yω,t =
D∑

d=1

Hω,dUd,t , (1)

where D is the number of bases hd = [H1,d, · · ·, HΩ,d]. The term component is
used to refer to one basis hd and its time-varying gain Ud,t. The bases can be
considered as spectral patterns which are frequently observed.

Hopefully, one component should represent a single event. However, the spec-
trum of instrument sounds is actually in general nonstationary. Each source will
thus tend to be modeled as a sum several components, leading to the difficult
problem of determining which source each component belongs to. Recently, an
extension of NMF where temporal activations become time/frequency activa-
tions based on a source/filter model [3] have been proposed to overcome this
problem. However, it has not been clarified whether the source/filter model is
fit for auditory stream composed of various origin, such as the piano. For exam-
ple, “attack” caused by a keystroke has energies on wide-band spectrum, while
“sustain” has a harmonic structure.

In contrast with the above approaches, we focus on the hierarchical structure
of the sounds produced by musical instruments, and model the spectrogram of
music signals under the assumption that they are composed of spectral patterns
which have themselves a limited number of Markov-chained states. Concretely,
we assume that each basis hd has Φ states, the transitions between those states
being constrained and only one state being activated at each time t.

We attempt to model the spectrogram again based on H = (Hω,φ,d)Ω×Φ×D ∈
R

≥0,Ω×Φ×D Here, P = (Pφ,t,d)Φ×T×D ∈ R
≥0,Φ×T×D is binary to show which

basis is activated at time t, i.e., Pφ,t,d = 1 if h(φ)
d is activated at time t, and

Pφ,t,d = 0 otherwise. Then, the proposed model can be written as
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Fig. 1. Diagram of NMF with Markov-chained bases

Yω,t =
∑

d,φ

Hω,φ,dPφ,t,dUd,t . (2)

Note that P does not show the probabilities that state φ is activated at time t
and the class S of all possible P is defined by the topology of the Markov chain,
for example left-to-right model or ergodic model.

2.2 Problem Setting

Given an observed spectrogram, we would like to find the optimal estimates
of H, U and P. The standard NMF algorithm proposed by Lee and Seung [1]
performs the decomposition by minimizing the reconstruction error between the
observation and the model while constraining the matrices to be entry-wise non-
negative. Our estimation can also be written as optimization problem, similarly
to standard NMF. Various measures for standard NMF have been proposed. We
choose here the following β-divergence, which has been widely used,

Dβ (y|x) =

(
yβ + (β − 1)xβ − βyxβ−1

)

β(β − 1)
. (3)

Note that the above definition can be properly extended by continuity to β = 0
and β = 1 [5]. Let θ denote the set of all parameters {(Hω,φ,d)Ω×Φ×D, (Ud,t)D×T ,
(Pφ,t,d)Φ×T×D}. We then need to solve the following optimization problem:

minimize J (θ) =
∑

ω,tDβ

(
Yω,t|

∑
d,φ Hω,φ,dPφ,t,dUd,t

)

subject to ∀ω, φ, d, Hω,φ,d ≥ 0, ∀d, t, Ud,t ≥ 0, P ∈ S .
(4)

In this paper, we assume that the transition probabilities of the Markov-chained
bases are uniform. Thus, the cost of each of the paths is regarded as constant
and ignored in Eq. (4). In the following, we will refer to the algorithm to solve
NMF with Markov-chained bases as “MNMF”.
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Note that our model can also be expressed as Factorial Hidden Markov Model
for specific βs. The case of β = 0 reduces to Factorial scaled Hidden Markov
Model which reduces to NMF with Itakura-Saito (IS) divergence and Gaussian
Scaled Mixture Model [4]. These probabilistic model may achieve the extension
of NMF with the Euclidean distance (β = 2), the generalized Kullback-Leibler
divergence (β = 1) and IS divergence (β = 0) based on a statistical approach to
NMF [5,6]. However, it is not clarified whether statistical approach can apply to
NMF with various measures, such as β-divergence.

2.3 Iterative Algorithm

Our derivation is based on a principle called the auxiliary function method,
similar to [1]. Let G(θ) denote an objective function to be minimized w.r.t. a
parameter θ. A function G+(θ, θ̂) which satisfies G(θ) = minθ̂ G+(θ, θ̂) is then
called an auxiliary function for G(θ), and θ̂ an auxiliary variable. The function
G(θ) is easily shown to be non-increasing through the following iterative update
rules: θ̂(s+1) ← argminθ̂ G+(θ(s), θ̂) and θ(s+1) ← argminθ G+(θ, θ̂(s+1)), where
θ̂(s+1) and θ(s+1) denote the updated values of θ̂ and θ after the s-th step.

