
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 1, 2007 203

Discriminative Training for Large-Vocabulary Speech
Recognition Using Minimum Classification Error

Erik McDermott, Member, IEEE, Timothy J. Hazen, Member, IEEE, Jonathan Le Roux,
Atsushi Nakamura, Member, IEEE, and Shigeru Katagiri, Fellow, IEEE

Abstract—The minimum classification error (MCE) framework
for discriminative training is a simple and general formalism for
directly optimizing recognition accuracy in pattern recognition
problems. The framework applies directly to the optimization
of hidden Markov models (HMMs) used for speech recognition
problems. However, few if any studies have reported results for
the application of MCE training to large-vocabulary, contin-
uous-speech recognition tasks. This article reports significant
gains in recognition performance and model compactness as a
result of discriminative training based on MCE training applied to
HMMs, in the context of three challenging large-vocabulary (up to
100 k word) speech recognition tasks: the Corpus of Spontaneous
Japanese lecture speech transcription task, a telephone-based
name recognition task, and the MIT JUPITER telephone-based
conversational weather information task. On these tasks, starting
from maximum likelihood (ML) baselines, MCE training yielded
relative reductions in word error ranging from 7% to 20%.
Furthermore, this paper evaluates the use of different methods for
optimizing the MCE criterion function, as well as the use of pre-
computed recognition lattices to speed up training. An overview
of the MCE framework is given, with an emphasis on practical
implementation issues.

Index Terms—Discriminative training, pattern recognition,
speech recognition.

I. INTRODUCTION

MANY techniques exist for improving recognizer perfor-
mance in the face of difficult conditions present in ap-

plications of speech recognition technology, including better
feature extraction, pronunciation modeling, acoustic modeling,
noise handling, and language modeling [1], [2].

Discriminative training has been used for speech recognition
for many years already [3]–[10]. In recent years, the few groups
that have had the resources to implement discriminative training
for large scale speech recognition tasks have primarily used
the maximum mutual information (MMI) framework [11]–[13].
Expanding studies first presented in [14]–[16], we here focus in-
stead on the minimum classification error (MCE) framework for
discriminative training [7], [17]–[20]. MCE is directly geared at

Manuscript received November 8, 2004; revised December 6, 2005. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Li Deng.

E. McDermott, A. Nakamura, and S. Katagiri are with the NTT Commu-
nication Science Laboratories, Kyoto 619-02, Japan (e-mail: mcd@cslab.kecl.
ntt.co.jp).

T. J. Hazen is with the Computer Science and Artificial Intelligence Labora-
tory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.

J. Le Roux is with the Graduate School of Computer Science, Telecommuni-
cations, and Electronics, University of Paris VI, Paris 75005, France, and also
with the Graduate School of Computer Science and Technology, Department of
Information, Physics, and Computing, University of Tokyo, Tokyo 113–0033,
Japan.

Digital Object Identifier 10.1109/TASL.2006.876778

minimizing word string recognition error, in contrast with MMI,
which is targeted at optimizing mutual information between an
utterance and the correct string.

The study described in this article generalizes the MCE dis-
criminant function so as to model sets of word strings rather than
single strings. Weighted finite state transducers (WFSTs) [21]
are used to implement this approach. Furthermore, heavy use is
made of batch-oriented optimization methods that are suitable
to parallelization over many computers [22], [23]—a crucial
point given the computation-intensive nature of discriminative
training. However, in its essentials, the framework is the same
as that adopted in, e.g., [19]. The central point of this article
is that this framework is fully capable of yielding significant
improvements in recognition accuracy for difficult, large-scale
recognition tasks. There are important implementational issues,
but these are no more problematic than for the MMI framework.
The strong gains in performance described here should lay to
rest concerns that MCE could only be used for small-vocabu-
lary or noise-free tasks.

Among many studies, MCE has been evaluated on isolated
words, Resource Management, TIMIT, TI digits and SieTill data
sets [22], [24]–[27], all rather small or limited by today’s stan-
dards. The preliminary study presented in [28] evaluated a novel
MCE-derived training method on the DARPA Communicator
travel reservation task with a training set of 46 h and a recog-
nition vocabulary of 2600 words. In contrast, the recognition
tasks examined here have training sets ranging from 39 to 230 h
of audio, and vocabularies ranging from 2 k to 100 k words. The
tasks examined are: 1) the large-vocabulary Corpus of Sponta-
neous Japanese (CSJ) lecture speech transcription task [29] that
is well known in Japan; 2) a telephone-based name recognition
task; and 3) the MIT JUPITER weather information continuous
speech recognition task. The TIMIT phone classification task
[30] is also used for more detailed comparison of optimization
methods than is possible on the larger tasks.

The primary evaluation presented in this article, for each task,
is the standard comparison of MCE-trained models (of different
size) versus maximum likelihood (ML) baselines. The improved
recognition accuracy that results from discriminative training
follows the classic MCE versus ML picture [22], but for much
more challenging tasks than used in most MCE studies to date.
This article also addresses several important issues.

1) Comparison of Optimization Methods: We describe
and evaluate different gradient-based optimization methods
for minimizing the MCE criterion function. In particular, the
performance of straightforward gradient descent is compared
against methods known as “Quickprop” and “Rprop.” Quick-
prop uses information about the second derivative, while Rprop

1558-7916/$20.00 © 2006 IEEE

204 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 1, 2007

performs dynamic scaling of the update step for each parameter.
Even in the context of discriminative training, these methods
are not as widespread in the speech recognition community as
Baum–Welch-style optimization. This article aims to clarify
their use and effectiveness on several tasks.

2) Use of Lattices During MCE Training: We evaluate the
use during MCE training of result lattices generated from a pre-
vious recognition pass using the full recognition grammar. The
lattices correspond to a set of likely candidates for each utter-
ance, for a given initial acoustic model. They can then be loaded
in for each utterance during MCE training and used instead of
the full recognition grammar, resulting in a substantial speed
up. This has been used with the MMI framework for years now
[11], [12], [31]. Results for lattice-based MCE training have not
yet been reported—though discussion of this can be found in
[27]. (For related work, see also [32]). The results presented here
show that this method is effective for MCE as well. The task
used for this evaluation is a 22 k word telephone-based name
recognition task.

3) Strict versus Flexible References (Use of String Sets to De-
fine Correct and Incorrect Recognition): This article explicitly
formalizes the notion that the desired correct output for a given
utterance is not just a single string of words, but a set of strings,
all deemed to be correct. The MCE discriminant functions are
easily generalized to reflect a set-oriented definition. This ap-
proach is evaluated in the context of MCE training on the tele-
phone-based name recognition task, where “flexible” references
reflecting the possible insertion of different types of hesitations
and sentence completions were compared against the more stan-
dard “strict” references, which adhere to the precise contents
of the utterance transcription. This use of sets of strings is one
way of telling the discriminative training procedure about “don’t
care” symbols in the utterance transcription. In our implemen-
tation, WFSTs are used to model sets of strings in a flexible
manner that is well suited to discriminative training.

4) Importance of “Rival” Training Over “Corrective”
Training: The experiments described here for the MIT JUPITER

telephone-based continuous-speech recognition task include
a comparison related to a simple but fundamental point at
the heart of effective discriminative training. Two different
types of MCE loss function were compared that result in,
respectively, “rival training” and “corrective training.” The
former endeavors, directly or indirectly, to increase separation
between correct and top incorrect strings; the latter only does
so for incorrectly recognized utterances. Note that corrective
training occurs with MMI if only the top recognition candidate
is used as the denominator lattice, or if no measures (such as
“acoustic scaling”) are taken to prevent the correct string from
dominating the denominator -best list or lattice [27]. In the
experiments described here, a clear benefit for rival training
was found. One can view this comparison as one between MCE
and a coarse implementation of MMI (i.e., that only used a
small -best list and/or no acoustic scaling).

II. OVERVIEW OF THE MCE FRAMEWORK

MCE first arose out of a broader family of approaches to pat-
tern classifier design known as generalized probabilistic descent

(GPD) [7], [17], [20]. The MCE loss function, defined in terms
of discriminant functions for each category (in the following,
the categories are strings or string sets), is a smoothed approx-
imation of the recognition error rate. It can then be used as the
criterion function for optimization [18], [22]. Recent theoret-
ical work has analyzed the link between the smooth MCE loss
function and the true classification risk [33], [34]. Through min-
imization of this criterion function, MCE is aimed directly at
minimizing classification error rather than at learning the true
data probability distributions, the target of ML estimation via
Baum–Welch or Viterbi training. An important point is that the
smoothing parameters in the MCE formalism operate not just to
enable gradient-based optimization, but also to estimate perfor-
mance on unseen data [33].

Though the focus of this paper is the application of MCE
to the design of acoustic models for speech recognition, many
other applications exist. Still within speech recognition, there
has been significant work applying MCE to feature extraction
[35], [36]. See [37] for related discussion. MCE has also been
applied to handwriting recognition [38], image processing [39],
document classification [40], and machine translation [41].

A. Contrast With Related Methods

For alternative approaches to discriminative training in the
context of speech recognition, the reader is referred to [4]–[6],
[8], [9], and in particular to the maximum mutual information
(MMI) method [3], [11], [42], which derives from information
theory rather than decision theory.

A precise theoretical characterization of the asymptotic prop-
erties of rival approaches to discriminative training is beyond the
scope of this article, but some loose observations can be made.
The inability of ML estimation, under incorrect modeling as-
sumptions, to find a separating solution even when it exists has
been illustrated for very simple classification scenarios [22]. It
has been shown that in some cases (again, where the modeling
assumptions are incorrect) MMI can outperform ML [3]. How-
ever, cases have also been found showing that the parameter set
optimizing MMI does not correspond to the optimal classifier
[43]. In contrast, by definition, MCE approximates classification
performance regardless of the modeling assumptions. Via con-
trol of the smoothing parameters, the approximation of classifi-
cation performance can be made arbitrarily precise. Therefore,
the parameter set optimizing the MCE criterion can in principle
correspond to optimal classification performance.

The recently proposed minimum phone error (MPE) ap-
proach [45], [46] shares features with both MCE and MMI.
MPE too has a smoothing parameter which can make the cri-
terion correspond strictly to classification accuracy, but using
a different formulation than MCE. MPE has the advantage of
explicitly modeling phone or word accuracy, whereas MCE
typically only models string accuracy.1 In practice, it may
be more accurate to view MPE as a model-based estimate of
recognition accuracy: model-based posterior probabilities are
explicitly used to weight phoneme or word accuracy. In this
sense it may be more limited by modeling assumptions than
MCE, which does not require accurate posterior probabilities

1Proposals for incorporating word accuracy into the MCE framework can be
found in [22].

MCDERMOTT et al.: DISCRIMINATIVE TRAINING FOR LARGE-VOCABULARY SPEECH RECOGNITION USING MCE 205

to estimate recognition error. However, the analysis of the links
between MCE and MPE is still in its early stages.

B. HMM-Based String-Level Discriminant Function

The string-level MCE formalism [19] defines discriminant
functions for string categories. These are taken to refer to spe-
cific sequences of phones or words corresponding to the tran-
scription of a speech utterance. Representing a speech utter-
ance belonging to string as a sequence of feature vectors

, the functional form of the joint
log-probability of , and the best Viterbi state segmentation

are used to define the HMM dis-
criminant function for [19]

(1)

Here, denotes a state transition probability and denotes
a Gaussian mixture used to model the observation probability
of a feature vector in state . denotes the entire set of system
parameters; here it consists of the transition probabilities and
the means, covariances and mixing weights used to define .

denotes the prior probability of string , modeled using
a language model that is left open for now.

