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ABSTRACT

Encoder-decoder based sequence-to-sequence models have demon-
strated state-of-the-art results in end-to-end automatic speech recog-
nition (ASR). Recently, the transformer architecture, which uses
self-attention to model temporal context information, has been
shown to achieve significantly lower word error rates (WERs) com-
pared to recurrent neural network (RNN) based system architectures.
Despite its success, the practical usage is limited to offline ASR
tasks, since encoder-decoder architectures typically require an entire
speech utterance as input. In this work, we propose a transformer
based end-to-end ASR system for streaming ASR, where an output
must be generated shortly after each spoken word. To achieve this,
we apply time-restricted self-attention for the encoder and triggered
attention for the encoder-decoder attention mechanism. Our pro-
posed streaming transformer architecture achieves 2.8% and 7.2%
WER for the “clean” and “other” test data of LibriSpeech, which
to our knowledge is the best published streaming end-to-end ASR
result for this task.

Index Terms— automatic speech recognition, streaming, end-to-
end, transformer, triggered attention

1. INTRODUCTION

Hybrid hidden Markov model (HMM) based automatic speech
recognition (ASR) systems have provided state-of-the-art results
for the last few decades [1, 2]. End-to-end ASR systems, which
approach the speech-to-text conversion problem using a single
sequence-to-sequence model, have recently demonstrated competi-
tive performance [3]. The most popular and successful end-to-end
ASR approaches are based on connectionist temporal classification
(CTC) [4], recurrent neural network (RNN) transducer (RNN-T) [5],
and attention-based encoder-decoder architectures [6]. RNN-T
based ASR systems achieve state-of-the-art ASR performance for
streaming/online applications and are successfully deployed in pro-
duction systems [7, 8]. Attention-based encoder-decoder architec-
tures, however, are the best performing end-to-end ASR systems [9],
but they cannot be easily applied in a streaming fashion, which pre-
vents them from being used more widely in practice. To overcome
this limitation, different methods for streaming ASR with attention-
based systems haven been proposed such as the neural transducer
(NT) [10], monotonic chunkwise attention (MoChA) [11], and
triggered attention (TA) [12]. The NT relies on traditional block
processing with fixed window size and stride to produce incremen-
tal attention model outputs. The MoChA approach uses an extra
layer to compute a selection probability that defines the length of
the output label sequence and provides an alignment to chunk the
encoder state sequence prior to soft attention. The TA system re-
quires that the attention-based encoder-decoder model is trained
jointly with a CTC objective function, which has also been shown
to improve attention-based systems [13], and the CTC output is

used to predict an alignment that triggers the attention decoding pro-
cess [12]. A frame-synchronous one-pass decoding algorithm for
joint CTC-attention scoring was proposed in [14] to further optimize
and enhance ASR decoding using the TA concept.
Besides the end-to-end ASR modeling approach, the underlying
neural network architecture is of paramount importance as well to
achieve good ASR performance. RNN-based architectures, such
as the long short-term memory (LSTM) neural network, are of-
ten applied for end-to-end ASR systems. Bidirectional LSTMs
(BLSTMs) achieve state-of-the-art results among such RNN-based
systems but are unsuitable for application in a streaming fashion,
where unidirectional LSTMs or latency-controlled BLSTMs (LC-
BLSTMs) must be applied instead [15]. The parallel time-delayed
LSTM (PTDLSTM) architecture has been proposed to further re-
duce the word error rate (WER) gap between unidirectional and
bidirectional architectures and to improve the computational com-
plexity compared to the LC-BLSTM [15]. Recently, the transformer
model, which is an encoder-decoder type of architecture based on
self-attention originally proposed for machine translation [16], has
been applied to ASR with promising results and improved WERs
compared to RNN-based architectures [17].
In this work, we apply time-restricted self-attention to the encoder,
and the TA concept to the encoder-decoder attention mechanism of
the transformer model to enable the application of online/streaming
ASR. The transformer model is jointly trained with a CTC objective
to optimize training and decoding results as well as to enable the
TA concept [3, 12]. For joint CTC-transformer decoding and scor-
ing, we employ the frame-synchronous one-pass decoding algorithm
proposed in [14].

