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ABSTRACT
A new system architecture for end-to-end automatic speech recog-
nition (ASR) is proposed that combines the alignment capabilities
of the connectionist temporal classification (CTC) approach and the
modeling strength of the attention mechanism. The proposed sys-
tem architecture, named triggered attention (TA), uses a CTC-based
classifier to control the activation of an attention-based decoder neu-
ral network. This allows for a frame-synchronous decoding scheme
with an adjustable look-ahead parameter to control the induced de-
lay and opens the door to streaming recognition with attention-based
end-to-end ASR systems. We present ASR results of the TA model
on three data sets of different size and language and compare the
scores to a well-tuned attention-based end-to-end ASR baseline sys-
tem, which consumes input frames in the traditional full-sequence
manner. The proposed triggered attention (TA) decoder concept
achieves similar or better ASR results in all experiments compared
to the full-sequence attention model, while also limiting the decod-
ing delay to two look-ahead frames, which in our setup corresponds
to an output delay of 80 ms.

Index Terms— Triggered attention, end-to-end automatic speech
recognition, connectionist temporal classification, attention mech-
anism, frame-synchronous decoding

1. INTRODUCTION

End-to-end and sequence-to-sequence neural network models, re-
spectively, have recently gained increased interest and popularity
in the automatic speech recognition (ASR) community [1–4]. The
output of an end-to-end ASR system is usually a grapheme sequence
that can either be single letters or larger units such as word-pieces
and entire words [5]. The appeal of end-to-end ASR is that it en-
ables a simplified system architecture compared to traditional ASR
systems [6] by being composed of neural network components only
and by avoiding the need for language specific linguistic expert
knowledge to build such systems. Connectionist temporal classifi-
cation (CTC) [7] and the attention mechanism [8] are the two most
widely used neural network architectures for end-to-end ASR, and
attention-based encoder-decoder neural networks have shown the
ability to outperform CTC-based neural networks [9, 10]. However,
attention-based decoders are per se not well suited to be applied
in a streaming fashion, i.e. to compute outputs as audio samples
are recorded, since attention weights are typically computed from
an input sequence of an entire speech utterance, which is referred
to as full-sequence mode. This is because it is unable to align an
input and output sequence frame-by-frame, in contrast with CTC.
Recently, the neural transducer (NT) concept was proposed [11]
that adds a block processing strategy to the attention mechanism by
using a fixed number of input frames and by introducing a special
symbol to detect the end of an output sequence for each chunk of
input frames. Disadvantages of the NT model are that it requires

alignment information from an auxiliary ASR system to be trained
and parameter initialization from a pre-trained full-sequence model
to achieve a high recognition accuracy [12].
In the present paper, we propose the TA system architecture that is
designed to utilize the alignment properties of a CTC objective func-
tion and the modeling strength of the attention mechanism. This is
achieved by using a CTC trained neural network to dynamically par-
tition an input sequence, which is typically pre-partitioned based on
speech pauses between utterances, further into smaller subsequences
based on its speech content prior to recognition by an attention-based
decoder neural network. The TA decoder consists of a trigger model,
which spots the time instants of grapheme outputs from an encoder
sequence, and an attention-based decoder neural network, whose ac-
tivation gets controlled by the trigger model. The encoder neural
network is shared by the trigger network and the attention mecha-
nism. Attention weights can only see encoder frames preceded by
the triggering event plus some look-ahead frames. During training,
forced alignment of the CTC output sequence is used to derive the
time instants of the triggering. During decoding, uncertainties of the
CTC trained trigger model are taken into account to generate alterna-
tive trigger sequences and output sequences, respectively. TA infer-
ence is conducted in a frame-synchronous decoding manner, which
allows the model to be applied in an online ASR system, if an unidi-
rectional encoder neural network is used, which is however not the
focus of this work. Note that this work is different from the hybrid
CTC/attention end-to-end ASR system proposed in [4], which uses
label-synchronous decoding and combines the posterior probabili-
ties of both sequence-to-sequence models to score outputs jointly.
Here the posterior probabilities of the CTC model are not combined
with the attention model scores, which is the subject of future work.
The content-based, dot-product as well as location-aware attention
mechanisms are studied along with the TA concept [2, 13]. ASR
results of the TA model are compared to a well-optimized base-
line attention model, which computes the output by seeing the full
input sequence. Three ASR corpora of different size (80 to 960
hours of training data) and language (English and Mandarin Chi-
nese) are used for the evaluation. Our proposed system architecture
shows word error rate improvements on all ASR tasks, while also
improving online recognition capabilities by frame-synchronous de-
coding. Particular advantages over the full-sequence model are de-
termined when using the dot-product and content-based attention
mechanisms.