C. Weighted Finite-State Transducer (WFST)-Based
Generalization of MCE Discriminant Function to String Sets

In this paper, the definition of MCE discriminant functions is
generalized from strings to string sets. The main benefit of using
string sets rather than just strings is that they offer a model of
transcription uncertainty. Such uncertainty arises in many prac-
tical situations, for example, where the presence or absence of
a word (e.g., interword silence) is in doubt, or where a word
has several possible phonetic realizations. Including all possible
variations into a string set model of the utterance is one way
to represent this uncertainty. The task of finding the best real-
ization for a given acoustic input is then given to the decoding
process.

In the context of discriminative training, string sets can
also be designed to model “don’t care” variations around
target words. This idea is evaluated in one of the experiments
described in this article.

A natural choice for representing and using such string sets is
to use WFSTs [21]. Informally, a WFST represents a mapping
from input to output symbol sequences. It consists of a set of
nodes connected by arcs; each arc is associated with input and
output symbols, and possibly scores that are accumulated as the
WFST is traversed from start to end nodes. In the context of
speech recognition, the input symbols are typically HMM-based
phone models (or HMM states themselves), the output symbols
are typically words, and the output scores are typically log prob-
abilities derived from a language model. The reader is referred
to [21] for detailed discussion of WFSTs and their application to
speech recognition. Time-synchronous beam search [46] can be

Fig. 1. MCE training using weighted finite-state transducers.

used to find the best path through a WFST for a given acoustic
input, generating the acoustic and language model scores, as
well as the state segmentation information, necessary for the
discriminant function. The use of WFSTs in the overall training
scheme is illustrated in Fig. 1. The following sections detail this
approach.

D. Discriminant Function for Correct String Set

In the following, each training utterance is taken to belong
to a string set, , represented using a reference WFST modeling
the utterance content. The MCE discriminant function (1) for
the correct string is then replaced by a discriminant function
for the correct string set

(2)

with the search for the best string within being performed
by the WFST decoder.

Effectively, each reference WFST is a miniature recognition
grammar, complete with language model scores and word pro-
nunciations, modeling the possible set of strings taken to be cor-
rect for the corresponding utterance. An example of a reference
WFST is shown in abbreviated form in Fig. 2.

E. Discriminant Function for Incorrect String Set

As long as the same cost of 1 is assigned to recognizing
strings not in the correct set, there is no need to distinguish in-
correct strings from each other. They can all be lumped into a
single incorrect string set . This set is simply the complement
of the correct string set , within the overall set allowed by
the grammar for the given task, i.e., . The corre-
sponding discriminant function can be defined as

(3)

which can be seen as the limiting case of a more general expres-
sion

(4)

206 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 1, 2007

Fig. 2. Reference WFST modeling the name “Suzuki Naomi” as well as pos-
sible hesitations (“ee,” “aa,” “ano,” and “eeto”), silence insertion, and utterance
completions (“toiimasu” and “desu”). Arc symbols to the left of the colon are
input symbols, those to the right are output symbols; language model scores, if
any, are shown after a ‘/’; “eps” refers to epsilon, the null symbol. Symbols in
brackets refer to the phonetic realization of a given word.

where denotes the total number of strings permitted by the
recognition grammar and the total number of incorrect
strings.2 Here the parameter controls the extent to which
the top incorrect strings dominate the bracketed part of the
expression. Small values of can be used to “unweight” the
top incorrect strings (in a manner similar to “acoustic scaling”
used in MMI studies [11]), which may help generalization.
Note that a similar “soft-max” definition could be used instead
of (2) for the correct string. In practice, depending on the value
of , an “ -best” approximation of (4) can be used. A more
sophisticated approximation is to use lattices [27], [47].

As for the correct string set, the incorrect string set can be
represented by a WFST, or more practically, by the WFST rep-
resenting the overall task grammar followed by a filtering step
after decoding.

F. Misclassification Measure and Loss Function

The MCE misclassification measure compares the discrimi-
nant function value for the correct string set with that for the
incorrect string set

(5)

This can be based on either (4) or (3), which only requires the
top incorrect string set. Note that the sign of the misclassifica-
tion measure reflects the correctness or incorrectness of the clas-
sification decision for training token . The correspondence is
exact when using (3).

G. MCE Loss Function

A typical choice of MCE loss function is the sigmoid

(6)

2As jJ j disappears when taking the derivative of (4) with respect to���, it does
not have to be calculated.

where the abbreviation is used for clarity.
Clearly, when the misclassification measure is positive, the loss
function will be close to 1; when it is negative, it will be close to
0. This behavior depends on the steepness of the loss function,
here controlled by the positive scalar .

Another choice is the “chopped” sigmoid

otherwise.
(7)

Here, (a scalar) acts as a margin, beyond which a correctly
recognized token incurs no loss. For some tasks, this has been
found to make the optimization process easier. However, use of
this loss function introduces another parameter to tune, .

Other choices for the loss function are possible, including
piecewise linear functions [24], [33]. Regardless of the loss
function used, the steepness parameter(s) must be chosen
for each task. In particular, the range of the misclassification
measure (5) is highly task-dependent. Normalizing (5) by
the number of frames in each utterance can help the tuning
process. Simple heuristics can be used to automate the choice
of steepness parameters. For instance, one can choose such
that , where is the standard deviation of on
the training set. For (7), one can set .

A convenient choice that does not require tuning steepness
parameters is the simple linear loss function, . This
was used in some of the experiments described in the following.
For this choice, of course, the 0–1 approximation of classifica-
tion performance is lost. Discriminative training based on such
a loss function is then directed at increasing overall separation
between correct and top incorrect categories. In the context of
the JUPITER experiments, a comparison between the linear loss
and the sigmoid loss is presented.

Appendix A details the gradient of the MCE loss function
with respect to the modifiable system parameters, typically the
Gaussian means, covariances, and mixing weights.

III. OPTIMIZATION METHODS

Given the loss gradient (see Appendix A) the empirical MCE
loss (i.e., the loss function summed over the training set) can
be minimized using several different approaches to optimiza-
tion [17], [22], [48]–[50]. In this section several gradient-based
optimization methods are described.

A. Online and Batch Probabilistic Descent

Probabilistic descent (PD) [51] is a very simple and remark-
ably effective online optimization method. It consists in com-
puting the gradient of the loss function for each training token

and updating parameters in the opposite direction, by a pro-
portion determined by a learning rate that decreases as the
token presentation index increases

(8)

MCDERMOTT et al.: DISCRIMINATIVE TRAINING FOR LARGE-VOCABULARY SPEECH RECOGNITION USING MCE 207

Here, denotes a generalized pattern token, that could be ei-
ther a single feature vector or a sequence of such feature vectors,
and denotes the set of model parameters at iteration .

The power of such online algorithms is that they exploit
redundancies in the data, allowing learning to proceed very
quickly [52]. However, online algorithms cannot be paral-
lelized using the straight-forward data-parallelism approach
that applies to batch algorithms, where different processors
can accumulate gradient information for the same model over
subsets of the training data before each model update. This
means that although PD converges quickly in terms of required
number of iterations, in practice it suffers compared to paral-
lelizable batch algorithms, which may require more iterations,
but for which each iteration proceeds much more quickly.
On the other hand, the purely batch version of PD typically
converges slowly.

One approach is to use a compromise between strictly batch
and strictly online modes, and update the model every tokens.
Parallelization then becomes possible. In the following, this ap-
proach is referred to as “semibatch.” One can also consider a
hybrid of semibatch and batch, i.e., an evolving update period
which starts small but grows eventually to include the entire
training set.

The proper setting of the initial learning rate is important.
A simple heuristic is to use the largest initial value that does not
lead to unstable learning. In the experiments described here,
decreases linearly from to 0 over the course of iterations.

B. Quickprop

Quickprop [53] is a simple batch-oriented second-order opti-
mization method loosely based on the classic Newton’s method.
Quickprop was first applied to MCE-based optimization in [22]
and [23]; for an application to MMI, see [54]. It can be run
in batch mode and is therefore suitable for parallelization over
multiple computers.

Quickprop can be seen as a rough approximation to Newton’s
method. The central idea in Newton’s method is to build a
quadratic approximation of the function of interest ,
using the first three terms of the Taylor series expansion of the
function, around the current point , for a given step , and then
to solve for the step that leads to a point where the gradient
of the model is zero, i.e., . The solution
is the Newton step

(9)

The optimization procedure is to update the parameter vector
at iteration according to . In general,

if the Hessian matrix is positive definite, and the initial value
of is sufficiently close to the optimum, Newton’s method
converges rapidly to a local minimum of the criterion function
[55]. However, there is usually no guarantee that the Hessian
is positive definite and properly conditioned. Furthermore, the
size of the Hessian—the square of the length of the parameter
vector—means that the true Hessian cannot be represented in
practice.

The latter problem is addressed in Quickprop by the use of a
diagonal approximation of the Hessian

(10)

where denotes the parameter vector at iteration , the
th component of and the th component of the up-

date step at iteration . Clearly, this is a rough approxima-
tion, which is strictly accurate only for a small update step, or a
quadratic . However, the point is not to estimate the Hes-
sian accurately so much as to obtain some information about the
Hessian and use it to move closer to the function optimum.

Quickprop addresses the positive definiteness of the approx-
imated Hessian in the following manner. The sign of the gra-
dient with respect to each parameter is examined for successive
iterations. If the sign is the same, the Hessian is considered in-
sufficiently positive, and the simple gradient, multiplied by a
learning rate is added to the Newton step when computing the
parameter update

(11)

If the sign is different, the Hessian is considered sufficiently
positive—a minimum is considered likely to exist between the
preceding and current parameter values—and the approximated
Hessian is used by itself in computing the update step [i.e., ac-
cording to (9)]. The method is therefore a compromise between
Newton’s method and simple gradient descent.

There are yet additional controls on the update step. If the
update step for a particular parameter is larger than a task-de-
pendent limit, or greater than times the previous update step,
it is scaled back to times the previous update step. Finally, if
the update step has the same sign as the current gradient (i.e., it
is pointing uphill), or if it is close to zero in magnitude, the step
reverts to that suggested by the simple gradient. A pseudocode
description of the core of the algorithm in our implementation
is shown in Fig. 3. The proper setting of is important, and will
be discussed in relation to some of the experiments described in
the following. In general, we have not found it difficult to find
effective values. In all the experiments, the task-dependent limit
was set at 10.0 and at 1.75.

Many variations around this scheme are possible. Further-
more, several related “modified Newton’s methods”3 exist that
address the size, positiveness, and proper estimation of the Hes-
sian, as well as the proper scaling of the update step, with much
more sophisticated techniques [55], [56]. However, Quickprop
is easy to implement and quite effective in practice, as the re-
sults in the following demonstrate.

C. Rprop

Rprop [57], which stands for “Resilient back-propagation,”
is a batch optimization algorithm well-known in the field of ar-
tificial neural networks. Its basic principle is to eliminate the
possibly harmful influence of the size of the partial derivative

3For example, BFGS methods.

208 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 1, 2007

Fig. 3. Inner loop of the Quickprop algorithm. First and second derivatives are
assumed to have been previously calculated. The algorithm balances parameter
updates suggested by an approximated (second-order) Newton’s method with
those suggested by simple (first-order) gradient descent.

on the update step. As a remedy, only the sign of the derivative
is used, determining the direction, but not the magnitude, of the
update for the th iteration

if

if

otherwise.

(12)

The magnitude of the update is different for each parameter
(though initialized uniformly at a user-determined), and
evolves according to a very simple adaptation rule

otherwise

(13)

where .
The motivation for the procedure is as follows. Each time

the derivative with respect to a parameter changes sign, it is re-
garded as an indication that the last update was too large and that
it jumped over a minimum. The update value is thus decreased
by a factor . If the sign of the derivative does not change, this
is interpreted as an indication that the parameter is in a shallow
region of the error surface, and the update value is increased in
order to speed up convergence. A common choice for the update
parameters is and .

