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ABSTRACT

In this paper, we present a one-pass decoding algorithm for
streaming recognition with joint connectionist temporal clas-
sification (CTC) and attention-based end-to-end automatic
speech recognition (ASR) models. The decoding scheme is
based on a frame-synchronous CTC prefix beam search algo-
rithm and the recently proposed triggered attention concept.
To achieve a fully streaming end-to-end ASR system, the
CTC-triggered attention decoder is combined with a unidirec-
tional encoder neural network based on parallel time-delayed
long short-term memory (PTDLSTM) streams, which has
demonstrated superior performance compared to various
other streaming encoder architectures in earlier work. A new
type of pre-training method is studied to further improve our
streaming ASR models by adding residual connections to the
encoder neural network and layer-wise removing them dur-
ing the training process. The proposed joint CTC-triggered
attention decoding algorithm, which enables streaming recog-
nition of attention-based ASR systems, achieves similar ASR
results compared to offline CTC-attention decoding and sig-
nificantly better results compared to CTC prefix beam search
decoding alone.

Index Terms— Automatic speech recognition, end-to-end,
triggered attention, joint CTC-attention, streaming recogni-
tion

1. INTRODUCTION

The speech-to-text conversion problem can be viewed as a
sequence-to-sequence modeling task without making use of
any linguistic prior knowledge. This view has inspired a
relatively recent and important research direction in auto-
matic speech recognition (ASR) known as end-to-end ASR,
which has the benefit of simplifying the ASR pipeline [1]
and enabling better ways for optimization [2]. The prevail-
ing end-to-end ASR models are based on the connectionist
temporal classification (CTC) approach [3], the attention
mechanism [4], or a combination of both [5]. CTC-based
ASR models and their extensions and variants, such as the
recurrent neural network (RNN) transducer (RNN-T) [6] and
the automatic segmentation criterion (ASG) [7], are well
suited for online/streaming recognition, where an ASR out-
put is generated with only little delay after each spoken word.

Attention-based encoder-decoder models, however, usually
require the full input sequence of an entire speech utterance,
since the alignment between input and output sequences is
unknown prior to estimation of the attention weight dis-
tributions and traditional block-processing could truncate
connected information. Therefore, this concept cannot be
easily applied in a streaming fashion. Monotonic chunkwise
attention (MoChA) [8], the neural transducer [9], windowed
attention [10], and triggered attention [11] are methods pro-
posed to enable streaming recognition of attention-based
neural network models. The MoChA approach requires that
input and output alignments be monotonic and frame-wise
analyzes the encoder states to compute a “selection probabil-
ity” based on which the encoder state sequence is chunked
prior to being processed by the attention mechanism [8]. The
neural transducer is based on a block-processing scheme for
the attention mechanism with a fixed window length and
generates zero to many output symbols for each of these
blocks [9]. The windowed attention concept uses the current
decoder state and two jointly-trained multi-layer perceptrons
(MLPs) to predict the window shift and size for selecting
a chunk of succeeding encoder states, which are fed to the
attention mechanism to generate the next output symbol [10].
The triggered attention concept relies on an auxiliary system,
which is typically CTC-based and jointly trained with the
attention decoder, to predict an alignment and to trigger the
attention decoding process [11].

Another important part of end-to-end ASR systems is the en-
coder neural network architecture. Bidirectional long short-
term memory (BLSTM) neural network architectures achieve
state-of-the-art results but are unsuitable for streaming ap-
plications. Latency-controlled BLSTMs (LCBLSTMs) are
an alternative that enables the use of BLSTM-like architec-
tures for streaming recognition by restricting the future con-
text of the backward-directed LSTM to a fixed size [12-15].
LCBLSTMs have shown improved performance compared to
LSTMs but at the expense of an increased computational cost
due to overlapping chunks for which the backward-directed
LSTM output has to be recomputed each time. Recently, a
unidirectional neural network architecture based on parallel
time-delayed LSTM (PTDLSTM) streams was proposed [16],
which demonstrated improved ASR robustness compared to
the LCBLSTM architecture of similar latency as well as to
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Fig. 1. Joint CTC-triggered attention architecture for stream-
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other streaming architectures such as the time-delayed neural

network LSTM (TDNN-LSTM) [17].