2. STREAMING TRANSFORMER

The streaming architecture of the proposed transformer-based ASR
system is shown in Fig. 1. The transformer is an encoder-decoder
type of architecture that uses two different attention layers: encoder-
decoder attention and self-attention. The encoder-decoder attention
can produce variable output lengths by using one or multiple query
vectors, the decoder states, to control attention to a sequence of in-
put values, the encoder state sequence. In self-attention (SA), the
queries, values, and keys are derived from the same input sequence,
which results in an output sequence of the same length. Both at-
tention types of the transformer model are based on the scaled dot-
product attention mechanism,

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V, (1)

where Q ∈ Rnq×dq , K ∈ Rnk×dk , and V ∈ Rnv×dv are the
queries, keys, and values, where the d∗ denote dimensions and the
n∗ denote sequence lengths, dq = dk, and nk = nv [16]. Instead
of using a single attention head, multiple attention heads are used by
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Fig. 1. Joint CTC-TA decoding scheme for streaming ASR with a
transformer-based architecture.

each layer of the transformer model with

MHA(Q̂, K̂, V̂ ) = Concat(Head1, . . . ,Headdh)WH (2)

and Headi = Attention(Q̂WQ
i , K̂W

K
i , V̂ W

V
i ), (3)

where Q̂, K̂, and V̂ are inputs to the multi-head attention (MHA)
layer, Headi represents the output of the i-th attention head for a total
number of dh heads, and WQ

i ∈ Rdmodel×dq , WK
i ∈ Rdmodel×dk ,

WV
i ∈ Rdmodel×dv as well as WH ∈ Rdhdv×dmodel are trainable

weight matrices with typically dk = dv = dmodel/dh.

2.1. Encoder: Time-restricted self-attention

The encoder of our transformer architecture consists of a two-layer
CNN module ENCCNN and a stack of E self-attention layers
ENCSA:

X0 = ENCCNN(X), (4)
XE = ENCSA(X0), (5)

where X = (x1, . . . ,xT ) denotes a sequence of acoustic input fea-
tures, which are 80-dimensional log-mel spectral energies plus 3 ex-
tra features for pitch information [18]. Both CNN layers of ENC-
CNN use a stride of size 2, a kernel size of 3 × 3, and a ReLU ac-
tivation function. Thus, the striding reduces the frame rate of output
sequence X0 by a factor of 4 compared to the feature frame rate of
X . The ENCSA module of (5) consists of E layers, where the e-th
layer, for e = 1, . . . , E, is a composite of a multi-head self-attention
layer

X ′e = Xe−1 + MHAe(Xe−1, Xe−1, Xe−1), (6)

and two feed-forward neural networks of inner dimension dff and
outer dimension dmodel that are separated by a ReLU activation
function as follows:

Xe = X ′e + FFe(X ′e), (7)

with FFe(X ′e) = ReLU(X ′eW
ff
e,1 + bffe,1)Wff

e,2 + bffe,2, (8)

where Wff
e,1 ∈ Rdmodel×dff , Wff

e,2 ∈ Rdff×dmodel , bffe,1 ∈ Rdff , and
bffe,2 ∈ Rdmodel are trainable weight matrices and bias vectors.
In order to control the latency of the encoder architecture, the fu-
ture context of input sequence X0 is limited to a fixed size, which
is referred to as restricted or time-restricted self-attention [16] and
was first applied to hybrid HMM-based ASR systems [19]. We
can define a time-restricted self-attention encoder ENCSAtr, with
n = 1, . . . , N , as

xE1:n = ENCSAtr(x0
1:n+εenc ), (9)

where x0
1:n+εenc = X0[1 : n + εenc] = (x0

1, . . . ,x
0
n+εenc ), and εenc

denotes the number of look-ahead frames used by the time-restricted
self-attention mechanism.