It is possible for the standard version of the algorithm to
skip over local minima. We thus implemented two versions of
the Rprop algorithm. The first one (“Standard Rprop”) is the
original version described by (12) and (13). The second one is
a modified version of “Rprop with weight-backtracking” de-
scribed in [57]. It consists in not allowing update step adap-
tation in the iteration following an update step decrease. The
“weight-backtracking” version turned out to be the most effec-
tive, and is the one used in the experiments described in the fol-
lowing.

In addition to using Rprop in batch mode, we can also con-
sider semibatch versions, as well as hybrids of semibatch and
batch mentioned earlier (i.e., the use of an evolving update pe-
riod which starts small but grows eventually to include the entire
training set).

D. Extended Baum–Welch Algorithm

Recent work has used reestimation style optimization [58]
similar to that used for MMI to minimize the MCE criterion
function [27], [47]. In particular, [47] reports results for a
comparison between MCE, MPE, and MMI evaluated on the
Wall Street Journal task. This work also uses a lattice update
rather than the -best approach adopted in this article, empha-
sizing the point that the issue of whether to use the Extended
Baum–Welch algorithm, or a lattice update, is independent
from the choice of criterion function.

IV. TIMIT PHONE CLASSIFICATION

Though far from being a large-scale speech recognition task,
the TIMIT phone classification task [30] is a useful benchmark
for preliminary experiments. In particular, we used TIMIT to
examine the convergence of different MCE optimization algo-
rithms, and analyze the sensitivity of Quickprop to the learning
rate .

A. Database, Feature Extraction, and Baseline HMM

The standard TIMIT training set (3696 utterances) and “core”
test set (192 utterances) were used. The feature vectors used
consist of 39 Mel Frequency Cepstral Coefficients (MFCCs),
deltas, and delta–deltas using a 25-ms window and a 10-ms shift
rate. Though 48 phones are modeled, the common procedure of
mapping these to 39 phones during testing was followed [59].
Each phone was modeled using a three-state HMM with eight
Gaussians per state.

B. Comparison of Optimization Methods

The optimization methods described in Section III were used
to minimize a phone-level MCE loss function (7), defined for
labeled speech segments. After some tuning of learning rate pa-
rameters, each optimization method was run for 44 iterations,
where one iteration corresponds to a full presentation of the
training set. This is considerably more iterations than is neces-
sary for TIMIT, but helps clarify the convergence of the respec-
tive algorithms. All versions of PD—that is, online, semibatch,
and batch—were run with a learning rate that decreased linearly
to zero over the course of the 44 iterations. The initial value of
the learning rate was tuned independently for all optimization
methods. Semibatch PD was run with a model update period of

MCDERMOTT et al.: DISCRIMINATIVE TRAINING FOR LARGE-VOCABULARY SPEECH RECOGNITION USING MCE 209

Fig. 4. Course of training for different optimization methods: evolution of
phone classification performance measured on TIMIT training set (top) and
TIMIT core test set (bottom).

TABLE I
PHONE CLASSIFICATION ERROR RATES ON THE TIMIT CORE TEST

SET FOR DIFFERENT OPTIMIZATION METHODS

15 utterances. As described in Section III, Rprop dynamically
adjusts its step size for each parameter, given a starting learning
rate, while Quickprop uses a fixed learning rate.4

Fig. 4 shows training and test set phone classification error
rates after each iteration for each method. Error rates for iter-
ation 0 correspond to the maximum likelihood/viterbi training
baseline. Note that plotting the MCE loss function itself, rather
than phone classification error, would yield very similar graphs,
since for this experiment the 0–1 MCE loss function used was
defined at the phone segment level. The best test set classifica-
tion error rates for each method over all iterations are shown in
Table I (“ML”: maximum likelihood baseline; “SB-PD”: semi-
batch PD; “B-PD”: batch PD). These results correspond to the
best we could do if we were to use a development set to select the
model to use on the core test set. The best result obtained, 22.0%
classification error for Quickprop, is a significant improvement
over the maximum likelihood baseline model’s performance on
the core test set, 29.2%, corresponding to a relative error rate
reduction of 25% for this model size.

C. Investigation of Sensitivity to Learning Rate

An additional set of experiments on TIMIT examined the ef-
fect of running Quickprop with different learning rates. Quick-
prop was run for 44 iterations for a range of learning rates, from
20.0 to 0.0025. Fig. 5 illustrates the results on both training and
testing sets for the range 2.5 to 0.025. With , perfor-
mance degrades at first but eventually recovers. With ,
learning is slow, but eventually attains performance similar to

4Experiments giving Quickprop a decreasing learning rate did not suggest
any benefit to this.

Fig. 5. Course of training for Quickprop run with different values of the
learning rate, �: evolution of phone classification performance measured on
TIMIT training set (top) and TIMIT core test set (bottom).

that for the other choices of . Setting led to performance
degradation with no subsequent recovery, while led to
overly slow and increasingly unstable learning. The latter obser-
vation is consistent with the discussion in Section III-B: a small

means the algorithm will rely more on the estimated Hessian,
which can be dangerous.

Though not detailed here, the other optimization methods
are similar to Quickprop in their behavior with respect to the
learning rate: a learning rate that is too small typically leads to
very slow and ineffective learning, a learning rate that is too
large leads to instability. However, it is not hard to find a range
of effective values.

D. Summary and Discussion

Several optimization methods were applied to HMM design
using the MCE criterion function on the TIMIT phone classi-
fication task. The main result is that the MCE criterion func-
tion can be optimized quite effectively using several different
methods. Furthermore, these methods are not particularly sen-
sitive to the choice of learning rate. This was examined in detail
for the Quickprop method, where a broad range of learning rates
yielded reasonable convergence.

Examining the evolution of performance on the training set,
we see that online and semibatch PD converge much more
rapidly than batch PD. The differences between the other
methods are small. Performance differences on the test set
are also small, with the exception of semibatch PD, which
does not perform as well as the other methods. In light of the
effectiveness of semibatch PD on the training set, this may be
an instance of over-training.

A slight edge in test set performance was observed for Quick-
prop. The classification error rate of 22.0% obtained for Quick-
prop is the best result known to us for a standard HMM on this
well-known task [23], [60]–[62]. Note, however, that this re-
sult was selected with direct reference to the test set; strictly

210 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 1, 2007

speaking, it should be described as an upper-bound on perfor-
mance in the scenarios investigated. Only one model size was
investigated; better performance may result from MCE training
applied to smaller or larger models. However, the point of these
experiments was not to get the best possible performance on
TIMIT, but rather to investigate the performance of the different
optimization methods.

V. CORPUS OF SPONTANEOUS JAPANESE

LECTURE TRANSCRIPTION

The Corpus of Spontaneous Japanese (CSJ) lecture speech
transcription task has recently been used as a standard bench-
mark by several groups in Japan [29]. The data consists of audio
and corresponding text data collected from lectures at science
and engineering conferences in Japan. The speaking style ob-
served in the lectures ranges from a formal reading style to ca-
sual and spontaneous styles of speech. The test set and test ref-
erence transcriptions are standard for this task. Here, we report
recognition results using two trigram language models (with
back-off bigram and unigram models), using vocabularies of
30 k and 100 k words, respectively.

The primary aim of the experiments described here was to
evaluate the effectiveness of MCE training in improving the per-
formance of baseline ML models in the context of a large vocab-
ulary continuous speech recognition task. The first set of exper-
iments used a single baseline ML model to compare different
optimization methods when applied to minimizing the MCE
loss function, along the lines of the comparison presented in the
previous section for the TIMIT phone classification task. The
second set of experiments evaluated the use of several different
baseline model sizes and topologies, with just one optimization
method, Quickprop.

A. Target Language Models

The first trigram language model WFST used in our CSJ
recognition tests is based on a vocabulary of 30 000 words, uses
Witten–Bell back-off smoothing, and has a perplexity of 70.6.
The out-of-vocabulary rate for the test set given this language
model is 2.28%. The second trigram language model is based
on a vocabulary of 100 000 words, uses Kneser–Ney back-off
smoothing, and has a perplexity of 75.3. This language model
leads to a test set out-of-vocabulary rate of 1.36%.

B. Database

1) Training Set: The CSJ set (male and female), con-
sisting of about 186 k utterances was used for MCE training.
This amounts to approximately 230 h of audio, corresponding
to 953 lectures, each from a different lecturer.

2) Test Set: The data set used for testing is the standard CSJ
test set, consisting of 10 lecture speeches, each from a different
speaker, comprising 130 min of audio in total.

C. Setting Up Reference WFSTs

As described in Section II, the MCE discriminant function
(2) for the correct string set is based on a WFST model of

the utterance. The starting point for generating such WFSTs is
simply the word sequence of the utterance transcription. Varia-
tions around that (optional insertion of silence between words,
inclusion of “don’t care” words, etc.) can then be considered.
Since the discriminant function includes language model scores,
these must be incorporated into the reference WFST too.5

On the CSJ task, setting up such WFSTs was much harder
than it might appear. The primary reason for this is that there
is no standard definition of the word unit in Japanese. As a re-
sult, there was large mismatch in character segmentations found
in the utterance transcriptions and those found in the text data
used to train the language models. The CSJ transcriptions orig-
inally available to us used a coarse grain of decomposition,
segmenting the transcription kanji and kana content into units
closer to phrases than to words. In contrast, the standard tri-
gram language models were trained on text data using a much
finer, word-like grain of segmentation. For effective discrimi-
native training, it is important that what is given as the correct,
desired output of the recognizer be consistent with the language
model used. Our approach was to resegment the utterance tran-
scriptions using the same rules as used in the creation of the
trigram language models. A WFST was then created for each
resegmented transcription.

These WFSTs start out very simple, representing just the tran-
scription word sequence, with the optional insertion of silence
between words. Standard WFST techniques were then applied.
The reference WFSTs were composed with a dictionary WFST
representing word pronunciations, and then with a triphone loop
WFST mapping context-independent phone sequences into con-
text-dependent ones. These steps are all performed offline; for
every utterance, the MCE training module then must read in a
reference WFST from disk.

D. Unigram Language Models for MCE Training

An important choice is that of the language model to use
during MCE training. This will be used to compute the discrim-
inant function for the competing incorrect string set [(3) or (4)].

Though the target language models are 30 k and 100 k word
trigrams, there are reasons to consider using different language
models during training. First, many words in the training set
are not covered by the 30 k word trigram. The system has no
chance of recognizing these words, and asking the discrimina-
tive training process to try to correct the ensuing errors by mod-
ifying the acoustic model is not appropriate. Second, training
with a full trigram may simply be too slow to permit more than
a few experiments. Third, discriminative training using a less
constrained grammar can in some cases generalize better to un-
seen data [11].

In the first set of CSJ experiments (focusing on optimization
methods) described in this study, the approach was to create
a 48 000 word unigram WFST covering all the words in the
speech training set, as well as all the words in the 30 k word
trigram used for testing. The many homonyms found in the CSJ
database were merged, as word writings and part-of-speech tags

5If one uses a linear loss function instead of the sigmoid, the language model
scores for the transcription do not affect the MCE gradient and so are not nec-
essary.

MCDERMOTT et al.: DISCRIMINATIVE TRAINING FOR LARGE-VOCABULARY SPEECH RECOGNITION USING MCE 211

do not benefit recognition using a unigram. Using common tech-
niques to improve WFST compactness, the final unigram WFST
only contains around 80 000 arcs. In these experiments, only the
30 k trigram was used for testing.

In the second set of CSJ experiments (focusing on model
size), the approach was to use a unigram based on all words
in the CSJ language model text training set, again merging all
homonyms into single word entries. This resulted in a 68 000
word unigram WFST, containing around 110 000 arcs. This un-
igram too covers all words in the speech training set.6 In these
experiments, both the 30 k and 100 k trigram language models
were used for testing.

