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Abstract
In hybrid automatic speech recognition (ASR) systems,

neural networks are used as acoustic models (AMs) to recog-
nize the distinctive sounds of speech, i.e., phonemes, that are
composed to words and sentences using pronunciation dictio-
naries, hidden Markov models, and language models, which
can be jointly represented by a weighted finite state transducer
(WFST). The importance of capturing temporal context by an
AM has been well studied and discussed in prior work. In an
end-to-end ASR system, however, all components are merged
into a single neural network, i.e., the breakdown into an AM
and the different parts of the WFST model is no longer pos-
sible. This implies that neural network architectures used for
end-to-end ASR have even stronger requirements for process-
ing long contextual information. Bidirectional long short-term
memory (BLSTM) neural networks have demonstrated state-of-
the-art results in end-to-end ASR but are unsuitable for stream-
ing applications. Latency-controlled BLSTMs account for this
by limiting the future context seen by the backward directed
recurrence using chunk-wise processing. In this paper, we pro-
pose a new unidirectional neural network architecture of paral-
lel time-delayed LSTM (PTDLSTM) streams, which limits the
processing latency to 250 ms and shows significant improve-
ments compared to prior art on a variety of ASR tasks.
Index Terms: unidirectional encoder architectures, streaming
end-to-end ASR, low-latency neural networks, parallel time-
delayed LSTM, automatic speech recognition

1. Introduction
The processing of temporal information is of paramount im-
portance in automatic speech recognition (ASR), since most
linguistic information for recognizing phones, phonemes, and
larger units of speech such as syllables and words are encoded
in spectral envelopes such as amplitude modulation frequen-
cies [1–3]. For example, human listening experiments have
shown that in noise-free acoustic conditions only four spectral
bands of modulated noise are sufficient to achieve high speech
recognition performance, while additional spectral bands in-
crease speech intelligibility in the presence of noise, presum-
ably due to masking effects, and modulation frequencies below
12 Hz are indispensable for speech recognition [1, 4].

In today’s ASR systems, processing of temporal informa-
tion is accomplished by neural networks whose architectures
define how well the system can recognize such cues. We dis-
tinguish two major types of neural network architectures in this
work: unidirectional and bidirectional. Both types involve re-
current neural networks (RNNs) such as long short-term mem-
ory (LSTM) neural networks, whose model performance for
end-to-end ASR has not yet been matched by solely using con-
volutional neural networks (CNNs) [5,6]. We suspect the reason
is that RNNs can better compensate for the temporal dynamics

of speech signals such as varying speech rates, whereas CNNs
are restricted in this ability by their static temporal windowing.
Bidirectional RNNs such as bidirectional LSTMs (BLSTMs)
have demonstrated state-of-the-art results in ASR but at the ex-
pense of large output delays, which makes this type of archi-
tecture unsuitable for streaming ASR applications, where the
text output must be generated soon after each spoken word.
Latency-controlled BLSTMs (LCBLSTMs) account for this by
limiting the future context seen by the backward directed LSTM
using chunk-wise processing but at the expense of an increased
computational cost due to overlapping chunks [7–9]. Therefore,
the most widely used neural network architectures for stream-
ing applications with end-to-end ASR systems rely on unidirec-
tional LSTMs [10, 11].

In the present paper, new unidirectional neural network ar-
chitectures are proposed for streaming ASR that are studied
and compared to other common neural network architectures
from the literature, such as a deep BLSTM [10], a deep LSTM
[11, 12], a deep LCBLSTM [9], and a deep time-delay neu-
ral network (TDNN) with interleaving LSTM layers (TDNN-
LSTM) [13]. The discussed architectures are applied as an en-
coder neural network in a hybrid connectionist temporal clas-
sification (CTC) and attention-based end-to-end ASR system
[14]. Note that the hybrid CTC/attention ASR system of this
work is not suitable for streaming recognition due to the full-
sequence attention model. We proposed a triggered attention
mechanism in earlier work that does enable streaming recogni-
tion with attention models [15], but we shall leave its combi-
nation with unidirectional encoder architectures to future work.
Our proposed neural network architectures are based on a deep
time-delay structure, where each layer may be composed of
different neural network building blocks. Two new building
blocks are proposed: a time-delay LSTM (TDLSTM), which
is an LSTM cell with stacked time-delayed inputs followed by
a bottleneck layer, and a neural network component of parallel
time-delayed LSTM (PTDLSTM) streams that are merged us-
ing a bottleneck layer. ASR experiments are conducted on three
different tasks of different size (between 80 and 960 hours of
training) and of different language (English and Mandarin Chi-
nese). Unless otherwise noted, the number of model parameters
is the same for all tested encoder architectures to enable a bal-
anced comparison between different settings.