In previous work, ASR experiments published on triggered
attention were using BLSTM-based encoder architectures,
which are not suitable for streaming recognition [11]. Sim-
ilarly, experiments with the PTDLSTM encoder architec-
ture in [16] were based on offline CTC-attention decoding
only [5]. In this work, we combine the triggered attention
concept with the unidirectional PTDLSTM encoder architec-
ture to achieve a fully online CTC-attention based end-to-
end ASR system. For joint CTC-triggered attention model
scoring, a new one-pass decoding algorithm for streaming
recognition is proposed, which relies on the CTC prefix beam
search algorithm of [18] and the triggered attention concept
of [11]. Note that the decoding concept presented in this work
is different from [11], since [11] relies on a greedy best path
CTC score analysis to trigger the attention decoder, which
is unsuitable for joint one-pass CTC-attention scoring. In
addition, a new pre-training method is proposed that aims at
improving the gradient propagation by adding residual con-
nections to the encoder neural network, which are gradually
and permanently removed during a pre-training phase.

2. STREAMING END-TO-END ASR

Figure 1 shows each system module of our proposed end-to-
end ASR architecture for streaming recognition. A unidirec-
tional encoder neural network is used to convert a sequence
of acoustic features X = (@1, xs,...,xr), which here are
80-dimensional log-Mel spectral energies plus one pitch fea-
ture and its first and second-order derivatives computed every
10 ms, into the encoder state sequence H = (hy,...,hy).

Details of the encoder neural network are described in Sec-
tion 2.1. The encoder state sequence H is shared by the CTC
module and the triggered attention decoder, which are both
described in Section 2.2. The joint decoding process of the
CTC output and the triggered attention decoder is described in
Section 2.3. Scores of an RNN-based language model (RNN-
LM) are incorporated via shallow fusion to derive the final
label sequence C' = (cy, . .., cr,), where in this work a label
c can either be a character or a sentence piece [19]. Note that
the arrows from the encoder state sequence H to the CTC and
triggered attention decoder modules only depict the informa-
tion flow for decoding output character ¢; at time step ¢ and
encoder state index nj, respectively. Since the triggered at-
tention module is using a fixed number of look-ahead frames,
the attention decoder is attending up to encoder state index v,
as described in Section 2.2.

2.1. Encoder architecture

The unidirectional encoder neural network of our proposed
end-to-end ASR system is based on TDLSTM and PTDL-
STM building blocks that are composed together using a deep
time-delay architecture as shown in Fig. 2, which generates an
overall delay of 25 features frames corresponding to 250 ms.
The first neural network layer consists of a TDLSTM build-
ing block that takes as input three consecutive feature frames,
whereby an output is generated at a three-times lower frame
rate, i.e., subsampling by a factor of three is applied. The
TDLSTM building block first concatenates (cat) all the input
frames before processing them using an LSTM layer followed
by a bottleneck feed-forward neural network (BN) and a recti-
fied linear unit (ReLU) non-linearity. The remaining encoder
neural network layers, i.e., layers two to five, are based on
PTDLSTM building blocks in which each time-delayed input
stream is processed by a separate LSTM prior to concatenat-
ing LSTM outputs and further processing using a BN layer
plus a ReLLU non-linearity. Note that in the last encoder layer,
i.e., layer five, we are not using any non-linearity function to
generate the final encoder states, which are fed to the CTC
layer as well as to the attention decoder.

2.2. Triggered attention training

The triggered attention model is based on an attention-based
decoder neural network and an auxiliary CTC objective [11].
The CTC model is trained using the probability function

pac(CIH) = p(C|Z, H)p(Z|H) ()
Z
~ Y p(C1Z)p(Z|H) 2)
Z
with the framewise CTC sequence Z = (z1,...,zn) of

length N and z,, € U, where U denotes a set of output labels
plus the blank label (b) of CTC [3]. Equation (2) is derived
by using the assumption that the CTC label model p(CZ) is
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Fig. 2. Unidirectional encoder architecture using the deep time-delay structure shown on the left and the neural network building
blocks shown on the right. Each rectangle box of the deep time-delay structure represents either a TDLSTM building block, in
Layer 1, or a PTDLSTM building block, in Layers 2-5. The numbers in square brackets denote the frame delays of the input to
each layer. The solid black lines and the blue rectangles highlight the path of a single encoder output frame. The dashed lines
and gray rectangles denote connections and building blocks to generate past and future encoder output frames.