2. TRIGGERED ATTENTION

The TA system architecture is composed of an encoder neural net-
work and the TA decoder, which is illustrated in Fig. 1. The encoder
neural network converts an input sequence X of ASR features such
as log-mel spectral energies into a T -length encoder state sequence
H:

H = Encoder(X). (1)
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Fig. 1. Triggered attention system architecture. The shared encoder
is trained jointly by the CTC and attention model objectives. The
CTC-based trigger neural network is solely used to generate frame-
level alignments and to trigger the attention-based decoder. The
dashed lines to and from the TA decoder indicate the input and out-
put of earlier time steps.

The encoder is based on a convolutional neural network (CNN) with
a VGG structure [14, 15], followed by a bidirectional long short-
term memory (BLSTM) neural network1 [16, 17]. With this setup,
the encoder output is sub-sampled to a four-times lower frame rate
compared to the feature matrix X , which has a sampling rate of 100
Hz. The TA decoder consists of a trigger mechanism based on a
CTC model, and an attention-based decoder neural network, which
both take the output of the encoder as input.
Let Z = (z1, . . . , zT ) denote a framewise CTC sequence of length
T , with zt ∈ U ∪ 〈b〉, where U denotes a set of distinct graphemes
that can either be single characters or word-pieces, and 〈b〉 the blank
symbol. Let C = (c1, . . . , cL), with cl ∈ U , denote a grapheme
sequence of length L, and assume that the sequence Z reduces to
C when collapsing repeated labels into single occurrences and re-
moving blank symbols. Following [7], the CTC model probability is
classically derived as:

pctc(C|H) =
∑
Z

p(C|Z,H)p(Z|H) (2)

≈
∑
Z

p(C|Z)p(Z|H) (3)

=
∑
Z

p(Z|C)p(Z|H)
p(C)

p(Z)
, (4)

where p(Z|C) denotes the transition probability and p(Z|H) an
acoustic model.
The trigger mechanism computes the trigger instances based on the
CTC model by identifying the first frame of each sub-sequence of
frames corresponding to the same grapheme label in Z, as illustrated
in Fig. 2. We can rewrite the CTC sequence Z using the indices
il and jl for the beginning and end of the occurrence of the l-th
label cl in Z, with il ≤ jl < il+1, ∀l, and zt = cl for all t such
that il ≤ t ≤ jl and zt = 〈b〉 for all other indices. The trigger

1Note that a BLSTM encoder is not suited for online ASR purposes. How-
ever, we here focus on improving the decoder part and leave the development
of a well-tuned unidirectional encoder to future work.

t = 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 

Z = (<b>,<b>, d , d ,<b>, o , g , g ,<b>)

p(Z|H) = (0.9,0.7,0.4,0.7,0.7,0.8,0.9,0.6,0.5)

Z’= (<b>,<b>, d ,<b>,<b>, o , g ,<b>,<b>)

↑           ↑   ↑

Fig. 2. Conversion of the CTC sequence Z into the trigger sequence
Z′, using an example with the word “dog”. The red dashed boxes
and the arrows indicate the frame position of a trigger event.

mechanism conducts a mapping from a CTC sequence Z to a trigger
event sequence Z′ = (〈b〉∗, c1, 〈b〉∗, c2, 〈b〉∗, . . . , cL, 〈b〉∗) of same
length T , in which ∗ denotes zero or more repetitions and where each
cl occurs exactly once at frame il.
The trigger sequence Z′ is input to the attention-based decoder of
our TA model:

pta(C|H) =
∑
Z′

L∏
l=1

p(cl|c1, . . . , cl−1, Z
′, H) (5)

In theory, multiple trigger sequences can be obtained over which we
have to marginalize. However, applying the forward-backward al-
gorithm, i.e. Baum-Welch learning, to reestimate parameters of the
attention-based decoder, as shown in Eq. (5), requires high com-
putational resources. In addition, it is difficult to handle the back-
ward computation properly, since the attention decoder is condi-
tioned on its previous hidden states, cf. Eq. (10). Hence, we sim-
plify the model by using Viterbi learning instead, considering only
the CTC sequence Z∗ of highest overall probability computed by
forced alignment, and its corresponding trigger sequence Z′∗, lead-
ing to the following approximation:

pta(C|H) ≈
L∏
l=1

p(cl|c1, . . . , cl−1, Z
′∗, H). (6)