2. Neural network architectures
In this section, the different components and building blocks of
the investigated neural network architectures are presented. For
the purpose of comparison and unless otherwise noted, subsam-
pling by a factor of 3 is conducted for all neural network archi-
tectures by concatenating three consecutive frames of acoustic
features and only forwarding every third stacked feature frame
as an input to the encoder neural network, which is inspired
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Figure 1: Deep time-delay neural network architecture. The numbers in square brackets denote the frame delays of the input to each
layer. Each square box represents a neural network building block. The solid black lines and the blue squares highlight the path to
generate one output frame. The dashed lines and gray squares denote connections and building blocks of past and future output frames.

by [10,11]. In addition, every neural network architecture is fol-
lowed by a final linear projection layer, which is a feed-forward
neural network that projects the encoder output to a vector of
fixed size. No activation function is applied on top of this fi-
nal projection layer, because in our experiments this has led to
slightly better results compared to using a tanh nonlinearity.

2.1. Prior work

Deep BLSTM neural networks achieve state-of-the-art results
in end-to-end ASR systems [10, 14, 16–18]. A BLSTM typi-
cally requires an entire speech utterance to compute an output,
since each output frame is derived by knowing the entire past
and future context of the speech utterance. This is a power-
ful architecture but due to the large future context required to
compute the BLSTM output of an input sequence, it is not ap-
plicable for streaming ASR. In order to enable streaming ASR
with BLSTMs, latency-controlled BLSTMs (LCBLSTMs) have
been proposed that use overlapping chunks of frames to com-
pute the output of the backward LSTM for a fixed size of future
context [7–9]. One disadvantage of LCBLSTMs is an increased
computational cost due to the overlapping backward LSTM out-
put frames from different chunks. Other work focused on using
deep CNN-based architectures for end-to-end ASR to reduce
computational costs as well as to limit processing delays but yet
without achieving significant improvements in terms of word
error rates (WERs) compared to RNN-based architectures such
as unidirectional LSTMs [5, 6]. A combination of time-delay
neural networks (TDNN) [19, 20], which is also known as di-
lated convolution [21], and LSTM neural networks has been
proposed as an acoustic model for hybrid ASR systems [13],
but to the best of our knowledge this combination has not been
tested yet for end-to-end ASR systems.

2.2. Baseline architectures

In this paper, four different neural network architectures from
the literature are used as baseline models, respectively based on
a BLSTM, LSTM, TDNN-LSTM, and LCBLSTM architecture.
The BLSTM, LSTM, and LCBLSTM architectures are all com-
posed of five layers followed by a final projection layer, which
is similar to our proposed deep time-delay architecture, c.f. Sec-

tion 2.3, and also a common encoder setup for end-to-end ASR
systems [10]. The baseline LSTM and BLSTM encoder archi-
tectures of this paper are referred to as “Google”-LSTM and
“Google”-BLSTM, respectively, because their configuration is
similar to architectures used in Google publications [10–12].

The chunk size of our baseline LCBLSTM amounts to 8
frames after subsampling, which is equivalent to 24 feature
frames of 10 ms frame rate, with a stride of 75% correspond-
ing to a maximum delay of 250 ms (including the 1 frame delay
for stacking 3 feature frames prior to the first layer), which is
similar to the delay induced by our proposed deep time-delay
architecture, c.f. Section 2.3. While the hidden states and cell
states of the backward LSTM are reset after each chunk, the
forward LSTM states are maintained.