conditionally independent of the encoder state sequence H,
which is classically used to simplify the CTC model [3]. The
CTC posterior distribution p(Z|H) is computed by applying
a projection layer as well as a softmax function on top of the
encoder state sequence H. Training of the triggered attention
decoder requires an alignment between the encoder state se-
quence H and the label sequence C to condition the attention
mechanism on past encoder frames only plus a fixed num-
ber of look-ahead frames. This information is generated by
forced alignment using the CTC output, which provides the
CTC label sequence Z* of overall highest probability [11].
The CTC path of highest probability Z* is converted into the
trigger sequence Z' of same length by replacing label repe-
titions with the blank symbol (b) and only keeping the first
occurrence of each label ¢; [11]. For example, the sequence
Z* = ((b), (b), €1, €1, €2, (b, €3, c3, (b)) would be converted
0 2" = ({5), (b), €. (b)., &, (). ch, (b), (b)), where each ¢]
denotes a trigger label. The trigger sequence Z' provides
the required alignment information to condition the attention
mechanism to encoder states preceding the trigger label ¢;
plus a fixed number of look-ahead frames ¢. To improve gen-
eralization, the positions of trigger labels are perturbed by 41
frame during training using a uniformly distributed random
variable. The triggered attention objective function is defined
as
L
pa(C|H) = Hp(cl|cl:l—17h1:ul) (3)

=1

with ; = nj + €, where n; corresponds to the frame index of
cinZ',ciy—1 = (c1,...,¢-1),and by, = (R, ..., hy,).
The term p(¢;|cy.—1, h1.y,) represents the attention decoder

model, which can be written as

p(ei|eri—1, h1.y,) = Decoder(ry, q—1,¢1—1), “4)

i
T = Zalnhn; )

n=1

arn, = AddAttention(q;_1, hy,). (6)

In this work, the Decoder(-) of Eq. (4) is modelled by one or
more LSTM layers with q;_; representing the hidden LSTM
states of the previous decoding step [ — 1, which are used to
initialize LSTM states for the current processing step [. The
context vector 7; is derived by the weighted sum over the en-
coder state sequence (h1, ..., h,,) as in Eq. (5), whereby the
weights a;,, are computed using the additive attention mech-
anism as shown in Eq. (6) [4].

The CTC model of Eq. (2) and the triggered attention model
of Eq. (3) are trained jointly using the multi-objective loss
function

L = —Alogpee — (1 — N)log pa, (7

where hyperparameter A\ controls the weighting between the
two objective functions pe and py,.

2.3. Joint CTC-triggered attention decoding

The proposed one-pass CTC-triggered attention decoding
algorithm is based on the frame-synchronous prefix beam
search algorithm of [18], which is extended here by integrat-
ing the triggered attention decoder. The usage of the triggered
attention model in this algorithm is “time-dependent,” i.e., in
contrast to incorporating language model scores, for example,
it matters at what time frame attention scores are computed,



Algorithm 1 Joint CTC-triggered attention decoding
1: procedure DECODE(H, pe, o, o, 8, K, P, 01, 62)

2: £+ ({sos),)

3: Q «— {}, Qu « {0}

4. pnb(g) <+~ 0, Pb(ﬁ) —1

5: Pan(f) < 1

6: >l¢ < initial attention decoder states

7: forn=1,...,Ndo

8: Qctc, Pubs Db — CTCPREFIX(pctc(n)v Qapnbypb)
9: for / in Q) do

10: Pprtx (£) < Pab(£) + po(£)

11 Dprix (£) <= 10g pprt (£) + coprm () + Bl¢]

12: Q + PRUNE(Qte, Pprtx, K, 01)

13: for ¢ in Q) do > Delete old prefixes in 2,
14: if £ in ,, and DCOND(Y, @,pm) then

15: delete £ in

16: for ¢ in Q do > Compute attention scores
17: if £ not in Q,, and ACOND(Y, ﬁ,pcm) then
18: Dare(£), ¢ < ATTDEC(h1.pp4e, 4, X0, ;)
19: add £ to Q¢
20: for ¢ in Q) do > Compute joint scores
21: U« 0if £ in Quq else £,_; ~
22: D 4 Alog pprix (€) + (1 — A) log pan (€)
23: pjoim(f) —p+ OprM(f) + 5|€|

24: Q <« MAX(@,pjoim, P)

25: Q + PRUNE(S, Dpetx, P, 02)

26: Q<+ Q+ @

27 return MAX(@, Djoint> 1)

since the attention mechanism is conditioned on n+¢ encoder
states only, as described in Section 2.2.