An auxiliary function for standard NMF with β-divergence has been pro-
posed [8]. This strategy can apply to our problem. θ̂ denotes auxiliary variables
{(λω,t,k)Ω×T×K , (Zω,t)Ω×T } (∀k, λω,t,k ≥ 0,

∑
k λω,t,k = 1, Zω,t ∈ R) for conve-

nience. We obtain the following auxiliary function:

J +(θ, θ̂) =
∑

ω,t

Yω,t

β(β − 1)
+
∑

ω,t

⎧
⎪⎨

⎪⎩

R(β)
ω,t − Yω,tQ

(β−1)
ω,t (β < 1)

Q(β)
ω,t − Yω,tQ

(β−1)
ω,t (1 ≤ β ≤ 2)

Q(β)
ω,t − Yω,tR

(β−1)
ω,t (β > 2)

, (5)

where Q(β)
ω,t = (1/β)

∑
d,φ λω,t,dPφ,t,d(Hω,φ,dUd,t/λω,t,d)β and R(β)

ω,t = (1/β)Zβ
ω,t

+Zβ−1
ω,t (

∑
d,φ Hω,φ,dPφ,t,dUd,t − Zω,t). J+(θ, θ̂) is minimized w.r.t. θ̂ when

λω,t,d =

∑
φ Hω,φ,dPφ,t,dUd,t∑

φ,d Hω,φ,dPφ,t,dUd,t
, Zω,t =

∑

φ,d

Hω,φ,dPφ,t,dUd,t . (6)

Minimizing J+(θ, θ̂) w.r.t. P ∈ S is a search problem
P← argmin

P∈S

{
J +(θ, θ̂)

}
, (7)

which can be straightforwardly solved using the Viterbi algorithm. Differenti-
ating J +(θ, θ̂) partially w.r.t. Hω,φ,t and Ud,t, and setting to zero, we obtain
update rules for Hω,φ,d and Ud,t:

Hω,φ,d ←
(∑

t αβ−2
ω,t Yω,tγ

Max{2−β, 0}
ω,t,d Pφ,t,dUd,t

∑
t αβ−1

ω,t γ
Min{1−β, 0}
ω,t,d Pφ,t,dUd,t

)ϕ(β)

, (8)

Ud,t ← Ud,t

(∑
ω αβ−2

ω,t Yω,tγω,t,d
∑

ω αβ−1
ω,t γω,t,d

)ϕ(β)

, (9)

where αω,t =
∑

d,φ Hω,φ,dPφ,t,dUd,t, γω,t,d =
∑

φ Hω,φ,dPφ,t,d and ϕ(β) = 1/(2−
β) (β < 1), 1 (1 ≤ β ≤ 2), 1/(β − 1) (β > 2).
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(a) Original spectrogram (b) MNMF-ltr, K = 1, Φ = 4

(c) Markov-chained bases, K = 1, Φ = 4 (d) Activation, K = 1, Φ = 4

Fig. 2. Original spectrogram of the extract of the piano (MIDI) (a), reconstructed
spectrograms (b), the bases (c) and the activation (d) learned by MNMF. MNMF
was able to decompose the evolution of the spectrum as a succession of several part,
“attack”, “sustain”, “decay” and “release”.

2.4 Update Scheduling

The algorithm described above converges quickly. However, it often falls into
unexpected stationary points. H and U at the early stage of iterations are not
useful for estimating P. P fixed using unrealistic H and U induces in turn H
and U in unexpected directions. We thus improve the update rule for P by
introducing an updating schedule. Here, let the scheduling parameter, k

(s)
φ , at

s-th iteration satisfy ∀φ, kφ ≥ 0,
∑

φ kφ = 1, k
(s+1)
1 ≥ k

(s)
1 , k

(S)
1 = 1, k

(s+1)
φ ≤

k
(s)
φ , k

(S)
φ = 0 (φ = 2, · · ·, Φ). We replace the update rule, Eq. (7) by

P
(s+1)
φ,t,d ←

Φ∑

n=1

k(s+1)
n P̂φ−(n−1),t,d , (10)

where ∀n, P̂−(n−1),t,d = P̂Φ−(n−1),t,d and (P̂φ,t,d)Φ×T×D = argminP∈S J +(θ, θ̂).
As a result, at each iteration the auxiliary function is not minimized anymore.
However, convergence is guaranteed.

3 Simulation Results

In this section, some results on the application of our algorithm to audio signals.
All data were downmixed to mono and downsampled to 16kHz. The magnitude
spectrogram was computed using the short time Fourier transform with 32 ms
long Hanning window and with 16 ms overlap. The state transitions of the bases
in MNMF were modeled using left-to-right (-ltr) and ergodic (-erg) models.