2.2. Decoder: Triggered attention
The encoder-decoder attention mechanism of the transformer model
is using the TA concept [12, 14] to enable the decoder to oper-
ate in a streaming fashion. TA training requires an alignment
between the encoder state sequence XE and the label sequence
Y = (y1, . . . , yL) to condition the attention mechanism of the de-
coder only on past encoder frames plus a fixed number of look-ahead
frames εdec. This information is generated by forced alignment us-
ing an auxiliary CTC objective pctc(Y |XE) [4], which is jointly
trained with the decoder model, where the encoder neural network
is shared [12, 13, 17].
The triggered attention objective function is defined as

pta(Y |XE) =

L∏
l=1

p(yl|y1:l−1,x
E
1:νl) (10)

with νl = n′l + εdec, where n′l denotes the position of the first
occurrence of label yl in the CTC forced alignment sequence
[12, 14], y1:l−1 = (y1, . . . , yl−1), and xE1:νl = (xE1 , . . . ,x

E
νl),

which corresponds to the truncated encoder sequence. The term
p(yl|y1:l−1,x

E
1:νl) represents the transformer decoder model

p(yl|y1:l−1,x
E
1:νl) = DECTA(xE1:νl ,y1:l−1), (11)

with

z0
1:l = EMBED(〈sos〉, y1, . . . , yl−1), (12)

zdl = zd−1
l + MHAself

d (zd−1
l ,zd−1

1:l ,z
d−1
1:l ), (13)

z
d
l = zdl + MHAdec

d (zdl ,x
E
1:νl ,x

E
1:νl), (14)

zdl = z
d
l + FFd(z

d
l ), (15)

for d = 1, . . . , D, where D denotes the number of decoder layers.
EMBED converts the input label sequence (〈sos〉, y1, . . . , yl−1) into
a sequence of trainable embedding vectors z0

1:l, where 〈sos〉 denotes
the start of sentence symbol. Function DECTA finally predicts the
posterior probability of label yl by applying a fully-connected pro-
jection layer to zDl and a softmax distribution over that output.
The CTC model and the triggered attention model of (10) are trained
jointly using the multi-objective loss function

L = −γ log pctc − (1− γ) log pta, (16)

where hyperparameter γ controls the weighting between the two ob-
jective functions pctc and pta.

2.3. Positional encoding
Sinusoidal positional positional encodings (PE) are added to the se-
quences X0 and Z0, which can be written as

PE(pos, 2i) = sin(pos/100002i/dmodel), (17)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel), (18)



Algorithm 1 Joint CTC-triggered attention decoding
1: procedure DECODE(XE , pctc, λ, α0, α, β, K, P , θ1, θ2)
2: `← (〈sos〉, )
3: Ω← {`}, Ωta ← {`}
4: pnb(`)← 0, pb(`)← 1
5: pta(`)← 1
6: for n = 1, . . . , N do
7: Ωctc, pnb, pb ← CTCPREFIX(pctc(n),Ω, pnb, pb)
8: for ` in Ωctc do . Compute CTC prefix scores
9: pprfx(`)← pnb(`) + pb(`)

10: p̂prfx(`)← log pprfx(`) + α0 log pLM(`) + β|`|
11: Ω̂← PRUNE(Ωctc, p̂prfx,K, θ1)
12: for ` in Ω̂ do . Delete old prefixes in Ωta

13: if ` in Ωta and DCOND(`, Ω̂, pctc) then
14: delete ` in Ωta

15: for ` in Ω̂ do . Compute transformer scores
16: if ` not in Ωta and ACOND(`, Ω̂, pctc) then
17: pta(`)← DECTA(xE1:n+εdec , `)
18: add ` to Ωta

19: for ` in Ω̂ do . Compute joint scores
20: ̂̀← ` if ` in Ωta else `:−1

21: p← λ log pprfx(`) + (1− λ) log pta(̂̀)
22: pjoint(`)← p+ α log pLM(`) + β|`|
23: Ω← MAX(Ω̂, pjoint, P )

24: Ω̂← PRUNE(Ω̂, p̂prfx, P, θ2)
25: Ω← Ω + Ω̂
26: remove from Ωta prefixes rejected due to pruning
27: return MAX(Ω̂, pjoint, 1)

where pos and i are the position and dimension indices [16].