Algorithm 1 shows the procedure of the proposed frame-
synchronous joint CTC-attention decoding. In line 3, the
joint hypothesis set {2 and the attention hypothesis set {2, are
initialized with the prefix sequence ¢ = ((sos), ), where the
symbol (sos) denotes the start of sentence label. The CTC
prefix beam search algorithm of [18] maintains two separate
probabilities for a prefix ending in blank py, and not ending in
blank pn,, which we implemented as associative arrays that
are initialized in line 4. The attention model scores p, are
initialized in line 5 and the initial attention decoder states X2,
which include the initial decoder LSTM states qq as well as
the initial output label cy=(sos), are defined in line 6.

Lines 7 to 26 show the frame-by-frame processing of the CTC
posterior probability sequence p. and the encoder state se-
quence H, where pe.(n, ¢) denotes the CTC posterior prob-
ability for label ¢ at frame n. The function CTCPREFIX of
line 8, which follows the CTC prefix beam search algorithm
described in [20], extends the set of prefixes 2 using the CTC
posterior probabilities pe. of the current time step n and re-
turns the separate CTC prefix scores py, and py, as well as the
newly proposed set of prefixes {2.. In addition, we are using
a local pruning threshold of 0.0001 at this point to ignore la-

bels of lower CTC probability. Note that no language model
or any other pruning technique is used inside CTCPREFIX,
they will be incorporated in the following steps. The prefix
probabilities pp« and scores ﬁprfx are computed in lines 10
and 11, respectively, where pp\ represents the log probabil-
ity of the language model (LM) and |£| denotes the length of
prefix sequence ¢ without counting the start of sentence label
(sos). The function PRUNE of line 12 prunes a set of input
prefixes ()i, in two ways as follows:
procedure PRUNE( 4y, Dprix, L, 6)
Qin — MAX(Qil’Hﬁper; L), Qout — {}
for / in ©;, do
if max(Ppetx) — 0 < Dprix (£) then
add £ to Qo
return g,

First, the function MAX reduces €2, (=) to the L (=K)
most probable prefixes based on Py, and then every prefix
whose score ﬁprfx deviates more than beam width 6 (=6,) from
the maximum prefix score max (Ppsy ) is ignored. The new set
of Rruned CTC prefixes 2,y is returned by PRUNE and stored
in 2. Lines 13 to 15 of Algorithm 1 are used to delete prefixes
in €, that satisfy a delete condition DCOND:
procedure DCOND(Y, SA), Pete)
c+—Vl_1 > last element of ¢
Nprey <— time index of ¢ when added to Q
if [¢| > 1 and n — npey > 2 and pe(n, ¢) > 0.01 >
max(pclc(nprev, C)7 pclc(nprev +1, C)) then
return true
else
return false

In DCOND, 7y represents the time index at which the trig-
gered attention model score of prefix £ in €2, was computed.
DCOND returns “true” if the triggered attention score of pre-
fix £ was computed more than 2 frames ago and if the CTC
SCOres Peic(Nprev, €) as well as pee (Nprev + 1, ¢) are below the
manually chosen threshold of 0.01 while pe(n,c) is above
that threshold, else it returns “false”. Such deletion of “old”
prefixes from (2, aims at recomputing triggered attention
scores of CTC prefixes that emerged early but not with the
best possible score and associated time index.