Alignment information provided by the trigger sequence Z′ is used
to condition the attention mechanism on past encoder frames only:

pta(C|H) ≈
L∏
l=1

p(cl|c1, . . . , cl−1,h1, . . . ,hτl), (7)

with τl = t′l + ε, where ε denotes the look-ahead hyperparameter
and t′l the time index of cl in Z′.
The attention-based decoder model p(cl|c1, ..., cl−1,h1, ...,hτl) of
Eq. (7) can be written as follows:

alt =


DotProductAttention(ql−1,ht)
ContentAttention(ql−1,ht)
LocationAttention({al−1}τlt=1, ql−1,ht)

(8)

rl =

τl∑
t=1

altht (9)

p(cl|c1, ..., cl−1,h1, ...,hτl) = Decoder(rl, ql−1, cl−1) (10)

In this work, we are using dot-product, content-based, and location-
aware attention, as indicated in Eq. (8). The dot-product as well as
the content-based attention mechanism are unaware of the attention
weight distribution from a previous time step, and thus may easily
be confused by similar input fragments. The location-aware atten-
tion mechanism, however, is taking the attention weight distribution



of the previous time step into account, as indicated by al−1. For rea-
sons of space, here we skip a more detailed description of all three
attention mechanisms and the decoder setup, which are not differ-
ent from previous work except for the conditioning on past encoder
frames through parameter τ , and the interested reader is referred
to [2, 4, 13]. The decoder model of Eq. (10), in which the vector
ql−1 denotes the decoder hidden state of the previous time step, is
based on an LSTM neural network.
The CTC model of Eq. (4) and the triggered-attention-based decoder
model of Eq. (7) are trained jointly using the multi-objective loss
function

L = −λ log pctc − (1− λ) log pta, (11)

where the tunable parameter λ controls the weighting between the
two objective functions pctc and pta.

2.1. Decoding

Inference with the TA model is realized in a frame-synchronous
decoding manner. A best path search with the CTC-based trigger
model is used to generate trigger events. Note that the trigger model
is generating a character sequence as well but we do not combine
this output with the scores of the attention model, which is sub-
ject to future work. However, uncertainties of the CTC-based trig-
ger model are taken into account to generate alternative trigger se-
quences. This is achieved by tracking the posterior probabilities of
the CTC output and whenever the softmax score of an alternative
path is higher than a manually chosen threshold, a new trigger event
is initiated. We chose a threshold of 0.2 throughout all experiments,
which was experimentally determined using the Wall Street Journal
(WSJ) data sets but not further optimized for the other ASR tasks.
Trigger events of low confidence can be skipped by the attention-
based decoder by bypassing the attention decoder states of the pre-
vious time step. After the attention model is triggered, the decoding
is similar to a conventional beam-search algorithm [4]. Note that
the problem of misalignment is almost nonexistent for TA decod-
ing, because we are only attending to past encoder frames (relative
to the trigger event) and the length of the output sequence is mostly
determined by the trigger model. Thus, penalty factors and other
terms that are often used in label-synchronous decoding to super-
vise the length of the generated output sequence are not required [4].
However, since hypotheses of different length can be in the decod-
ing beam, we require an adjusted pruning concept using sequence-
length-normalized scores instead of unnormalized probabilities to
determine the best hypotheses that are kept.

3. EXPERIMENTAL SETUP

ASR experiments of this paper are conducted on three different data
sets of different size, ranging from 90 to 960 hours of training, and
of different language, which is English and Mandarin Chinese. We
are using the WSJ corpus of read English newspapers [18], the Lib-
riSpeech corpus, which is based on an open-source English audio
books project featuring various recording qualities [20], and the
Mandarin telephone speech corpus developed by the Hong Kong
University of Science and Technology (HKUST) [19]. Basic infor-
mation about the corpora are shown in Table 1.
The TA model and the full-sequence attention-based baseline system
are both trained using a multi-objective loss function, since it has
been shown that CTC guides the attention model to find better tem-
poral alignments during training [4]. Note that the baseline system
of this work does not use the CTC model for inference in contrast to

Table 1. ASR corpora information.
WSJ1 (English) [18] #Utterances Size [h]

Training 37,416 80
Development (dev93) 503 1.1

Test (eval92) 333 0.7
HKUST (Mandarin) [19] #Utterances Size [h]

Training 197,391 174
Development 4,000 4.8

Test 5,413 4.9
LibriSpeech (English) [20] #Utterances Size [h]

Training 281,231 960
Development [clean/other] 2,703 / 2,864 5.4 / 5.3

Test [clean/other] 2,620 / 2,939 5.4 / 5.1

Table 2. Experimental hyperparameters.