Our baseline TDNN-LSTM model, which is similar to a
setup proposed by [13], is referred to as “Kaldi”-TDNN-LSTM,
and has the following structure: input features → TDNN:
[-1,0,1],[-1,0,1],[-1,0,1] → subsampling by 3 → LSTM →
TDNN: [-1,0,1],[-1,0,1] → LSTM → TDNN: [-1,0,1],[-1,0,1]
→ LSTM → projection layer. In this notation, each enclosed
square bracket denotes one TDNN layer with the associated
frame splicing configuration. Note that the splicing configu-
rations following subsampling by 3 refer to the new (3× lower)
frame rate, i.e., the total left and right context, relative to
the center frame, amounts to 15 feature frames on both sides.
We also experimented with delayed LSTM outputs similar to
[13] but this did not help to improve results, which might be
due to the alignment-free training of end-to-end ASR systems,
whereby an LSTM-based system could potentially learn to de-
lay outputs on its own.

2.3. Proposed architectures

Our proposed encoder architectures for end-to-end ASR are
based on feed-forward and unidirectional neural networks only,
which avoids additional computational costs that occur due to
processing of overlapping chunks such as in LCBLSTM se-
tups. Figure 1 illustrates our proposed deep time-delay neu-
ral network architecture, where the solid black lines and blue
squares denote the path for processing one output frame. The
time-delay tree structure of Figure 1 is designed to limit the
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Figure 2: Three different neural network building blocks are
shown in a dotted box from a) to c). Each of the long input ar-
rows represents an input from a different time-delay. Each solid
box denotes one of the following processing operations: con-
catenation of inputs (cat), feed-forward neural network (Lin-
ear), rectified linear unit (ReLu) activation function, LSTM
layer (LSTM), or bottleneck feed-forward neural network with
37.5% fewer neurons compared to a preceding neural network
block (Bottleneck).

overlap of leaves within each layer similar to [20], while cap-
turing a large temporal context, which here amounts to 25 past
and 25 future feature frames of 10 ms frame rate, thus inducing
a latency of 250 ms. In this architecture, each of the squares
represents a neural network building block, of which we con-
sider three types shown in Figure 2. Building block a) of Fig-
ure 2 is similar to a TDNN-LSTM setting [13], while build-
ing blocks b) and c) are newly proposed settings. Figure 2 b)
shows a time-delay LSTM (TDLSTM) neural network, which
differs from the TDNN-LSTM by its reversing of the order of
the feed-forward and the LSTM neural network layers, i.e., the
LSTM processes the time-delayed and concatenated input prior
to the feed-forward neural network and the rectified linear unit
(ReLu) activation function. In addition, the feed-forward neural
network layer acts as a bottleneck, whose dimension is 62.5%
of that of the preceding LSTM layer, which aims at reducing the
input size to a following layer. Figure 2 c) shows a parallel time-
delayed LSTM (PTDLSTM) neural network layer, where mul-
tiple time-delayed input streams are each processed by separate
LSTM layers, whose parameters are not shared, prior to con-
catenating LSTM outputs and further processing using a bottle-
neck layer and a ReLu activation function. This architecture is
inspired by the parallel forward and backward LSTM streams of
BLSTM models. Note that if a TDLSTM or PTDLSTM build-
ing block is used in our deep time-delay architecture for the 5th
layer, i.e., the final layer, we do not use an addition projection
layer but instead set the size of the bottleneck layer to be equal
to the dimension of encoder states, and no activation function is
applied.

3. Experimental Setup
We conducted ASR experiments on three different data sets of
different size, ranging from 90 to 960 hours of training data,
and of different language, which are English and Mandarin Chi-
nese. We use the Wall Street Journal (WSJ) corpus of read En-
glish newspapers [22], the LibriSpeech corpus [24], which is
based on an open-source English audio books project featuring
various recording qualities, and the Mandarin telephone speech
corpus developed by the Hong Kong University of Science and
Technology (HKUST) [23]. Basic information about the cor-
pora are shown in Table 1.

Table 1: ASR corpora information.