2.4. Joint CTC-triggered attention decoding

Algorithm 1 shows the frame-synchronous one-pass decoding pro-
cedure for joint scoring of the CTC and transformer model outputs,
which is similar to the decoding scheme described in [14]. The de-
coding algorithm is based on the frame-synchronous prefix beam
search algorithm of [20], extending it by integrating the triggered at-
tention decoder. The joint hypothesis set Ω and the TA hypothesis
set Ωta are initialized in line 3 with the prefix sequence ` = (〈sos〉, ),
where the symbol 〈sos〉 denotes the start of sentence label. The CTC
prefix beam search algorithm of [20] maintains two separate proba-
bilities for a prefix ending in blank pb and not ending in blank pnb,
which are initialized in line 4. The initial TA scores pta are defined
in line 5.
The frame-by-frame processing of the CTC posterior probability se-
quence pctc and the encoder state sequence XE is shown from line 5
to 26, where pctc(n) denotes the CTC posterior probability distribu-
tion at frame n. The function CTCPREFIX follows the CTC prefix
beam search algorithm described in [20], which extends the set of
prefixes Ω using the CTC posterior probabilities pctc of the current
time step n and returns the separate CTC prefix scores pb and pnb

as well as the newly proposed set of prefixes Ωctc. A local prun-
ing threshold of 0.0001 is used by CTCPREFIX to ignore labels of
lower CTC probability. Note that no language model or any pruning
technique is used by CTCPREFIX, they will be incorporated in the
following steps.
The prefix probabilities pprfx and scores p̂prfx are computed in lines 9
and 10, where pLM represents the language model (LM) probability
and |`| denotes the length of prefix sequence ` without counting the

start of sentence label 〈sos〉. The function PRUNE prunes the set of
CTC prefixes Ωctc in line 11 in two ways: first, the K most prob-
able prefixes are selected based on p̂prfx, then every prefix of score
smaller than max(p̂prfx) − θ1 is discarded, with θ1 being the beam
width. The remaining set of prefixes is stored in Ω̂. From line 12
to 14, prefixes are removed from the set Ωta if they satisfy a delete
condition DCOND, and from line 15 to 18, TA scores are computed
by function DECTA if an add condition ACOND returns “true”. The
delete and add conditions are used to delete “old” TA scores com-
puted at a non-optimal frame position and to delay the computation
of TA scores, if a new CTC prefix appeared at a supposedly too early
time frame. The interested reader is referred to [14] for more details
on both conditions. Note that our ASR experiments indicated that
both conditions could be skipped without any WER degradation for
the LibriSpeech task, which uses word-piece output labels, whereas
their usage improves WERs for tasks like WSJ [21] with character-
level label outputs. Joint CTC-TA scores, computed from line 19 to
22, are used to select the P most probable prefixes for further pro-
cessing, which are stored in set Ω as shown in line 23. In line 24,
the set of CTC prefixes Ω̂ is further pruned to a maximum number
of P prefixes with prefix scores within the beam width θ2. Line 25
adds the CTC prefix set Ω̂ to the best jointly scored prefix set Ω,
and line 26 removes prefixes from Ωta that are no longer in Ω for the
current and previous time steps. Finally, DECODE returns the prefix
sequence of highest joint probability pjoint as shown in line 27.

3. EXPERIMENTS

3.1. Dataset

The LibriSpeech data set, which is a speech corpus of read English
audio books [22], is used to benchmark ASR systems presented in
this work. LibriSpeech is based on the open-source project LibriVox
and provides about 960 hours of training data, 10.7 hours of devel-
opment data, and 10.5 hours of test data, whereby the development
and test data sets are both split into approximately two halves named
“clean” and “other”. The separation into clean and other is based on
the quality of the recorded utterance, which was assessed using an
ASR system [22].