Triggered attention model scores are computed from line 16
to line 19 for every prefix in € that is not in £, and satisfies
the add conditions ACOND:
procedure ACOND(Y, (AZ, Dete)
c {_4 > last element of ¢
if peic(n,c) > max(pac(n + 1,¢),pac(n + 2,¢)) or
any(|¢| > |¢| + 1 and ¢ starts with ¢ for ¢ in 2) then
return true
else
return false

ACOND returns “true” if the CTC probability pe. of the last
label ¢ in prefix sequence ¢ at the current time frame n is



larger than the probability for two next time frames n + 1
and n + 2. It also returns “true” if there exists a prefix se-
quence in €2, which starts with ¢ and whose length is strictly
larger than |¢] + 1, i.e., if £ has a successor in . with at
least two extra labels. This condition avoids that the gener-
ation of attention scores for newly added labels to a prefix
sequence is lacking behind the CTC prefix score generation
by more than one label. The function ATTDEC computes the
triggered attention scores p, for prefix ¢ using the encoder
state sequence hi.,., Where € corresponds to the look-ahead
parameter, and the attention decoder states Y, , of the previ-
ous prefix sequence /._1, i.e., of £ excluding the last element.
The joint CTC-triggered attention scores pjoin; are computed
in lines 20 to 23 of Algorithm 1. Due to the delete and add
conditions discussed above, the computation of triggered at-
tention scores for a CTC prefix sequence in {2 may be de-
layed by one label. Hence, line 21 checks if the triggered
attention score for prefix ¢ exists, otherwise the parent prefix
sequence ¢._; and associated score are used. In line 24, P
prefixes of highest joint probability are selected and stored in
Q) for further processing. These prefixes are augmented with
the P most probable and further pruned CTC prefixes €2 using
beam width 6 as shown in line 25 and 26. Finally, the joint
CTC-triggered attention decoding function DECODE returns
the prefix sequence of highest joint probability pjoinc as shown
in line 27.

2.4. Pre-training

In end-to-end ASR, neural network models are typically
composed of complex and deep architectures, where gradi-
ent descent-based training with randomly initialized neural
network weights may be suboptimal, due to the vanishing
gradient problem. Pre-training methods, such as the (greedy)
layer-wise pre-training, are often used to overcome these is-
sues, and their effectiveness for training of attention-based
ASR models has been studied in previous work [21]. In this
work, we propose a new pre-training method by equipping a
neural network with residual connections that are gradually
removed every k-th training epoch, with & € R<q, to en-
able an improved gradient propagation for the initial training
epochs. We apply such residual pre-training to our encoder
neural networks by adding residual connections from layer 1
to layer 3, layer 2 to layer 4, layer 3 to layer 5, etc. These ar-
tificially added connections are permanently removed one by
one every k-th training epoch, beginning at the first layer of
the network, with k here set to 1, 1.5, or 2, depending on the
dataset and ASR system configuration. We found that ASR
results degrade if these residual connections are not removed
during training.

3. EXPERIMENTAL SETUP

Three different ASR data sets are used for the experiments
reported in this paper. We are using the Wall Street Jour-
nal (WSJ) corpus of read English newspapers [22], the Lib-

Table 1. Experimental hyperparameters.

WSJ model parameters

# trainable encoder parameters 18M

Size of projection layer 320

# decoder LSTM cells / layers 300/ 1

triggered attention look-ahead e 2
HKUST model parameters

# trainable encoder parameters 80M

Size of projection layer 1024

# decoder LSTM cells / layers 1024 /2
triggered attention look-ahead ¢ 4

LibriSpeech model parameters

# trainable encoder parameters 115M
Size of projection layer 1024

# decoder LSTM cells / layers 1024 /2
triggered attention look-ahead ¢ 8

Common training parameters
Optimization AdaDelta
Adadelta p 0.95

Adadelta ¢ / € decaying factor 10=8/1072
Maximum # epochs 15 (WSJ, HKUST)

10 (LibriSpeech)
A 0.2 (WS))

0.5 (HKUST, LibriSpeech)

Joint decoding parameters
LM weight o / CTC weight A 1.0/0.3 (WSJ))
0.3/0.6 (HKUST)
0.5 /0.5 (LibriSpeech)
200/50/22/12 (WSJ)
200/30/10/4 (HKUST)
200/50/ 10/ 4 (LibriSpeech)