At first, we tested whether the algorithm was able to learn in an unsupervised
way the time-varying spectral patterns from notes with a unique pitch. The
proposed method was applied to a piano note (C3) synthesized from MIDI, a
piano note (C3) recorded from RWC-MDB-I-2001 No.1 [7] and a violin note
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(a) Original spectrogram (c) MNMF-ltr, K = 1, Φ = 4

(d) Markov-chained bases, K = 1, Φ = 4 (e) Activation, K = 1, Φ = 4

Fig. 3. Original spectrogram of the extract of the piano (RWC database) (a), recon-
structed spectrograms (b) and (d), the bases (c) and the activation (d) learned by
MNMF. Time-varying spectral patterns are also learned.

(a) Original spectrogram (b) Standard NMF, K = 1

(c) MNMF-ltr, K = 1, Φ = 4 (d) MNMF-erg, K = 1, Φ = 4

(e) State transition of MNMF-ltr (f) State transition of MNMF-erg

Fig. 4. Original spectrogram of the extract of the violin (RWC database) (a), re-
constructed spectrograms (b), (c) and (d), and the activation (e) and (f) learned by
MNMF. The topology of the Markov chain affects the state transitions.

(A�) recorded from RWC-MDB-I-2001 No.15. We used MNMF with β = 1 (the
generalized Kullback-Leibler divergence). As shown in Fig. 2, 3 and 4, time-
varying spectral patterns are learned in an unsupervised way.

Next, we applied our model to a mixture of vocal signals taken from RWC-
MDB-I-2001 No.45. The sequence is composed of 3 notes (D�CFCA�): first, each
note is played alone in turn, then all combination of two notes are played and
finally all notes are played simultaneously. The result is shown in Fig. 5.



NMF with Markov-Chained Bases for Modeling Time-Varying Patterns 155

(a) Mixed spectrogram

(b) Partial spectrogram played by all notes. (c) Portion of estimated component: A

(d) Portion of estimated component: F (e) Portion of estimated component: D

Fig. 5. Mixed spectrogram (a) and (b), and one portion of estimated spectrogram of
each component (c), (d) and (e)

Table 1. Source Separation Performance

RWC signal Real-world audio signal

Algorithms Number of Number of
H and U SNR(dB) H and U SNR(dB)

NMF(D = 3) 2919 3.55 2871 6.49
NMF(D = 6) 5838 7.11 5742 9.61
NMF(D = 9) 8757 10.63 8613 10.50
NMF(D = 12) 11676 13.51 11484 11.70
MNMF-erg(Φ = 4) 7536 9.62 7488 9.57
MNMF-erg(Φ = 5) 9075 11.02 9027 9.84

Finally, our model was applied to sound source separation. The tested sig-
nals are RWC signal (as shown in Fig. 5) and audio data recorded in real-
world conditions from male vocal in the room size of 5.5m × 3.5m × 3m
by IC recorder, whose sequence is composed similar to RWC signal (A, D�
and E instead of D�CF and A�). We use the signal-to-noise ratio (SNR) be-
tween each component and source as the measure for assigning components to
sources. The measure was calculated between the magnitude spectrograms I

(m)
ω,t

and Î
(n)
ω,t of the mth reference and the nth separated component, respectively,

SNR = 10 log10(
∑

ω,t(I
(m)
ω,t )2/

∑
ω,t(I

(m)
ω,t − Î

(n)
ω,t )2) . The SNR was averaged over

all the sources to get the separation performance and each algorithm was run
10 times with random initializations. We set the number of bases to D = 3
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for MNMF. This means that one component with Φ spectral patterns may be
expected to represent one source having the perceveid pitch of a note with vi-
brato. Standard NMF was used as the baseline. NMF with D = 3 was expected
to separate each source into a single component, while for NMF with D > 3
each source was expected to be split into the sum of several components. A
component n is assigned to the source m which leads to the highest SNR. As
reported by [2], using NMF with a large number of components and clustering
them using the original signals as references may produce unrealistically good
results. One should thus keep in mind when comparing the results of our method
with those of NMF that the experimental conditions were strongly biased in fa-
vor of NMF. As shown in Table 1, we can see that MNMF performs as well as
standard NMF when the total number of parameters H and H is similar (P
is excluded), although again for NMF the original signals need to be used to
cluster the extracted components.

4 Concluding Remarks

We developed a new framework for the sparse representation of audio signals.
The proposed model is extension of NMF, in which the bases consist of state
transition. We derived an efficient algorithm for the optimization of the model
based on the auxiliary function method. Future work will includes the extension
of our model to automatic estimation of the number of bases and states.
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