For both unigram WFSTs, time-synchronous beam search
through the WFST using the SOLON decoder [46] is fast enough
that MCE training could be carried out without resorting to lat-
tices to speed up computation.

E. Feature Extraction and Baseline HMMs

The feature vectors consist of 38 or 39 components: MFCCs
(after cepstral mean subtraction), deltas, and delta–deltas, com-
puted every 10 ms for 25-ms windows over the speech signal.
In the first set of CSJ experiments, described in Section V-H,
the static energy component was removed after computation of
the corresponding delta and delta–delta components, resulting
in a 38 component feature vector. Triphones are modeled using
phonetic decision tree-based clustering [63]. The triphone set is
based on 43 base phones that include utterance initial/final si-
lence and within-utterance silence. Each phone is modeled using
three state positions, in a linear arrangement. After tree con-
struction, the number of Gaussians was increased iteratively by
performing Viterbi training on the training set and splitting the
Gaussian with the largest mixing weight [64].

The following acoustic model topologies were used:
• 2000 states, 16 and 32 Gaussians per state (for totals of 32 k

and 64 k Gaussian pdfs, respectively);
• 3000 states, eight and 16 Gaussians per state (totals of 24

k and 48 k Gaussian pdfs, respectively);
• 4000 states, 16 Gaussians per state (a total of 64 k Gaussian

pdfs).

F. Language Model Weight During Testing

The language model weight should be tuned appropriately
when evaluating acoustic models. The approach adopted here
was to try different weights, in steps of 1.0, on the entire test set.7

The optimal weight after discriminative training ranged from
8.0 to 12.0, compared to an optimal weight of 13.0 to 15.0 for
the baseline ML models.

G. Beam Size During Testing

For the results presented here, the beam threshold was ad-
justed to result in similar amounts of CPU time for each model
tested, maintaining an overall CPU time of about six times real
time for each test. Previous results showed that few search er-
rors occur for beams of this size or larger.

6The speech training set corresponds to transcriptions that comprise a subset
of the overall CSJ language model text training data.

7There is as of yet no standard development set for the CSJ task.

TABLE II
WORD ERROR RATES (%) FOR DIFFERENT MCE OPTIMIZATION METHODS

ON THE CORPUS OF SPONTANEOUS JAPANESE AND RELATIVE ERROR RATE

REDUCTIONS (%) COMPARED TO THE ML PERFORMANCE. TRAINING LM: 48 k
WORD UNIGRAM; TESTING LM: 30 k WORD TRIGRAM. ALL RESULTS ARE FOR

AN HMM TOPOLOGY OF 3000 STATES AND EIGHT GAUSSIANS PER STATE

TABLE III
ERROR RATES FOR MCE VERSUS ML BASELINES ON THE CORPUS OF

SPONTANEOUS JAPANESE, AND RELATIVE ERROR RATE REDUCTIONS (%)
COMPARED TO ML PERFORMANCE. TRAINING LM: 68 k WORD UNIGRAM;

TESTING LM: 30 k WORDS

H. MCE Training: Optimization Methods

For these experiments, a single acoustic model was used, with
3000 Gaussian mixture states and eight Gaussians per state (24 k
Gaussian pdfs in all).

Starting with the baseline ML model, MCE optimization runs
based on semibatch PD (“SB-PD,” with an update period of
20 000 utterances), Quickprop, semibatch Rprop (“SB-Rprop,”
with an update period starting at 20 000 utterances, but doubling
after every full presentation of the training set), and batch Rprop,
were carried out for six iterations (i.e., six full presentations of
the training set). The model at the end of training was used for
testing. Learning rate parameters for each method were coarsely
tuned on the training set in preliminary runs using two to three
iterations. Rprop was found to be significantly easier to tune
than the other methods. In all the CSJ experiments, a linear loss
function was used, and only the top incorrect string used. In re-
cent work, use of up to 99 incorrect strings with in (4),
was evaluated, but no significant improvements were obtained.

The word error rates for each method on the training set using
the unigram WFST, and on the test set using the standard 30 k
word trigram, are shown in Table II.

I. MCE Training: Model Topology and Size

The aim of these experiments was to investigate the impact of
MCE training on ML baselines with different numbers of states
and Gaussians per state. These experiments are based on the
latest “CSJ 2004” release of the database, and use feature vec-
tors with 39 rather than 38 components; the results are therefore
not strictly comparable to results described in Section V-H.8

Here the 68 k word unigram described in Section V-D was
used for MCE training. Seven iterations of MCE training using
Quickprop were carried out for each model topology, and the
final models tested using both the 30 k and 100 k word trigrams.
The results are shown in Tables III and IV.

8The differing results for 3000 states and eight Gaussians/state in Tables II
and III are thus based on different experimental conditions.

212 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 1, 2007

TABLE IV
ERROR RATES FOR MCE VERSUS ML BASELINES ON THE CORPUS OF

SPONTANEOUS JAPANESE, AND RELATIVE ERROR RATE REDUCTIONS (%)
COMPARED TO ML PERFORMANCE. TRAINING LM: 68 k WORD UNIGRAM;

TESTING LM: 100 k WORDS

J. Results & Discussion

Optimization: The results on the CSJ task show that for
optimization on the training set, Rprop is very effective. Given
the simplicity of the method and the ease of parameter tuning,
Rprop seems like an attractive choice. However, Quickprop
yielded the best test performance. It is interesting to note
that here semibatch PD is the least effective method on the
training set, but its test set performance is the second best. The
opposite pattern was observed for TIMIT phone classification.
More tests with these methods on the CSJ task are needed to
determine whether the behavior reported here is representative.

Altogether, the results obtained on both TIMIT and CSJ show
significant improvements over the maximum likelihood base-
line for all optimization methods evaluated, indicating that the
MCE criterion can be optimized effectively using rather dif-
ferent methods.

Model Size/Topology: Using 30 k and 100 k word trigram
language models for test set evaluation, MCE yielded relative
error rate reductions from 4.7% to 11% for several ML base-
lines with different topologies. The best MCE-obtained results
for the 30 k and 100 k word trigrams, respectively, are word
error rates of 20.8% and 20.1%. The best ML results are word
error rates of 22.4% and 21.7%, respectively. Compared to these
ML results, MCE afforded relative error rate reductions of 7.1%
and 7.4%, respectively. Though these relative improvements are
lower than those for the other tasks described in this article, the
very large number of homonyms in Japanese may limit the ef-
fectiveness of discriminative training of acoustic models on this
task.

Ongoing and Future Work: Ongoing work using the 100 k
trigram language model for MCE training has so far yielded re-
sults that are very similar to those for the unigram-based training
approach detailed here. Thus, on this task, training with a uni-
gram language model does not seem to help generalization com-
pared to training with the target trigram language model. How-
ever, training with the 100 k trigram is rather time-consuming,
so training with a unigram still has merit. Future work on this
task should evaluate the use of an MCE update based on a lat-
tice of incorrect candidates [14]. Discriminative speaker adap-
tive training [16] could also be effective for this task.

More discussion of the results on the CSJ task can be found
in Section VIII.

VI. LARGE-VOCABULARY TELEPHONE-BASED

NAME RECOGNITION

The task examined in this section is that of recognizing
Japanese names spoken over the telephone, in the real-world

setting of people telephoning a call center to request that
information (catalogs, pamphlets, etc.) be mailed to them. The
goal was to evaluate the effectiveness of MCE for an offline
speech recognition system used to transcribe the contents of
each call, in particular the caller’s name. The specific issues
investigated for MCE training include the effects of model
size, lattice-based and phone bigram approximations to the
full language model, and a strict versus flexible approach to
reference modeling. This study extends previous work [14] and
was recently summarized in [16].

A. Database and Data Characteristics

A database of more than 40 h of utterances in this real-world
setting was collected and transcribed. Most utterances are from
different callers. Some broad aspects of the database can be de-
scribed qualitatively. Every utterance contains a family name
and a given name. There is great variation in speaking style,
and a large proportion of the calls were made from cellular
phones and noisy acoustic environments. Another feature of
the data is the presence of false starts, hesitations, and various
fillers (“eeto ,” “ano ,” etc. at the beginning of the utterance;
“desu,” “to mooshimasu,” etc., at the end) that can bracket the
caller’s name.

Training, Test, and Development Sets: From the overall data
set, a training set of 35 500 utterances (about 39 h of audio) and
a test set of 6428 utterances were selected. A separate develop-
ment set of 948 utterances was also prepared for the purpose of
tuning language model scaling factors. In addition to the tran-
scriptions assembled for training and test sets, phoneme seg-
ment start/end times for 1200 training utterances were hand-la-
beled; these were used as seed data to initialize the recognizer.

B. Target Language Model

From a corpus of 130 000 name listings, 16 602 unique
family names and 5755 unique given names were found.
A WFST was designed to model 16 576 family names and
5744 given names, covering about 99.8% of the family and
given names found in the corpus. Unigram probabilities were
estimated from the corpus and incorporated into the WFST.
The set of names used covers all utterances in the training set
described above—out-of-vocabulary (OOV) utterances were
either removed from the training set, or the corresponding
names added to the lexicon. In addition to the set of names,
some simple types of hesitations and pauses are modeled, along
the lines of the patterns described in Section VI-A. The test set
contains a small number (1%) of utterances not modeled by
this language model. Fig. 6 illustrates the WFST used.

After weight-pushing and network optimization, the network
contained 489 756 nodes and 1 349 430 arcs. (Further compres-
sion is possible via composition with the WFST—often referred
to as “ ”—mapping HMM states to triphones, but this was not
performed in this study). The size of the vocabulary modeled
(22 320 names in all), and the fact that both cross-word and
within-word triphones were modeled, are significant improve-
ments compared to the initial study presented in [14].

MCDERMOTT et al.: DISCRIMINATIVE TRAINING FOR LARGE-VOCABULARY SPEECH RECOGNITION USING MCE 213

Fig. 6. Outline of the WFST-based target language model for the telephone-based name recognition task. The WFST represents 22 320 family and given names,
as well as possible utterance-initial hesitations, silence insertion, and utterance-final completions. Arc symbols to the left of the colon are input symbols, those to
the right are output symbols; language model scores, if any, are shown after a ‘/’; “eps” refers to epsilon, the null symbol. Symbols in brackets refer to the phonetic
realization of a given word.

C. Strict Reference WFSTs

Since the task is primarily a name recognition task, word seg-
mentation did not pose the problem it did for the CSJ task. The
first set of reference WFSTs created was based on a straight-
forward representation of the given transcription for each ut-
terance, including fillers, family name and given name, and as-
sociated language model scores. The triphone9 and lexicon10

WFSTs are then composed with the WFSTs from the previous
step,11 so that each resulting WFST is a miniature recognition
network, whose input symbols are triphones, and whose output
symbols are word IDs with language model scores. These refer-
ence WFSTs can then be used with the decoder to calculate the
MCE discriminant function for the correct string set (2), as well
as the corresponding state segmentations necessary to compute
the MCE derivatives, as described in Section II. Since they ad-
here to the exact word content of the transcriptions, and are not
characterized by much if any branching,12 they are referred to
in the following as “strict reference WFSTs.”

D. Flexible Reference WFSTs

As described in Section II-C, there is often uncertainty in ut-
terance transcriptions. For the name recognition task, it was ob-
served that though the target names were transcribed accurately,
fillers were often dropped or transcribed incorrectly. For this
task, however, only accurate recognition of the names is of in-
terest. Hence, a “flexible reference,” representing, in addition
to the family name and given name, all possible fillers around
and in between the two names (along the lines described in
Section VI-A), provides a better definition of the desired output.
This concords with the notion, formalized in Section II, that the
desired output is any string out of a set of strings, all considered
to be correct.