CTC prefix search parameters

Pruning parameter K / P/ 601 / 0

LM weight g 1.6 (WSJ))
0.6 (HKUST, LibriSpeech)
Insertion bonus weight 3 1.5

riSpeech corpus of read English audio books [23], which is
based on the open-source project LibriVox, and the Mandarin
telephone speech corpus of the Hong Kong University of Sci-
ence and Technology (HKUST) [24]. The WSIJ corpus has
approximately 80 hours of training data, 1.1 hours of devel-
opment data, and 0.7 hours of test data. The LibriSpeech
corpus is divided into 960 hours of training data, 10.7 hours
of development data, and 10.5 hours of test data, whereby
the development and test data sets are both further split into
“clean” and “other” conditions based on the speech quality,
which was assessed using an ASR system [23]. The HKUST
corpus comprises approximately 174 hours of training data as
well as 4.8 hours of development test data and 4.9 hours of
evaluation test data.

Specific model, training, and decoding parameters are sum-
marized in Table 1. The number of trainable encoder param-
eters is similar for the BLSTM and PTDLSTM neural net-
work architectures shown in the results section. The number
of output targets of the WSJ and HKUST-based end-to-end
ASR systems amount to 50 (number of English characters in



Table 2. Word error rates [%] for the WSJ and HKUST
tasks using different decoding algorithms and encoder se-
tups trained with and without residual pre-training. TA de-
notes triggered attention. The PTDLSTM encoder combined
with CTC prefix beam search or CTC-TA decoding, results of
which are highlighted in green color, represent fully stream-
ing end-to-end ASR systems, while other system configura-
tions are not.

CTC-attention | CTC prefix search |CTC-TA (proposed)

WSJ [HKUST | WSJ [HKUST | WSJ | HKUST
Encoder  |dev test|dev test |dev test| dev test |dev test|dev test
BLSTM |79 4.7|29.9 28.9]/ 9.8 6.9|31.0 30.0({8.7 5.9{30.3 29.3
+pre-train 7.8 5.1]29.7 28.7|10.8 6.7(31.0 29.8|8.8 5.9/30.2 29.2
PTDLSTM|8.0 5.4|31.4 30.1 11.5 7.6|33.0 31.5(9.1 6.4|31.5 30.1
+pre-train [8.4 4.9(31.4 299 114 7.7|32.8 31.3|9.0 6.5|31.4 30.1

Table 3. Word error rates [%] of different encoder architec-
tures and decoding methods for the LibriSpeech recognition
task.

CTC-attention | CTC prefix search | CTC-TA (proposed)

clean other clean other clean other
Encoder |dev test dev test|dev test dev test |dev test dev test
BLSTM 47 49 14.1 152153 55 152 16.3(49 5.0 143 15.6
+pre-train |4.6 4.7 14.1 15.1|5.1 5.2 153 16.214.8 5.0 14.2 152
PTDLSTM|5.6 5.7 162 16.9/6.4 6.4 17.5 18.5/6.0 6.0 164 174
+pre-train | 5.6 5.7 159 16.7|/6.3 6.5 17.3 18.2/5.7 5.9 16.1 16.8

WSJ) and 3653 (number of Mandarin characters in HKUST),
respectively. The LibriSpeech ASR system uses 5000 word
pieces as output targets [19]. In this work, an RNN-based
language model is applied via shallow fusion. A word-based
RNN-LM of 65k words is applied for the WSJ experiments
[25], a character-based RNN-LM for the HKUST data set,
and a word piece-based RNN-LM for the LibriSpeech ASR
task [26]. The location-aware attention mechanism is ap-
plied for the full-sequence based CTC-attention ASR system
[5, 11, 27], whereas additive attention is used by the CTC-
triggered attention model.

4. RESULTS

ASR results of various end-to-end ASR systems for the WSJ,
HKUST, and LibriSpeech recognition tasks are shown in
Tables 2 and 3. Word error rates (WERSs) of three differ-
ent decoding algorithms are compared: the “offline” full-
sequence based CTC-attention decoding method of [5], the
CTC prefix beam search decoding algorithm of [18], and the
CTC-triggered attention decoding algorithm of Section 2.3.
In addition, results of the PTDLSTM encoder architecture
are compared to a five layer BLSTM of similar size with and
without using the residual pre-training method as described in
Section 2.4. For the WS task, which is the smallest data set of
our ASR experiments, the CTC prefix beam search decoding
WERs of the dev and test data as well as of all four encoder
configurations are on average 2.5% worse compared to the