WSJ1 (English) [22] #Utterances Size [h]
Training 37,416 80

Development (dev93) 503 1.1
Test (eval92) 333 0.7

HKUST (Mandarin) [23] #Utterances Size [h]
Training 197,391 174

Development 4,000 4.8
Test 5,413 4.9

LibriSpeech (English) [24] #Utterances Size [h]
Training 281,231 960

Development [clean/other] 2,703 / 2,864 5.4 / 5.3
Test [clean/other] 2,620 / 2,939 5.4 / 5.1

All encoder architectures are tested within an end-to-end
ASR system based on a hybrid CTC/attention model trained on
a multi-objective loss function

L = λ log pctc + (1− λ) log patt, (1)

where pctc and patt denote the CTC and attention model loss
functions, and λ controls their relative weight [14]. As input to
the system, we use 80-dimensional log Mel-filterbank features
and pitch features plus their first and second order derivatives
(80+3=83 feature dimensions).

Specific model and training parameters are summarized in
Table 2. The number of trainable encoder parameters is constant
for all tested encoder configurations and only depends on the
training data size. The number of output targets of the WSJ and
HKUST end-to-end systems amount to 50 (number of English
characters in WSJ) and 3653 (number of Mandarin characters
in HKUST), respectively. The LibriSpeech ASR system uses
5000 sentence-pieces as output targets, which are derived by
the sentence-piece tokenizer proposed by [25]. In this work, an
RNN-based language model (LM) is applied to the output of
the end-to-end ASR system via cold fusion. A word-based LM
of 65k words is applied to the WSJ test data [26] and character-
based LMs are applied to the HKUST and LibriSpeech data sets
[27].

4. Results
Results for our proposed encoder architectures as well as the
baseline encoder models are shown in Table 3. Note that the
number of parameters of all encoder neural networks is the
same for each ASR task. An exception is made for the “Kaldi”-
TDNN-LSTM model on the LibriSpeech data set: this model
had to be limited to a maximum of approximately 80M parame-
ters in our experiments because of GPU-related out-of-memory
errors that occurred at training time. These errors are due to the
fact that the initial three TDNN layers of the “Kaldi”-TDNN-
LSTM model are running at the higher frame rate, and to the
high memory demands of attention model training. Thus, the
“Kaldi”-TDNN-LSTM encoder has fewer parameters compared
to other settings in the LibriSpeech experiments, since we pre-
ferred not to change the model topology or the training batch
size for this architecture.

The “Google”-BLSTM model serves as a benchmark to
determine the discrepancy between offline and online (stream-
ing) encoder models. By comparing the “Google”-BLSTM to
its unidirectional LSTM counterpart, it becomes obvious that



Table 2: Experimental hyperparameters.

WSJ model parameters
# trainable encoder parameters 18M
Size of projection layer 320
# decoder LSTM cells / layers 300 / 1

HKUST model parameters
# trainable encoder parameters 80M
Size of projection layer 1024
# decoder LSTM cells / layers 1024 / 2

LibriSpeech model parameters
# trainable encoder parameters 115M
Size of projection layer 1024
# decoder LSTM cells / layers 1024 / 2

Common training parameters
Optimization AdaDelta
Adadelta ρ 0.95
Adadelta ε / ε decaying factor 10−8 / 10−2

Maximum # epochs 15 (WSJ, HKUST)
10 (LibriSpeech)

λ 0.2 (WSJ)
0.5 (HKUST, LibriSpeech)

Decoding parameters
Language model / CTC weight 1.0 / 0.3 (WSJ)

0.3 / 0.6 (HKUST)
0.5 / 0.5 (LibriSpeech)

the missing future information incorporated by the backward
LSTM increases error rates significantly between 1.6% and
5.6% on an absolute scale. The “Kaldi”-TDNN-LSTM model
can compensate for this lack of information to some extent by
analysing 150 ms of future context, which improves error rates
for the WSJ and HKUST tasks by 1.1% on average, while er-
ror rates of the LibriSpeech data have slightly increased, which
can be explained by the reduced model size as explained in the
previous paragraph. The LCBLSTM model further enhances
recognition results, especially for the HKUST data set. The
TDNN-LSTM encoder model, which is based on our proposed
deep time-delay architecture shown in Figure 1, demonstrates
improved recognition results for the WSJ and HKUST tasks
compared to the “Google”-LSTM and “Kaldi”-TDNN-LSTM
model, whereas word error rates (WERs) of LibriSpeech are
deteriorated. The reason is not obvious and requires deeper in-
vestigation.