3.2. Settings

Two transformer model sizes are used in this work: small and large.
Parameter settings of the small transformer model are dmodel = 256,
dff = 2048, dh = 4, E = 12, and D = 6, whereas the large
transformer model uses dmodel = 512 and dh = 8 instead. The
Adam optimizer with β1 = 0.9, β2 = 0.98, ε = 10−9 and learning
rate scheduling similar to [16] is applied for training using 25000
warmup steps. The initial learning rate is set to 10.0 and the number
of training epochs amounts to 100 for the small model and to 120
for the large model setup [3, 23]. The set of label outputs consists of
5000 subwords obtained by the SentencePiece method [24]. Weight
factor γ, which is used to balance the CTC and transformer model
objectives during training, is set to 0.3. Layer normalization is ap-
plied before and dropout with a rate of 10% after each MHA and FF
layer. In addition, label smoothing with a penalty of 0.1 is used [25].
An RNN-based language model (LM) is employed via shallow fu-
sion. The RNN-LM consists of 4 LSTM layers with 2048 units each
trained using stochastic gradient descent and the official LM training
text data of LibriSpeech [22].
The LM weight, CTC weight, and beam size of the full-sequence
based joint CTC-attention decoding method are set to 0.7, 0.5, and



Table 1. WERs [%] of the full-sequence based CTC-transformer
model. Results are shown for joint CTC-attention decoding [13],
CTC prefix beam search decoding only [20], and attention beam
search decoding only [3]. In addition, results for including the RNN-
LM, for using data augmentation [25] as well as for the large trans-
former setup are shown.

CTC-attention dec. CTC beam search Att. beam search

clean other clean other clean other

System dev test dev test dev test dev test dev test dev test

baseline 4.7 4.9 13.0 12.9 6.1 6.1 15.7 15.9 6.0 7.8 14.5 14.9
+RNN-LM 2.9 3.1 8.0 8.4 3.1 3.4 9.3 9.6 4.7 7.2 10.7 11.5
+SpecAug. 2.4 2.8 6.4 6.7 2.9 3.2 7.6 7.9 4.2 5.2 8.3 8.6
+large 2.4 2.7 6.0 6.1 2.5 2.8 6.9 7.0 4.1 5.0 7.9 8.0

20 for the small transformer model and to 0.6, 0.4, and 30 for the
large model setup. The parameter settings for CTC prefix beam
search decoding [20] are LM weight α0 = 0.7, pruning beam width
θ1 = 16.0, insertion bonus β = 2.0, and pruning size K = 30. Pa-
rameters for joint CTC-TA decoding are CTC weight λ = 0.5, CTC
LM weight α0 = 0.7, LM weight α = 0.5, pruning beam width
θ1 = 16.0, pruning beam width θ2 = 6.0, insertion bonus β = 2.0,
pruning size K = 300, and pruning size P = 30. All decoding
hyperparameter settings are determined using the development data
sets of LibriSpeech.

3.3. Results

Table 1 presents ASR results of our transformer-based baseline sys-
tems, which are jointly trained with CTC to optimize training con-
vergence and ASR accuracy [3, 13]. Results of different decoding
methods are shown with and without using the RNN-LM, SpecAug-
ment [25], and the large transformer model. Table 1 demonstrates
that joint CTC-attention decoding provides significantly better ASR
results compared to CTC or attention decoding alone, whereas CTC
prefix beam search decoding attains lower WERs compared to atten-
tion beam search decoding, except for the dev-clean, dev-other, and
test-other conditions when no LM is used. For attention beam search
decoding, we normalize the log posterior probabilities of the trans-
former model and the RNN-LM scores when combining both using
the hypothesis lengths [17]. Still our attention results are worse com-
pared to the CTC results, which is unexpected but demonstrates that
joint decoding stabilizes the transformer results.
Table 2 shows WERs of the full-sequence and the time-restricted
self-attention encoder architectures combined with the CTC prefix
beam search decoding method of [20] and our joint CTC-TA decod-
ing method of Section 2.4, which are both algorithms for streaming
recognition. Different encoder look-ahead settings are compared us-
ing εenc = 0, 1, 2, 3, and ∞, where each consumed frame of the
self-attention encoder corresponds to 40 ms of input due to the out-
put frame rate of ENCCNN. Since such look-ahead is applied at ev-
ery encoder layer (E = 12), the theoretical latency caused by the
time-restricted self-attention encoder amounts to E × εenc × 40 ms,
i.e., to 0 ms (εenc = 0), 480 ms (εenc = 1), 960 ms (εenc = 2),
and 1440 ms (εenc = 3), respectively. The CTC prefix beam search
decoding results of Table 2 show that increasing εenc significantly
improves the ASR accuracy, e.g., test-other WER drops from 9.4%
to 7.0% when moving from 0 to ∞ (full-sequence) encoder look-
ahead frames. The influence of different TA decoder settings are
compared in Table 2 as well, using εdec = 6, 12, and 18 look-
ahead frames. Note that unlike the encoder, the total decoder delay