The use of corresponding “flexible reference WFSTs” during
MCE training to model the utterance content (2) was evaluated
for this task. One such WFST is illustrated in Fig. 2, which
models possible hesitations at the start of the utterance, possible
silence insertion between the family and the given name, and
possible completions at the end of the utterance.

When using flexible reference WFSTs, the MCE loss func-
tion corresponds closely to string-level name recognition, and

9Input: triphones; output: phones.
10Input: phones; output: word IDs.
11Input: word IDs; output: word IDs and language model scores.
12What branching there is in the strict reference WFSTs comes from pronun-

ciation variants for the same name.

is not affected by success or failure in recognizing fillers. The
discriminative training task is easier than when using strict ref-
erence WFSTs. It can be hoped that optimization will conse-
quently be more efficient.

E. Modeling References With a Phone Bigram

This study evaluated a third approach to modeling the cor-
rect string set used in (2): a simple phonetic transcription, cou-
pled with language model scores from a phone bigram. This ap-
proach is typically, but not necessarily, coupled with the use of
a looping phone bigram recognition network for generating the
competitor categories.

F. Language Model for MCE Training: Target
Language Model

The target recognition WFST, described in Section VI-B, can
be used for MCE training as is. In tandem with the SOLON de-
coder, it can be used to compute the discriminant function for
the competing incorrect string set [(3) or (4)], as well as the cor-
responding state segmentations necessary to compute the MCE
derivatives.

Since the recognition WFST was designed to cover all utter-
ances in the training set, there is no out-of-vocabulary issue. As
it is essentially a unigram language model, decoding can be per-
formed in a reasonable time. Furthermore, this choice matches
the set of competitors considered during training with the set of
competitors that applies during testing.

G. Language Model for MCE Training: Lattices

The use of lattices for discriminative training has been re-
ported for the maximum mutual information (MMI) approach
already for some time now [10], [31]. Large-scale speech recog-
nition systems have been successfully designed using this ap-
proach [11]. In contrast, only recently have studies reported re-
sults for latticed-based MCE [47].

Lattices can be seen to have two roles for discriminative
training. The first is that they can be used to “push away” a very
large number of competing strings. In the context of MMI, this
serves to maximize mutual information, defined as the ratio of
the likelihood of the correct string to the posterior probabilities
of all possible strings (including the correct string). The lattice
primarily models the denominator of this ratio. In the context
of MCE, a lattice can be used to model the general form of
the discriminant function for the set of incorrect strings (4), as
discussed in [27] and [47].

214 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 1, 2007

However, lattices can play another important, practical role:
that of speeding up the learning procedure. This is the role eval-
uated here. Assuming that the model does not change too much
over the course of learning, lattices can be generated for all ut-
terances for the initial model, and then repeatedly reused over
the course of training. This is a common practice in MMI imple-
mentations. To our knowledge, the study described in this article
is the first to evaluate such a use for MCE.13

The approach evaluated here consists in first generating
lattices for each utterance, and then removing the segmentation
time information. Saved in WFST format, the result can be used
as the recognition grammar during MCE training, still only
using the top competing incorrect string, as expressed in (3).
Using lattice-derived WFSTs as the language model for each
utterance is much faster than using the full language model.

Each lattice WFST is made during beam search through the
target language model WFST. The lattice receives a new arc
for every output-emitting arc activated during search. This usu-
ally happens somewhere in the word once a phone sequence be-
comes unique. In this study, when generating the lattices, the
beam width was set to be about three times larger than that used
during training with the full language model. Across the config-
urations used, the resulting set of lattices contained on average
800 arcs per lattice, in contrast with 1 349 430 arcs for the target
language model.

H. Language Model for MCE Training: Phone Bigram

Another possibility is to use a phone bigram to calculate the
discriminant function for the top incorrect string set, (3) or (4).
In this study, a bigram-constrained connected triphone loop was
used.

In tandem with a phone bigram to model the correct string
set (Section VI-E), using a bigram-constrained connected phone
loop as the language model during MCE training is a practical
choice. With this approach, discriminative training will attempt
to optimize phoneme string recognition accuracy in a task-inde-
pendent manner. The hope is that the enhanced phoneme recog-
nition accuracy will translate into better word recognition when
given the target language model. This approach can be a simple
way of obtaining improvements over the ML/Viterbi training
baseline.

I. Feature Extraction and Baseline HMMs

All utterances were converted into a sequence of feature vec-
tors based on RASTA-processed mel-scale filter-bank cepstral
coefficients (MFCC) [66]. A 21-component feature vector was
extracted for every 10 ms of the waveform, consisting of ten
static MFCC-RASTA components, ten deltas, and a delta en-
ergy component.

Triphone models of several sizes were clustered using pho-
netic decision trees [63]. The triphone set is based on 28 base
phones that include utterance initial/final silence, within-utter-
ance silence, and a model for the click of a telephone being hung
up.

13The results of this study were first reported in [16].

TABLE V
CONFIGURATIONS OF TRIPHONE HMMS USED

TABLE VI
NAME ERROR RATE FOR DIFFERENT MODEL CONFIGURATIONS:

ML BASELINE AND VARIOUS MCE DESIGN METHODS

Two different log-likelihood increase thresholds were used
during tree construction, resulting in two sets of trees with dif-
ferent tree depths and sizes. The shallower tree set, containing
187 triphone states, was used to make three models with, respec-
tively, 4, 12, and 20 Gaussians per leaf node mixture; the deeper
tree set, containing 547 triphone states, was used to make four
models with, respectively 12, 20, 36, and 50 Gaussians per leaf
node mixture. Deeper trees than those reported here were also
evaluated but showed worse performance. The different HMM
configurations are summarized in Table V.

Given these models, name recognition using the SOLON de-
coder with the recognition WFST described in Section VI-B
was evaluated. The recognition results for each configuration
are shown in Table VI. The error rates reported here are equal
to 100 minus name accuracy; name accuracy is based on both
family name and given name recognition accuracy. We do not
report string accuracy, i.e., recognition accuracy for family and
given name considered as a unit.

J. MCE Training

MCE training based on Quickprop was carried out using dif-
ferent choices of reference and language models. For all settings
evaluated, the sigmoid loss function (6) was used. Furthermore,
up to 40 iterations of MCE training were carried out. This is a
large number of iterations, but acts as insurance against a poor
choice of , which can affect the speed of convergence of Quick-
prop.

1) Phone Bigram: The first approach evaluated was the use
of a phone bigram model for the utterance reference, described
in Section VI-E, together with a bigram-constrained triphone
loop model as the language model, described in Section VI-H.
MCE training for this setting was carried out for six of the
ML-trained acoustic model configurations. The name recogni-
tion results for the resulting MCE-trained model are shown in
Table VI in the column for Phone.

2) Target Language Model and Strict References: The
second set of experiments evaluated the use of the target

MCDERMOTT et al.: DISCRIMINATIVE TRAINING FOR LARGE-VOCABULARY SPEECH RECOGNITION USING MCE 215

language model to define the set of competing strings (see
Sections VI-B and VI-F), together with the use of the strict
reference WFST model for the references (see Section VI-C).
Three of the ML-trained model configurations were used as
initial models for MCE training. Even parallelized over mul-
tiple machines, the large number of iterations and the heavier
decoding demands of using the full language model led to a
training time of up to two days. The test set results are shown
in Table VI in the FullLM column.

3) Lattices and Strict References: Recognition lattices were
generated for all training utterances for three of the ML-trained
model configurations. MCE training was carried out using as
language model for each utterance the corresponding lattice
WFST (Section VI-G). The reference model was again based
on strict reference WFSTs (Section VI-C). Training is now
much faster than training with the target language model, by a
factor of about three. The results for lattice based MCE training
are shown in Table VI in the Lattice column. The results are
very close to those for MCE training with the full language
model.

4) Lattices and Flexible References: Recognition lattices
were generated for all training utterances for an additional three
ML-trained model configurations. A total of six ML-trained
models were then used as the initial models for MCE training,
again using lattice WFSTs as the language model for each
utterance (Section VI-G), but this time using flexible reference
WFSTs (Section VI-D). Training proceeded more quickly than
when using the strict WFSTs, significantly raising the training
set recognition rate after each iteration. For some of the con-
figurations, lattices had to be recreated half-way through the
training procedure. The test results are shown to the left of the
“/” character in Table VI in the Lattice FlexRef column.

5) Lattices, Flexible References, and -Normed -Best In-
correct Candidates: The experiments described so far all as-
sumed the use of (3), i.e., the use of a single best incorrect string
candidate. Using instead the general form, (4), and a choice of
that prevents the top few incorrect strings from dominating the
expression, may help generalization to test data. This is related
to “acoustic scaling” used in MMI studies [11], [44]. This was
investigated for three of the ML-trained baseline models. Using

and the top 30 incorrect strings during lattice-based
MCE training with flexible reference WFSTs resulted in per-
formance gains. These results are shown to the right of the “/”
character in the Lattice FlexRef column of Table VI.

K. Results

All results for the name recognition task are shown in
Tables VI. VII shows the relative recognition error reduction
for different model sizes as a result of MCE training, using the
best MCE result for each configuration, and in the last row,
the relative error reduction for the best overall MCE model
compared to the best overall ML model.

L. Discussion

The experiments on the name recognition task primarily
investigated the effect of MCE training applied to ML baseline
models of different sizes. The study also evaluated lattice-based

TABLE VII
RELATIVE NAME ERROR REDUCTION AS A RESULT OF MCE TRAINING FOR

GIVEN MODEL SIZES, AND RELATIVE ERROR REDUCTION FOR BEST MCE
VERSUS BEST ML MODELS ACROSS ALL MODEL SIZES

and phone bigram approximations to the full language model,
and strict versus flexible approaches to reference modeling.
Some specific points of discussion follow.

1) Model Size: As shown in Table VI, the smallest
MCE-trained model described here, with 748 Gaussians,
outperforms the baseline models with up to 10 940 Gaussians.
The best MCE-trained model, with 10 940 Gaussians, yielded a
relative performance improvement of 20.4% over the baseline
model of that size, and 15.5% relative improvement over the
best overall baseline model. As shown in Table VII, the benefit
of MCE training, though largest for the small configurations,
applies to all the configurations examined. These are very large
gains in performance.

2) Phone Bigram: MCE training with the bigram-con-
strained triphone loop as language model yielded significant
improvements over the ML baseline. This approach is easy to
implement, and may not be too time-consuming, depending on
the depth of the decision trees. However, training with the full
language model yields significantly better performance than
training with the triphone loop.

3) Lattices: The use of pregenerated lattices to generate per-
utterance WFST language models is a reasonable approxima-
tion to the full language model, and speeds up decoding by a
factor of about three. The results obtained in this study show that
MCE training can be performed successfully using this approx-
imation. Saving the lattices, stripped of segmentation time in-
formation, in WFST format, and then using them with the same
central decoder, makes implementation straightforward. Further
gains in computation time could result if one were to fix the seg-
mentation times.

4) Flexible Reference Model: This article proposed the use of
string set level discriminant functions for use with MCE-based
discriminative training. The approach provides a coherent way
of making the MCE loss function reflect the true recognition
target in the context of keyword-oriented tasks, as exemplified in
the “flexible reference” WFST model tested on the name recog-
nition task. Compared with the conventional “strict reference”
approach, this approach yielded gains in performance for all
configurations examined.

5) -Best Rather Than 1-Best: A benefit was found to
smoothing the misclassification measure (5) via the exponent

, using top 30 incorrect strings. This is still a very small
number of candidates considering the 22 k word language
model. It can be surmised that using many more candidates,
ideally via a lattice-based model of (4) [27], could yield addi-
tional gains in performance.