CTC-attention decoding results. WSIJ results of the CTC-
triggered attention decoder are on average 1.5% better than
WERs obtained by CTC prefix beam search decoding and
about 1% worse compared to full-sequence CTC-attention
decoding, which may be explained by the fact that CTC-
triggered attention decoding relies on the CTC prefix beam
search algorithm, which did not perform well for WSJ. How-
ever, the results of HKUST and LibriSpeech demonstrate that
our proposed CTC-triggered attention decoding algorithm
is competitive to full-sequence based CTC-attention decod-
ing, if the CTC model is trained more robustly as well. For
the HKUST benchmark and the PTDLSTM encoder setup,
CTC-attention and CTC-triggered attention decoding results
are virtually the same, whereas CTC prefix beam search
decoding WERs are about 1.4% worse compared to the CTC-
triggered attention decoding results. For the LibriSpeech
ASR task, the streaming CTC-triggered attention decoding
results of the PTDLSTM encoder architecture with residual
pre-training are on average only 0.15% worse compared to
the full-sequence based CTC-attention decoding results and
on average 0.95% better than the CTC prefix beam search
decoding results.

The results shown in Tables 2 and 3 demonstrate that, on av-
erage, residual pre-training helped to improve WERs of our
end-to-end ASR models for the HKUST and LibriSpeech ex-
periments but not for the WSJ ASR task.

5. CONCLUSIONS

In this paper, we presented an end-to-end ASR system for
streaming recognition based on joint CTC-attention models.
A new frame-synchronous one-pass decoding algorithm for
joint scoring of CTC and attention models is proposed, which
relies on a CTC prefix beam search algorithm coupled with
the triggered attention concept. The encoder neural network
of our streaming ASR system is based on the unidirectional
parallel time-delay LSTM (PTDLSTM) architecture. We in-
vestigated residual pre-training to further improve robustness
of our end-to-end ASR models, which is based on equipping
the encoder neural network with residual connections that
are gradually and permanently removed during the training
process. For the LibriSpeech and HKUST ASR tasks, our
proposed CTC-triggered attention decoding algorithm per-
forms almost equally well compared to the full-sequence
based CTC-attention decoding algorithm, while the algorith-
mic delay is limited to 490 ms and 370 ms, respectively. This
delay stems from the encoder (250 ms) and the look-ahead
parameter of the decoder setup (8 encoder frames of 30 ms
frame rate for LibriSpeech and 4 for HKUST). WSJ-based
ASR results indicated that CTC-triggered attention decod-
ing is more dependent on a well-trained CTC model than
full-sequence based CTC-attention decoding. However, for
all tested ASR tasks, our CTC-triggered attention decoding
algorithm demonstrated significant improvements compared
to CTC prefix beam search decoding alone.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

6. REFERENCES

A. Graves and N. Jaitly, “Towards end-to-end speech
recognition with recurrent neural networks,” in Proc. In-
ternational Conference on Machine Learning (ICML),
Jun. 2014.

Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw,
R. Alvarez, D. Zhao, D. Rybach, A. Kannan,
Y. Wu, R. Pang, Q. Liang, D. Bhatia, Y. Shangguan,
B. Li, G. Pundak, K. C. Sim, T. Bagby, S. Chang,
K. Rao, and A. Gruenstein, “Streaming end-to-end
speech recognition for mobile devices,” in Proc. IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), May 2019.

A. Graves, S. Fernandez, F. J. Gomez, and J. Schmid-
huber, “Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural net-

works,” in Proc. International Conference on Machine
Learning (ICML), vol. 148, Jun. 2006.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
arXiv preprint arXiv:abs/1409.0473, 2014.

S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and
T. Hayashi, “Hybrid CTC/Attention architecture for
end-to-end speech recognition,” J. Sel. Topics Signal
Processing, vol. 11, no. 8, 2017.

A. Graves, “Sequence transduction with recurrent neural
networks,” arXiv preprint arXiv:abs/1211.3711, 2012.

R. Collobert, C. Puhrsch, and G. Synnaeve, “Wav2letter:
an end-to-end convnet-based speech recognition sys-
tem,” arXiv preprint arXiv:abs/1609.03193, 2016.