WSJ model parameters
Encoder type VGG + BLSTMP
# BLSTMP cells / projection units / layers 320 / 320 / 6
# decoder LSTM cells / layers 300 / 1

HKUST model parameters
Encoder type VGG + BLSTM
# BLSTM cells / projection units / layers 1024 / 1024 / 3
# decoder LSTM cells / layers 1024 / 2

LibriSpeech model parameters
Encoder type VGG + BLSTM
# BLSTM cells / projection units / layers 1024 / 1024 / 5
# decoder LSTM cells / layers 1024 / 2

Common training parameters
Optimization AdaDelta
Adadelta ρ 0.95
Adadelta ε / ε decaying factor 10−8 / 10−2

Maximum epoch 15 (WSJ, HKUST)
10 (LibriSpeech)

λ 0.2 (WSJ)
0.5 (HKUST, LibriSpeech)

the hybrid CTC/attention system of [4,15], because our TA architec-
ture does not combine CTC and attention model scores as well. Spe-
cific model and training parameters are summarized in Table 2. Two
encoder settings are used here, which are both composed of a VGG-
based deep CNN component plus a deep BLSTM or a deep BLSTM
interleaved with projection layers (BLSTMP) [15, 21]. The number
of output units of the WSJ and HKUST end-to-end systems amount
to 50 (number of English characters in WSJ) and 3653 (number
of Mandarin characters in HKUST), respectively. The LibriSpeech
ASR system is using 5000 sentence-piece units as an output, which
are derived by the sentence-piece tokenizer proposed by [22]. In this
work, a RNN-based language model (LM) is applied to the output of
an end-to-end ASR system, whenever indicated. A word-based LM
of 65k words applied to the WSJ test data [23] and a character-based
LM is applied for the HKUST and LibriSpeech data sets [15].

4. RESULTS

The evaluation of the proposed TA model for different look-ahead
parameter settings ε using the WSJ data set is illustrated in Fig. 3. It
can be seen that the dot-product and content-based attention mech-
anisms require a smaller look-ahead to achieve low character error
rates (CERs) in the TA system architecture, by which they obtain a
higher guidance by the trigger instance, whereas the location-aware
attention mechanism prefers larger look-ahead values. Some fluctu-
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Fig. 3. Evaluation of the TA look-ahead hyperparameter ε for
the dot-product, content-based, and location-aware attention mecha-
nisms with the WSJ data set.

Table 3. Character error rates (CERs) and word error rates (WERs)
of the WSJ and HKUST ASR tasks. Different system settings
of the TA and the full-sequence attention model are compared.
“dot”, “cont”, and “loc” denote the dot-product, content-based, and
location-aware attention mechanisms. LM indicates the use of a
RNN-based language model via shallow fusion. LM weights are
optimized based on the development data for each individual system
setting.

System Settings WSJ: CER [%] WSJ: WER [%] HKUST [%]
Model LM dev93 eval92 dev93 eval92 dev test
Attention(dot) 7 10.2 8.0 23.2 19.1 40.8 36.8
Attention(cont) 7 9.0 6.9 22.3 17.8 35.3 32.9
Attention(loc) 7 8.7 8.1 21.4 18.6 36.0 33.4
TA(dot, ε = 2) 7 8.5 6.6 23.0 18.8 33.7 32.2
TA(cont, ε = 2) 7 8.5 6.6 22.1 18.3 33.9 32.0
TA(loc, ε = 20) 7 7.9 6.1 20.6 16.2 34.4 31.9
Attention(dot) 3 7.8 5.3 15.8 11.3 39.0 36.2
Attention(cont) 3 6.9 4.7 14.9 10.4 33.7 31.4
Attention(loc) 3 6.9 4.2 14.8 10.1 33.1 31.6
TA(dot, ε = 2) 3 6.1 4.4 13.1 9.6 32.4 31.2
TA(cont, ε = 2) 3 6.5 4.5 13.8 9.9 31.8 30.5
TA(loc, ε = 20) 3 6.6 4.0 12.7 7.7 33.5 31.4

ations in the results can be observed, which might be explained by
the relatively small data size of WSJ. On average, the location-aware
attention performs the best on this data set but requires a much larger
look-ahead value compared to the other two attention mechanisms.
For all the following experiments, we are using 2 look-ahead frames
for the dot-product and content-based TA mechanisms and 20 look-
ahead frames for the location-aware TA model, since these settings
resulted in the lowest CERs.
Table 3 shows the CERs and word error rates (WERs) of the pro-
posed TA system architecture with frame-synchronous decoding,
in comparison to a full-sequence based attention model with label-
synchronous decoding [4]. The TA-based system attains consistently
lower error rates than the full-sequence based attention model. For
example, on the test sets of WSJ and HKUST and without the use of
an external language model, the location-aware TA system achieves
2.0% and 1.5%, respectively, lower CERs than the location-aware
full-sequence system. Including the use of the RNN-based language
model, error rate differences between both decoder types become

Table 4. Character error rates (CER) and word error rates (WER) of
the LibriSpeech ASR task.