Table 2. WERs [%] for different εenc settings of the time-restricted
encoder using the CTC prefix beam search decoding method of [20]
as well our proposed joint CTC-TA decoding method of Section 2.4
with different εdec configurations. SpecAugment [25], the RNN-
LM, and the large transformer are applied for all systems.1

CTC beam search TA: εdec = 6 TA: εdec = 12 TA: εdec = 18

clean other clean other clean other clean other

εenc dev test dev test dev test dev test dev test dev test dev test dev test

0 3.3 3.7 9.4 9.4 3.2 3.3 8.4 8.6 3.0 3.4 8.4 8.5 2.9 3.2 8.1 8.0
1 3.0 3.3 8.4 8.6 2.9 3.1 7.8 8.1 2.8 3.1 7.5 8.1 2.8 3.0 7.5 7.8
2 2.9 3.1 8.0 8.2 2.8 2.9 7.4 7.8 2.7 2.9 7.2 7.6 2.7 2.9 7.3 7.4
3 2.8 2.9 7.8 8.1 2.7 2.8 7.2 7.4 2.7 2.8 7.2 7.3 2.7 2.8 7.1 7.2
∞ 2.5 2.8 6.9 7.0 2.5 2.7 6.3 6.5 2.5 2.7 6.3 6.4 2.4 2.6 6.1 6.3

does not grow with its depth, since each decoder layer is attend-
ing to the encoder output sequence XE . Thus, the TA decoder de-
lay amounts to εdec × 40 ms, i.e., to 240 ms (εdec = 6), 480 ms
(εdec = 12), and 720 ms (εdec = 18), respectively. Results show
that joint CTC-TA decoding consistently improves WERs compared
to CTC prefix beam search decoding, while for larger look-ahead
values WERs are approaching the full-sequence CTC-attention de-
coding results, which can be noticed by comparing results of the
εenc =∞, εdec = 18 TA system setup with the full-sequence CTC-
attention system of Table 1.
The best streaming ASR system of Table 2 achieves a WER of 2.8%
and 7.2% for the test-clean and test-other conditions of LibriSpeech
with an overall processing delay of 30 ms (ENCCNN) + 1440 ms
(ENCSA: εenc = 3) + 720 ms (DECTA: εdec = 18) = 2190 ms. For
εenc = 1 and εdec = 18, the test-clean and test-other WERs amount
to 3.0% and 7.8%, respectively, with a total delay of 1230 ms, which
provides a good trade-off between accuracy and latency. It should
be noted that a lattice-based CTC-TA decoding implementation can
output intermediate CTC prefix beam search results, which are up-
dated after joint scoring with the TA decoder, and thus the perceived
latency of such an implementation will be on average smaller than its
theoretical latency and close to that of the encoder alone. However,
a thorough study of the user perceived latency remains to be done in
future work.

4. CONCLUSIONS

In this paper, a fully streaming end-to-end ASR system based on the
transformer architecture is proposed. Time-restricted self-attention
is applied to control the latency of the encoder and the triggered
attention (TA) concept to control the output latency of the decoder.
For streaming recognition and joint CTC-transformer model scor-
ing, a frame-synchronous one-pass decoding algorithm is applied,
which demonstrated similar LibriSpeech ASR results compared
to full-sequence based CTC-attention as the number of look-ahead
frames is increased. Combined with the time-restricted self-attention
encoder, our proposed TA-based streaming ASR system achieved
WERs of 2.8% and 7.2% for the test-clean and test-other data
sets of LibriSpeech, which to our knowledge is the best published
LibriSpeech result of a fully streaming end-to-end ASR system.

1Note that results shown here are updated compared to our ICASSP sub-
mission.
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