216 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 1, 2007

VII. JUPITER WEATHER INFORMATION

JUPITER is a telephone-based conversational system that can
understand and respond to queries related to weather forecasts
for roughly 500 cities around the world [67]. The system is
accessible to anyone via a toll-free number in the USA. It uses
a mixed-initiative dialogue strategy which allows callers the
freedom to express their queries in whatever form they wish.
Because of this approach, JUPITER’s recognizer is forced to
handle highly spontaneous continuous speech. Difficult artifacts
such as background and foreground noises, out-of-vocabulary
words, false starts, partial words, filled pauses, and strong
accents are common, making the recognition task challenging.
The speech recognition module used in JUPITER is the SUMMIT

recognizer [68]. The acoustic model in SUMMIT consists of
landmark and segment models defined for variable-duration
utterance segments.

This section describes results obtained from applying MCE
training to the SUMMIT acoustic models. The MCE implemen-
tation and experimental setup used in this study are indepen-
dent from the SOLON-based setup described so far. Furthermore,
it should be noted that the variable-duration segment modeling
approach adopted in SUMMIT is quite different from the HMM-
based approach implemented in SOLON. Evaluating the effect of
MCE training in the JUPITER/SUMMIT context thus provides in-
sight into the generality of the method’s ability to improve the
recognition performance of acoustic models that are not limited
to standard HMMs.

As with the evaluations for the other tasks described in this
article, the main target of investigation is the effect of MCE
training on ML baseline models. In addition, specific points in-
vestigated on the JUPITER task include a comparison of the typ-
ical MCE sigmoid loss with a linear loss function, as well as
with a piecewise linear loss function that only results in param-
eter modification when recognition errors occur (a type of opti-
mization often referred to as “corrective training”).

MCE results for JUPITER were first presented in [16]. Here the
experimental setup for evaluation is expanded to include a 33 k
word language model in addition to the standard JUPITER 1924
word language model. This evaluation sheds light on the ability
of MCE training to improve performance not just for the criterion
used during training, but for more general criteria as well.

A. Database

The data sets used in these experiments were primarily
derived from calls made to the JUPITER weather information
system.

1) Training Set: The baseline acoustic models were trained
using 140 769 utterances, amounting to 120 hours of audio. A
subset of 101 965 utterances was used for MCE training. These
utterances only contain words covered by the standard JUPITER

1924 word vocabulary.
2) Development Set: A development set of 4894 held-out

JUPITER utterances was available to tune the MCE training pa-
rameters (sigmoid slope and Quickprop learning rate), and
to examine the convergence of the training procedure.

3) Test Set: A held-out set of 2905 JUPITER utterances was
used for evaluation. Within this set, 80% of the utterances are
spoken entirely with words contained in the standard 1924 word

vocabulary used by the JUPITER recognizer. The remaining 20%
of the data contains at least one out-of-vocabulary (OOV) word
or incomplete partial word in each utterance. When using the ex-
panded language model (described in Section VII-B), the OOV
rate decreases slightly, from 20% to 17%.

Because errors caused specifically by OOV words cannot be
recovered by improvements to the recognizer itself, the JUPITER

conversational system relies on a combination of OOV word
detection, recognition confidence scoring, and error-recovery
dialogue techniques to recover from recognition errors intro-
duced by the presence of out-of-vocabulary words [69], [70].
The MCE evaluations described here focus on the in-vocabulary
portion of the evaluation set (i.e., 80% of the full evaluation set).
However, results on the full evaluation set (including the OOV
utterances) are reported as well.

B. Target Language Models

The primary language model used in the evaluations here is
the standard language model for JUPITER, based on a 1924 word
trigram, with back-off bigram and unigram models. The lan-
guage model uses a basic vocabulary of around 1000 words to
model different ways of asking questions related to weather in-
formation, allowing for hesitations, false starts, and other types
of disfluencies. The remaining vocabulary items are city names,
such as “New York City,” “Santa Monica,” etc.

A trigram with an expanded vocabulary of 33 031 words was
used as well. The additional vocabulary items (not found in the
standard 1924 word language model) are primarily city names.

C. Reference WFSTs

SUMMIT, like SOLON, is a WFST-based recognition architec-
ture. The JUPITER training utterances come with word-level tran-
scriptions, represented in WFST format; language model scores
were added to these using WFST composition with the target lan-
guage model. The transcriptions are flexible in that they allow for
variation in many contractions and reductions, such as “what’s”
for “what is,” but strict with regard to filled pauses and false starts,
which are assumed to be transcribed accurately.

D. Language Model for MCE Training

The language model used for MCE training is the standard
1924 word trigram language model used for JUPITER. This is the
case even when using the expanded 33 k word language model
for testing.

When filtering the correct string out of the recognition output
for MCE training, words that are not used in calculating the
word error rate, such as “uh” and “um,” are ignored. Further-
more, contractions and reductions are considered equivalent to
their canonical forms.

E. SUMMIT Baseline Acoustic Model

SUMMIT’s standard real-time recognition configuration per-
forms acoustic modelling using a set of 1388 context-dependent
landmark models [68]. Each hypothesized landmark is modeled
with a set of MFCC averages collected from regions, up to 75 ms
away, surrounding the landmark. The acoustic information sur-
rounding each landmark is represented by a 112-dimension fea-
ture vector which is reduced to 50 dimensions using a principal

MCDERMOTT et al.: DISCRIMINATIVE TRAINING FOR LARGE-VOCABULARY SPEECH RECOGNITION USING MCE 217

Fig. 7. Comparison of ML and MCE training for two different model set sizes
(in-vocabulary evaluation set, 33 k word language model).

component analysis (PCA) rotation matrix. These 50-dimension
vectors form the input to the recognizer’s acoustic model clas-
sifier, which assigns context-dependent acoustic scores for each
landmark using mixture Gaussian models. The landmark scores
are combined with segment duration scores and class trigram
language model scores during the search to produce the full
score.

The baseline set of landmark models was trained using stan-
dard ML Viterbi-style EM training. The number of mixtures per
model was heuristically set to be 1 mixture component for every
50 training samples with a maximum of 75 mixture compo-
nents per model. Previous experiments showed that using more
than a maximum of 75 components per model does not im-
prove recognition performance of ML trained models. This pro-
duced a model set with 41 677 total Gaussian components, for
an average of 30 Gaussians per model over the full set of 1388
models. In the following, this baseline set of models is referred
to as the “ML-42k-gauss” model set.

In order to evaluate the ability of MCE training to pro-
duce accurate models using fewer parameters, a second set
of ML-trained models was also produced. These models
were trained with at most 15 Gaussian components per model,
producing a model set using 15 325 total components, for an av-
erage of 11 Gaussians per model. In the following, this smaller
set of ML-trained models is referred to as the “ML-15k-gauss”
model set. The ML-15k-gauss model set thus has 63% fewer
parameters than the ML-42k-gauss model set.

Fig. 7 shows the in-vocabulary performance of the two sets
of ML baseline models as a function of computation time, for
the expanded JUPITER language model. Computation time is
controlled via the pruning threshold used during decoding.
Tables VIII and IX show the ML performance at the point of
real time computation, for the standard and expanded language
models, respectively.

F. MCE Loss Function

Three loss functions were evaluated:
1) Standard Sigmoid: Equation (6) with steepness set so

that the function tapers off for a substantial number of training

TABLE VIII
WORD ERROR RATE COMPARISON OF ML TRAINED MODELS AND MCE

TRAINED MODELS, EVALUATED AT A REAL-TIME COMPUTATION SETTING

(STANDARD 2 k WORD JUPITER LANGUAGE MODEL)

TABLE IX
WORD ERROR RATE COMPARISON OF ML TRAINED MODELS AND MCE

TRAINED MODELS, EVALUATED AT A REAL-TIME COMPUTATION SETTING

(EXPANDED 33 k WORD JUPITER LANGUAGE MODEL)

set utterances that are very strongly correct or incorrect (see
Section II-G which discusses the tuning of).

2) Linear Loss Function: . Use of this
loss means the optimization procedure is directed at maxi-
mizing overall separation between correct and best incorrect
hypotheses, with no consideration of the binary cost of mis-
classification. Increasing separation might help generalization
to unseen data. This setting corresponds to an MMI-derived
approach, “rival training,” in which only correct and best
incorrect strings are used [71].

3) “Corrective” Piecewise Linear Loss Function:
for , and 0 otherwise. This function corre-

sponds to a corrective training strategy, which only performs
parameter modifications for incorrectly recognized utterances.
This choice of loss function corresponds to the MMI-derived
corrective training approach [4], [27], [71]—though the opti-
mization method used here is Quickprop, and not the Extended
Baum–Welch algorithm.

G. MCE Training

The mean vectors, variances, and Gaussian mixing weights
of SUMMIT’s landmark-based acoustic models were modified
via MCE-based training. The MCE derivatives described in
Appendix A were applied to SUMMIT landmark models with
little modification.

MCE training was carried out using the two ML baselines as
initial model configurations, and using different choices of loss
function (Section VII-F). Preliminary experiments comparing
Quickprop with the batch probabilistic descent (BPD) method
(discussed in Section III-A) showed an advantage for Quick-
prop. The following experiments all used Quickprop as the op-
timization method. For each of the conditions examined, 12 it-
erations of MCE-based optimization were used. For all experi-
ments, only the top incorrect string candidate was used to model
the set of competitors, corresponding to the use of (3).

1) MCE versus ML Baseline, Sigmoid Loss Function: MCE
optimization with the standard sigmoid loss function was used
to produce a “MCE-42k-gauss” model from the ML-42k-gauss
models, and a “MCE-15k-gauss” model set from the ML-15k-
gauss models. The models performing best on the development

218 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 1, 2007

Fig. 8. Comparison of three different loss functions used to train the ML-15k-
gauss model (in-vocabulary evaluation set, 33 k word language model).

set (over all 12 MCE iterations) were then chosen for evaluation.
Fig. 7 shows the performance of the MCE trained models as a
function of computation time allotted to the decoding process,
using the in-vocabulary evaluation set and the expanded 33 k
word language model. Computation time is controlled via the
search pruning threshold.

2) Sigmoid, Linear, and “Corrective” Piecewise Linear Loss
Functions: Fig. 8 shows the performance of models derived
from training with the three different MCE loss functions, using
the ML-15k-gauss model set as the starting point, again on the
in-vocabulary evaluation set and the expanded 33 k word lan-
guage model. Again, the development set was used to choose
the best MCE models over all 12 iterations.

H. Results, Standard 2 k Word JUPITER Language Model

Table VIII summarizes the results for the best MCE trained
model set on the entire evaluation set when using the standard
1924 word language model. Overall performance of the MCE-
15k-gauss model set (trained with the sigmoid loss) versus the
baseline ML-42k-gauss model set is shown, as well as perfor-
mance on in-vocabulary (IV) and OOV portions of the evalua-
tion data. These results were obtained using a pruning threshold
that achieves real time performance for each model set. MCE
training produced a relative word error rate reduction of 8.9%
over the full evaluation set, and a relative word error reduction
of 19.7% on the IV portion of the data.

I. Results, Expanded 33 k Word Language Model

When tested on the full evaluation set (IV and OOV) using
the 33 k word language model, the MCE-42k-gauss model set
performs slightly better than the MCE-15k-gauss model set.
Table IX summarizes the test results when using the expanded
33 k word language model, for both the MCE-42k-gauss model
set and the baseline ML-42k-gauss model set. Performance is di-
vided into IV and OOV components, for a pruning threshold that
achieves real time performance for each respective model set.
Overall, MCE training produced a relative word error rate re-
duction of 4.4% over the full evaluation set, and a relative word
error reduction of 11.5% on the IV portion of the data.

J. Summary and Discussion

The experiments on the JUPITER weather information task pri-
marily investigated the effect of MCE training applied to two
ML baseline models. The study also evaluated the effect of dif-
ferent MCE loss functions.