System Settings CER [%] WER [%]

Model LM dev
[clean/other]

test
[clean/other]

dev
[clean/other]

test
[clean/other]

Attention(dot) 7 14.8 / 29.3 16.0 / 30.5 12.4 / 25.2 13.9 / 26.3
Attention(cont) 7 9.6 / 24.4 8.8 / 23.8 7.4 / 21.3 7.5 / 20.6
Attention(loc) 7 7.1 / 22.1 7.3 / 23.0 5.8 / 19.2 6.1 / 20.0
TA(dot, ε = 2) 7 10.3 / 23.2 10.2 / 23.9 9.2 / 21.0 9.3 / 21.6
TA(cont, ε = 2) 7 8.2 / 20.3 8.1 / 21.3 7.4 / 18.4 7.4 / 19.2
TA(loc, ε = 20) 7 8.0 / 20.7 8.1 / 22.0 7.3 / 19.1 7.4 / 20.0
Attention(dot) 3 12.6 / 28.3 14.7 / 29.6 10.1 / 22.9 12.5 / 24.3
Attention(cont) 3 9.8 / 21.8 9.0 / 21.0 7.4 / 18.0 7.8 / 17.0
Attention(loc) 3 6.6 / 19.2 6.7 / 20.0 5.3 / 15.4 5.4 / 16.1
TA(dot, ε = 2) 3 9.2 / 21.3 9.1 / 22.5 7.8 / 18.7 8.0 / 19.8
TA(cont, ε = 2) 3 6.9 / 18.3 6.7 / 19.3 5.8 / 15.8 5.7 / 16.7
TA(loc, ε = 20) 3 7.1 / 19.1 7.2 / 20.5 6.2 / 17.0 6.3 / 18.3

smaller. However, the TA system architecture still outperforms
the equivalent full-sequence based system irrespective of the used
attention mechanism.
In the LibriSpeech ASR experiments, the results of which are shown
in Table 4, the content-based TA model consistently achieves lower
error rates than the location-aware TA system, which indicates that
the attention mechanism can leverage the trigger mechanism to
compensate for missing attention weight information from previous
time steps. Without the use of the RNN-based LM, the TA-based
system considerably outperforms the full-sequence based attention
model on the more difficult other test condition, while results are
only slightly worse for the clean test data. This difference becomes
smaller when using the RNN-based LM but still holds for the CER
results, whereas the WER results of the full-sequence model show
slight advantages over the TA system.

5. DISCUSSION AND FUTURE WORK

In this paper, we proposed the triggered attention (TA) system ar-
chitecture for attention-based end-to-end ASR systems to enable de-
coding in a frame-synchronous and streaming fashion, respectively.
Three different attention mechanisms are investigated in the TA sys-
tem architecture and ASR experiments are conducted using the WSJ,
HKUST, and LibriSpeech data sets. The results show that the trigger
mechanism of the TA model implicitly provides location informa-
tion to the attention mechanism, so that WER differences between
location-aware attention, which makes use of the attention weight
distribution computed in a previous time step, and content-based as
well as dot-product attention are reduced. On average, the content-
based TA system achieved the lowest WERs and even outperformed
a strong full-sequence based location-aware attention model, except
for the clean test condition of the LibriSpeech data set, where the
full-sequence attention model has shown slightly lower error rates.
In addition to the ability to improve the recognition accuracy, the
TA system architecture enables streaming recognition by limiting
the input to the attention mechanism to causal encoder frames plus
two look-ahead frames, which here corresponds to a decoding delay
of 80 ms.
Future work will focus on improving ASR results of the TA archi-
tecture further by joining the posterior probabilities of the attention-
based decoder and the CTC-based trigger module and by using a
multi-head attention mechanism. In addition, the encoder neural net-
work will be changed to an unidirectional setting to further optimize
the streaming nature of the proposed end-to-end ASR system.
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