C. Chiu and C. Raffel, “Monotonic chunkwise atten-
tion,” in Proc. International Conference on Learning
Representations (ICLR), Apr. 2018.

N. Jaitly, Q. V. Le, O. Vinyals, I. Sutskever, D. Sussillo,
and S. Bengio, “An online sequence-to-sequence model
using partial conditioning,” in Proc. NIPS, Dec. 2016.

S. Zhang, E. Loweimi, P. Bell, and S. Renals, “Win-
dowed attention mechanisms for speech recognition,”
in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), May 2019.

N. Moritz, T. Hori, and J. Le Roux, “Triggered attention
for end-to-end speech recognition,” in Proc. IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), May 2019.

A. Mohamed, F. Seide, D. Yu, J. Droppo, A. Stoicke,
G. Zweig, and G. Penn, “Deep bi-directional recurrent

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

networks over spectral windows,” in IEEE Workshop

on Automatic Speech Recognition and Understanding
(ASRU), Dec. 2015.

K. Chen and Q. Huo, “Training deep bidirectional
LSTM acoustic model for LVCSR by a context-
sensitive-chunk BPTT approach,” IEEE/ACM Trans.
Audio, Speech & Language Processing, vol. 24, no. 7,
2016.

Y. Zhang, G. Chen, D. Yu, K. Yao, S. Khudanpur, and
J. R. Glass, “Highway long short-term memory RNNS
for distant speech recognition,” in Proc. IEEE Interna-

tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Mar. 2016.

A. Zeyer, R. Schliiter, and H. Ney, “Towards online-
recognition with deep bidirectional LSTM acoustic
models,” in Proc. ISCA Interspeech, Sep. 2016.

N. Moritz, T. Hori, and J. Le Roux, “Unidirectional
neural network architectures for end-to-end automatic
speech recognition,” in Proc. ISCA Interspeech, Sep.
2019.

V. Peddinti, Y. Wang, D. Povey, and S. Khudanpur,
“Low latency acoustic modeling using temporal convo-
lution and Istms,” IEEE Signal Process. Lett., vol. 25,
no. 3, 2018.

A. L. Maas, A. Y. Hannun, D. Jurafsky, and A. Y. Ng,
“First-pass large vocabulary continuous speech recogni-
tion using bi-directional recurrent dnns,” arXiv preprint
arXiv:1408.2873, 2014.

T. Kudo and J. Richardson, “SentencePiece: A sim-
ple and language independent subword tokenizer and
detokenizer for neural text processing,” arXiv preprint
arXiv:abs/1808.06226, 2018.

A. L. Maas, P. Qi, Z. Xie, A. Y. Hannun, C. T.
Lengerich, D. Jurafsky, and A. Y. Ng, “Building DNN
acoustic models for large vocabulary speech recogni-
tion,” Computer Speech & Language, vol. 41, 2017.

A. Zeyer, A. Merboldt, R. Schliiter, and H. Ney, “A
comprehensive analysis on attention models,” in Inter-
pretability and Robustness in Audio, Speech, and Lan-
guage (IRASL) Workshop, NeurIPS, Dec. 2018.

“CSR-II  (WSJ1) complete,” vol. LDC94S13A.
Philadelphia: Linguistic Data Consortium, 1994.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur,
“Librispeech: An ASR corpus based on public domain
audio books,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
Apr. 2015.



[24] Y. Liu, P. Fung, Y. Yang, C. Cieri, S. Huang, and
D. Graff, “HKUST/MTS: A very large scale Mandarin
telephone speech corpus,” in Proc. ISCSLP, vol. 4274,
2006.

[25] T. Hori, J. Cho, and S. Watanabe, “End-to-end speech
recognition with word-based RNN language models,”
in 2018 IEEE Spoken Language Technology Workshop
(SLT), Dec. 2018.

[26]

(27]

T. Hori, S. Watanabe, Y. Zhang, and W. Chan, “Ad-
vances in joint CTC-attention based end-to-end speech
recognition with a deep CNN encoder and RNN-LM,”
in Proc. ISCA INTERSPEECH, Aug. 2017.

M. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,”
arXiv preprint arXiv:abs/1508.04025, 2015.