For both the standard 1924 word JUPITER language model
and an expanded 33 k word language model, significant im-
provements over the ML baseline were obtained as a result of
MCE training, showing the effectiveness of MCE on a real-
world continuous speech recognition task. For the standard lan-
guage model, discriminative training yielded a 8.9% relative
performance improvement overall, and a 63% reduction in the
number of parameters compared to the baseline model. For the
IV portion of the test set, MCE training yielded a 19.7% relative
reduction in word error compared to the ML baseline. With the
expanded language model, the overall performance improve-
ment is 4.4%, and 11.5% for the IV portion of the evaluation
data. Additional points are discussed in the following.

1) Model Size: As shown in Fig. 7, the smaller ML-15k-
gauss model set performs significantly worse than the larger
ML-42k-gauss model set, indicating that the additional param-
eters present in ML-42k-gauss are required to model accurately
the probability density functions of the individual classes. How-
ever, when using MCE training, there is little difference in per-
formance between the MCE-15k-gauss model set and the MCE-
42k-gauss model set. This demonstrates the significant reduc-
tion in parameters that MCE training enables.

2) Sigmoid versus Linear Loss Function: As shown in Fig. 8,
the models trained with the standard sigmoid loss function show
slightly better performance than those trained with the linear
loss function. Even though the 0–1 sigmoid loss function is ori-
ented towards optimal string recognition accuracy, and the focus
here is on word recognition accuracy, there appears to be an ad-
vantage to using a nonlinear function of separation rather than
separation itself. The results show that an equal weighting of the
training tokens is not as effective as a loss function which as-
signs greater weight to the training tokens closest to the (string)
classification decision boundary.

3) Rival versus Corrective Training: As shown in Fig. 8,
both sigmoid and linear loss functions resulted in significantly
better performance than the piecewise linear loss function cor-
responding to pure corrective training. This clearly shows the
benefit of increasing the separation between correct and best in-
correct strings even for correctly recognized utterances.

4) OOV Utterances: As shown in Table VIII, MCE training
did not improve the performance of the recognizer on the out-of-
vocabulary portion of the data. In fact, relative degradations of
1.7% and 7.2% occurs on the OOV data for the standard and
expanded language models, respectively. This degradation in
performance on utterances containing OOV words is not unex-
pected, as the MCE training process only used in-vocabulary
utterances. (Recall that while the ML baselines were trained on
140 769 utterances, MCE training was limited to a 101 965 ut-
terance in-vocabulary subset). A straightforward remedy to the
problem may be to expand the MCE training language model
to cover all 140 k training utterances. This was the approach
adopted for the CSJ and name recognition tasks described ear-
lier in the article.

MCDERMOTT et al.: DISCRIMINATIVE TRAINING FOR LARGE-VOCABULARY SPEECH RECOGNITION USING MCE 219

5) Expanded 33 k Word Language Model: The improve-
ments obtained for the expanded 33 k word task, 4.4% overall
and 11.5% for in-vocabulary utterances, are more modest than
for the standard language model. Compared to evaluation with
the standard language model, there is an even greater degrada-
tion on OOV utterances. This is particularly so for the MCE-
trained models, which show a 7.2% relative increase in word
error rate compare to the ML baseline. However, it should be
kept in mind that MCE training used the standard 1924 word
vocabulary, not the expanded 33 k word vocabulary. Many con-
fusions that can arise with the expanded vocabulary were there-
fore not observed during model design. In spite of this mis-
match, MCE yielded substantial benefits to recognition with the
expanded language model.

K. Possibilities for Further Improvements

Clearly, it would be desirable to use the entire training set,
rather than just a subset, for MCE training. Using the full set
might yield additional improvements. Furthermore, training
with the expanded 33 k word language model should improve
performance when using that language model.

All results presented here for the JUPITER task are based on a
1-best implementation of the MCE discriminant function for the
incorrect string set, corresponding to the use of (3) rather than
(4) with a small . Using many more incorrect candidates, via
either a large -best list or a lattice [27], may yield significant
additional improvements.

VIII. OVERALL SUMMARY AND DISCUSSION

This article reported evaluation results for MCE-based dis-
criminative training performed on several speech recognition
tasks, ranging from phone classification to 100 k word contin-
uous speech recognition. Aside from the primary comparison
of MCE versus baseline ML performance, common to all the
studies described here, each study examined a slightly different
set of issues. Table X summarizes (for the large-scale tasks) the
task characteristics, issues investigated, and relative error rate
reductions (RERRs) obtained from MCE training. “Lattice ap-
proximation” in this table refers to the use of lattices to speed
up the training process. “Flexible reference” refers to the string
set oriented model of the desired output outlined in this article.
The RERR figures listed are those described in the Results sec-
tion for the different tasks. The two figures listed for the CSJ
column refer to the 30 k and 100 k word language models, re-
spectively. The two figures listed for the JUPITER column refer
to the standard 1924 word language model and expanded 33 k
word language model, respectively. Both sets of JUPITER figures
refer to the in-vocabulary evaluation.

Gradient-Based Optimization: A number of gradient-based
optimization techniques were evaluated in this article. The
ability to optimize the MCE loss function successfully across
different tasks and system architectures is a crucial point for
MCE. One reason for the widespread use of MMI is the avail-
ability of a corresponding re-estimation algorithm, the extended
Baum–Welch algorithm [42]. Similar reestimation algorithms
have been suggested for MCE [49], [50]. These approaches
require an approximation of the MCE loss function. In contrast,
the approach described in this article was to keep the MCE

TABLE X
SUMMARY OF TASK CHARACTERISTICS, ISSUES INVESTIGATED, AND

MCE-OBTAINED RELATIVE ERROR RATE REDUCTION (RERR) FOR EACH TASK

loss function as it is, and use gradient-based optimization.
Though this means a learning rate must be tuned, this is not
hard in practice, and furthermore is not very different from the
need to set the reestimation constant when using the extended
Baum–Welch algorithm [72]. Given the practical utility of
gradient-based descent, demonstrated here, combined with a
wealth of theoretical analysis [73], [74], there seems to be no
reason to shy away from the use of gradient descent in one of
its many practical instantiations.

Of course, better optimization methods for MCE, including
reestimation style approaches, should continue to be an ongoing
topic of investigation. Recent work has evaluated the application
of the extended Baum–Welch algorithm to MCE optimization
[47].

Effect of Model Size: For the name recognition task and the
JUPITER task, the effect of MCE-based discriminative training
was particularly pronounced for small models, as shown in
Table VI and Fig. 7. On the Corpus of Spontaneous Japanese,
the relative reduction in error rate resulting from MCE training
was not as strongly linked to model size, with some of the
largest error reductions coming for the largest models, as
shown in Tables III and IV. Clearly, the interest of discrimina-
tive training is not merely to improve the performance of small
models, but also to generate top state-of-the-art performance,
using whatever size is necessary. This goal was achieved for
all the tasks considered: the MCE trained models significantly
outperformed the best ML models.

Benefits of High-Performing Small Models: At the same
time, the merits of improved performance with small models
should not be discounted. Small models often result in lighter
computation requirements for the same performance, and by
definition lead to lighter storage requirements. The latter factor
can be crucial for speech recognition implementations on small
computational devices, such as PDAs and cell phones.

Towards a Lattice-Based MCE Update: All but one set of
MCE results presented here were generated using (3), which
is to say, a 1-best implementation of (4). [The remaining set
of results used just 30 incorrect strings to implement (4)]. The
gains in performance reported in this article appear to us to be
especially significant when one considers the simplicity of the
1-best/ -best approach used. Nonetheless, a much richer im-
plementation of (4) may yield significantly better results. In par-
ticular, on the large vocabulary and highly unconstrained CSJ
task, where the difference between the top few recognition
outputs is typically limited to small, localized variations, a much

220 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 1, 2007

larger set of competitors may be desirable for discriminative
training. Note that the CSJ RERRs reported here, around 7%, are
low compared to the RERRs for the other tasks. They are also
low compared to MMI results reported for tasks such as Switch-
board [11]. This result may show the limitations of the 1-best or

-best paradigm, calling for a more sophisticated lattice-based
MCE update, along the lines first described in [27] and recently
evaluated in [47]. There are other explanations for the CSJ re-
sults, though. The baseline performance for this task may be
very “language model heavy,” in the sense that the language
model may be doing a larger share of the work than the acoustic
model, compared to the other tasks examined in this article. As
a result, discriminative training of the acoustic model may not
have as large an impact. Consistent with this point is the possi-
bility that the very large number of homonyms in Japanese may
limit the effect of discriminative training of acoustic models.
Furthermore, speaker adaptive training could have a large im-
pact on this task.

MCE, Corrective Training, and MMI: The scope of the
present study was limited to showing what can be achieved
with MCE, and not to comparing MCE with the more estab-
lished approach to large scale discriminative training, MMI
(or its word accuracy oriented successor, MPE). Nonetheless,
a clear benefit to MCE-style separation-oriented training com-
pared to the MMI-related corrective training approach was
described here for the JUPITER task. Corrective training can
be seen as a rough approximation to MMI, using the single
top recognition output to represent the denominator of the
MMI criterion function. However, it is not hard to implement a
substantially better version of MMI by using more recognition
outputs (with either an -best list or a lattice) in tandem with
acoustic scaling. The reader is referred to [47] for a comparison
of MCE, MMI, and MPE, using lattice-based updates for all
three methods.

IX. CONCLUSION

This article reviewed the MCE framework for discrimi-
native training of HMM-based speech recognition systems
and reported MCE results on challenging large vocabulary
speech recognition tasks. Several batch-oriented optimization
methods suitable for training on large databases using mul-
tiple computers were described and evaluated. It was shown
that recognition lattices, represented as WFSTs, can be used
successfully to speed up the MCE training procedure. The use
of a string set level discriminant function, implemented using
WFSTs, was proposed as a means to make the discriminative
training process focus on correct recognition of the desired
keyword sequence, while ignoring irrelevant filler words.

Overall, compared to traditional design based on ML/Viterbi
Training, MCE-based discriminative training on these tasks
yielded significant gains in recognition accuracy and system
compactness. On the 22 k name recognition task, an acoustic
model with 748 Gaussians, trained with MCE, outperformed
baseline ML models with up to 10 940 Gaussians. The best
MCE-trained model on this task outperforms the best ML
model by a relative error rate difference of 15.5%, and has

nearly three times fewer parameters. A similar pattern was
observed on the 2 k and 33 k word JUPITER weather information
tasks examined. On the Corpus of Spontaneous Japanese lec-
ture speech transcription task, relative improvements of 7.1%
and 7.4% were obtained over the ML baseline when evaluating
with 30 k and 100 k word trigrams, respectively. These results
were all obtained using a rather simple 1-best or -best MCE
update. Significant additional improvements may come from
the use of methods such as lattice-based MCE updating and
speaker adaptive training, as well as from the extension of the
MCE formalism to reflect word accuracy rather than string
accuracy, in a manner related to similar extensions to MMI
[44], [45].

APPENDIX

A. MCE Gradient

The derivatives for the MCE loss function have been de-
scribed in several sources [22], [75] but the reader may find the
following summary useful.

Here only the gradient for a single token is described; if
using a batch-oriented optimization algorithm, the gradient
should be summed over all training tokens. Assuming that
the speech token belongs to string set , the deriva-
tive of the loss w.r.t. a component of an
observation probability on Viterbi state sequence

for a string is

(14)

where the abbreviations and were
used. Furthermore, from (6)

(15)

and from (5) used with the general form, (4)

(16)

Assuming a large value of (corresponding to the use of (3)
rather than (4)), the latter expression reduces to

otherwise.
(17)

In this case, the derivative only exists for the correct and best
incorrect strings.