The proposed TDLSTM encoder architecture improves er-
ror rates for the HKUST and LibriSpeech recognition tasks on
average by 1.5% compared to both baseline models. WSJ-based
results of the TDLSTM neural network are better compared to
the “Google”-LSTM model and marginally worse compared to
the “Kaldi”-TDNN-LSTM neural network. This demonstrates
that the TDLSTM architecture improves ASR results compared
to the TDNN-LSTM architecture, with the essential differences
between the two being that in the former case the LSTM re-
ceives the time-delayed and stacked input, while in the latter
case a feed-forward neural network processes this input prior

1The LibiSpeech experiments of the LCBLSTM model had not fin-
ished by the submission deadline. In addition, HKUST results were
obtained with an LCBLSTM model of larger latency (chunk size) com-
pared to our proposed architectures. LCBLSTM training is slow and
other results are still computing. The missing/correct results will be
added in the camera-ready paper, if it is accepted for publication.

Table 3: Word error rates (WSJ and LibriSpeech) as well as
character error rates (HKUST) of the hybrid CTC/attention de-
coder using different encoder architectures. The upper sec-
tion presents results of the BLSTM-based baseline model, which
cannot be used in a streaming fashion, whereas the middle
and lower sections present results of the baseline and our pro-
posed encoder architectures, respectively, which are suitable
for streaming recognition. Note that the “Kaldi”-TDNN-LSTM
model has fewer model parameters compared to the other en-
coder neural networks for the LibriSpeech data set, c.f. Sec-
tion 4 for explanation.

WSJ HKUST LibriSpeech

Encoder Architecture dev test dev test dev
clean

dev
other

test
clean

test
other

“Google”-BLSTM 7.9 4.7 29.9 28.9 4.7 14.1 4.9 15.2
“Google”-LSTM 9.9 6.5 35.5 33.8 6.3 18.2 6.5 19.4
“Kaldi”-TDNN-LSTM 8.8 5.3 34.5 32.7 6.8 18.7 6.9 19.9
LCBLSTM1 8.8 5.8 31.6 30.2 - - - -
TDNN-LSTM 8.5 5.3 33.0 31.3 7.4 19.9 7.4 21.1
TDLSTM 9.1 5.7 32.7 31.0 5.9 17.0 6.0 18.2
PTDLSTM 8.0 5.4 31.4 30.1 5.6 16.2 5.7 16.9

to the LSTM layer. The PTDLSTM encoder architecture fur-
ther improves ASR results by using parallel LSTMs to process
each input of different frame delay separately, which is inspired
by BLSTM neural networks that process the forward and back-
ward sequence using two parallel LSTMs as well. Note that the
first layer of our PTDLSTM encoder model is composed of a
TDLSTM building block and layer two to five are PTDLSTM
neural networks, cf. Figures 1 and 2. The results of Table 3
show that our PTDLSTM architecture outperforms all baseline
architectures and reduces the gap towards the BLSTM model.
In addition, the PTDLSTM is entirely unidirectional unlike the
LCBLSTM, which explains the training and inference speed ad-
vantages we could observe with our implementation.

5. Conclusions
In this paper, we presented and compared various encoder neu-
ral network architectures for end-to-end ASR that are suitable
for streaming applications. We proposed two novel unidirec-
tional neural network models, the time-delay LSTM (TDL-
STM) and the parallel time-delayed LSTM (PTDLSTM) archi-
tectures. Both encoder neural network models demonstrated
improved ASR results compared to a deep LSTM and TDNN-
LSTM model, which are similar to a “Google” and “Kaldi” im-
plementation, using three ASR tasks of different size (80h to
960h of training data) and language (English and Mandarin Chi-
nese). The average relative word/character error rate improve-
ment of the PTDLSTM model amounts to 13.2% and 11.0%
compared to our baseline LSTM and TDNN-LSTM models, re-
spectively. The PTDLSTM has also shown better error rates
compared to a latency-controlled BLSTM of similar size and
latency, which here amounts to 250 ms, while also improv-
ing training and inference speed due to avoiding the backward
LSTM computation from overlapping chunks.
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