In practice, is accumulated along for each string
, adding to the partial derivative of the loss function with re-

spect to each component , which potentially ranges over all
mixing weight, mean vector, and covariance components. When
the number of possible strings is prohibitively large, only the top

MCDERMOTT et al.: DISCRIMINATIVE TRAINING FOR LARGE-VOCABULARY SPEECH RECOGNITION USING MCE 221

incorrect strings need be used to form an approximation of (4).
Accumulating in this manner over all training tokens allows one
to form the overall gradient, that can then be plugged into the
optimization procedure.

We now specify the rest of the partial derivatives. The
Gaussian mixture density used in the definition of

in (1) is defined as

(18)

where is a vector of components , and is a di-
agonal matrix of components . Using the abbreviation

, the partial derivatives of
with respect to the transformed mixing weight ,
mean vector component , and transformed inverse covari-
ance component , are, respectively,

(19)

These terms are then used to expand in (14).
Adaptation of , followed by the back transformation

during parameter updating, enforces the
constraint that the mixing weights must stay positive. The
additional constraint that the mixing weights must sum to one
can be maintained simply by renormalizing the weights after
each iteration of MCE (see [19] for a transformation-based
approach). Adaptation of the transformed inverse covariance
term, , results in greater numerical accuracy than adap-
tation of itself. Finally, in the interest of numerical
stability, a division by term has been dropped from the
true derivative for the mean [19].

ACKNOWLEDGMENT

The authors would like to thank the MIT Spoken Language
Systems Group for providing many of the WFST tools used in
this work. They wouls also like to thank T. Hori, T. Oba, and
K. Shimomura with help on the CSJ references and language
models.

REFERENCES

[1] B. M. D. Azzopardi, S. Semnani, and R. Wiseman, “Improving accu-
racy of telephony-based, speaker-independent speech recognition,” in
Int. Conf. Spoken Language Processing, 1998, vol. 2, pp. 301–304.

[2] J. Glass and T. Hazen, “Telephone-based conversational speech recog-
nition in the JUPITER domain,” in Int. Conf. Spoken Language Pro-
cessing, 1998, vol. 4, pp. 1327–1330.

[3] P. Brown, “The acoustic-modeling problem in automatic speech recog-
nition,” Ph.D. dissertation, Dept. Comput. Sci., Carnegie Mellon Univ.,
Pittsburgh, PA, 1987.

[4] T. Applebaum and B. B. Hanson, “Enhancing the discrimination of
speaker independent hidden Markov models with corrective training,”
in Proc. IEEE ICASSP, 1989, vol. 1, pp. 302–305.

[5] H. Franco and A. Serralheiro, “Training HMMs using a minimum error
approach,” in Proc. IEEE ICASSP, 1990, vol. 1, pp. 357–360.

[6] A. Ljolje, Y. Ephraim, and L. Rabiner, “Estimation of hidden Markov
model parameters by minimizing empirical error rate,” in Proc. IEEE
ICASSP, 1990, vol. 2, pp. 709–712.

[7] S. Katagiri, C.-H. Lee, and B.-H. Juang, “New discriminative
training algorithms based on the generalized descent method,” in
Proc. IEEE Worshop Neural Networks for Signal Processing, 1991,
pp. 299–308.

[8] H. Gish, “A minimum classification error, maximum likelihood, neural
network,” in Proc. IEEE ICASSP, 1992, vol. 2, pp. 289–292.

[9] J. Hampshire, “A differential theory of learning for efficient statistical
pattern recognition,” Ph.D. dissertation, Dept. Elect. Comput. Eng.,
Carnegie Mellon Univ., Pittsburgh, PA, 1991.

[10] V. Valtchev, J. J. Odell, P. C. Woodland, and S. J. Young, “Lat-
tice-based discriminative training for large vocabulary speech
recognition,” in Proc. Int. Conf. Spoken Language Processing, 1996,
vol. 2, pp. 605–609.

[11] P. Woodland and D. Povey, “Large scale discriminative training of
hidden Markov models for speech recognition,” Comput. Speech Lang.,
vol. 16, pp. 25–47, 2002.

[12] L. Nguyen and B. Xiang, “Light supervision in acoustic model
training,” in Proc. IEEE ICASSP, 2004, vol. 1, pp. 185–188.

[13] G. Evermann, H. Chan, M. Gales, B. Jia, D. Mrva, P. Woodland, and
K. Yu, “Training LVCSR systems on thousands of hours of data,” in
Proc. IEEE ICASSP, 2005, vol. 1, pp. 209–212.

[14] E. McDermott, A. Biem, S. Tenpaku, and S. Katagiri, “Discrimina-
tive training for large vocabulary telephone-based name recognition,”
in Proc. IEEE ICASSP, 2000, vol. 6, pp. 3739–3742.

[15] E. McDermott and T. J. Hazen, “Minimum classification error training
of landmark models for real-time continuous speech recognition,” in
Proc. IEEE ICASSP, 2004, vol. 1, pp. 937–940.

[16] E. McDermott and S. Katagiri, “Minimum classification error for large
scale speech recognition tasks using weighted finite state transducers,”
in Proc. IEEE ICASSP, 2005, vol. 1, pp. 113–116.

[17] S. Katagiri, C.-H. Lee, and B.-H. Juang, “A generalized probabilistic
descent method,” in Proc. Acoustical Society of Japan, Ser. Fall
Meeting ser. Fall Meeting, Sep. 1990, pp. 141–142.

[18] B.-H. Juang and S. Katagiri, “Discriminative Learning for minimum
error classification,” IEEE Trans. Acoust., Speech, Signal Process., vol.
40, no. 12, pp. 3043–3054, Dec. 1992.

[19] W. Chou, B.-H. Juang, and C.-H. Lee, “Segmental GPD training of
HMM based speech recognizer,” in Proc. IEEE ICASSP, Mar. 1992,
vol. 1, pp. 473–476.

[20] S. Katagiri, B.-H. Juang, and C.-H. Lee, “Pattern recognition using a
family of design algorithms based upon the generalized probabilistic
descent method,” Proc. IEEE, vol. 86, no. 11, pp. 2345–2373, Nov.
1998.

[21] M. Mohri, F. Pereira, and M. Riley, “Weighted finite state transducers
in speech recognition,” in Proc. Automatic Speech Recognition Work-
shop, 2000, pp. 97–106.

[22] E. McDermott, “Discriminative training for speech recognition,” Ph.D.
dissertation, School Eng., Waseda Univ., Tokyo, Japan, Mar. 1997.

[23] E. McDermott and S. Katagiri, “String-level MCE for continuous
phoneme recognition,” in Proc. Eurospeech, Rhodes, Greece, Sep.
1997, pp. 123–126.

[24] ——, “Prototype based discriminative training for various speech
units,” Comput. Speech Lang., vol. 8, pp. 351–368, 1994.

[25] W. Chou, C.-H. Lee, and B.-H. Juang, “Minimum error rate training
based on N-best string models,” in Proc. IEEE ICASSP, 1993, vol. 2,
pp. 652–655.

[26] W. Chou, C.-H. Lee, B.-H. Juang, and F.-K. Soong, “A minimum
speech error rate pattern recognition approach to speech recognition,”
Int. J. Pattern Recognition Artificial Intelligence, Special Issue on
Speech Recognition for Different Languages, vol. 8, no. 1, pp. 5–31,
1994.

[27] R. Schlueter, W. Macherey, B. Muller, and H. Ney, “Comparison of
discriminative training criteria and optimization methods for speech
recognition,” Speech Communication, vol. 34, no. 3, pp. 287–310,
2001.

[28] H. Jiang, O. Siohan, F.-K. Soong, and C.-H. Lee, “A dynamic in-search
discriminative training approach for large vocabulary speech recogni-
tion,” in Proc. ICASSP, 2002, vol. 1, pp. 113–116.

[29] T. Kawahara, H. Nanjo, T. Shinozaki, and S. Furui, “Benchmark test
for speech recognition using the corpus of spontaneous japanese,” in
Proc. Spontaneous Speech Processing Recognition Workshop, Tokyo,
Japan, 2003, pp. 135–138.

[30] A. Robinson, “Application of recurrent nets to phone probability esti-
mation,” IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 298–305, Mar.
1994.

222 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 1, 2007

[31] Y. Normandin, R. Lacouture, and R. Cardin, “MMIE training for large
vocabulary continuous speech recognition,” in Proc. Int. Conf. Spoken
Language Processing, 1994, vol. 3, pp. 1367–1370.

[32] B. Liu, H. Jiang, J.-L. Zhou, and R.-H. Wang, “Discriminative training
based on the criterion of least phone competing tokens for large vo-
cabulary speech recognition,” in Proc. IEEE ICASSP, 2005, vol. 1, pp.
117–120.

[33] E. McDermott and S. Katagiri, “A derivation of minimum classification
error from the theoretical classification risk using Parzen estimation,”
Comput. Speech Lang., vol. 18, pp. 107–122, 2004.

[34] R. Schlueter and H. Ney, “Model-based MCE bound to the true Bayes’
error,” IEEE Signal Process. Lett., vol. 8, no. 5, pp. 131–133, May
2001.

[35] A. Biem, S. Katagiri, E. McDermott, and B.-H. Juang, “An application
of discriminative feature extraction to filter-bank based speech recog-
nition,” IEEE Trans. Speech Audio Process., vol. 9, no. 2, pp. 96–110,
Mar. 2001.

[36] R. Chengalvarayan and L. Deng, “HMM-based speech recogni-
tion using state-dependent, discriminatively derived transforms on
Mel-warped DFT features,” IEEE Trans. Speech Audio Process., vol.
5, no. 3, pp. 243–256, May 1997.

[37] L. Deng, K. Wang, and W. Chou, “Guest editorial,” IEEE Signal
Process. Mag., vol. 22, no. 5, pp. 12–14, Sep. 2005.

[38] A. Biem, “Minimum classification error training of hidden Markov
models for handwriting recognition,” in Proc. IEEE ICASSP, 2001, vol.
3, pp. 1529–1532.

[39] C. Yen, S.-S. Kuo, and C.-H. Lee, “Minimum error rate training for
PHMM-based text recognition,” IEEE Trans. Image Process., vol. 8,
no. 8, pp. 1120–1124, Aug. 1999.

[40] S. Gao, W. Wu, C.-H. Lee, and T.-S. Chua, “A maximal figure-of-
merit learning approach to text categorization,” in Proc. ACM SIGIR
Conf. Research and Development in Information Retrieval, 2003, pp.
174–181.

[41] F. J. Och, “Minimum error rate training in statistical machine transla-
tion,” in ACL: Proc. Assoc. Comput. Ling., 2003, pp. 160–167.

[42] Y. Normandin, “Hidden Markov models, maximum mutual
information estimation, and the speech recognition problem,”
Ph.D. dissertation, Dept. Elect. Eng., McGill Univ., Montreal,
QC, Canada, 1991.

[43] P. S. Gopalakrishnan, D. Kanevsky, A. Nadas, D. Nahamoo, and M.
Picheny, “Decoder selection based on cross-entropies,” in Proc. IEEE
ICASSP, 1988, vol. 1, pp. 20–23.

[44] D. Povey and P. Woodland, “Minimum phone error and I-smoothing
for improved discriminative training,” in Proc. IEEE ICASSP, 2002,
vol. 1, pp. 105–108.

[45] D. Povey, “Discriminative training for large vocabulary speech recog-
nition,” Ph.D. dissertation, Univ. Cambridge, Cambridge, U.K., 2004.

[46] T. Hori, C. Hori, and Y. Minami, “Fast on-the-fly composition for
weighted finite-state transducers in 1.8 million-word vocabulary con-
tinuous speech recognition,” in Proc. Int. Conf. Spoken Language Pro-
cessing, 2004, vol. 1, pp. 289–292.

[47] W. Macherey, L. Haferkamp, R. Schlueter, and H. Ney, “Investigations
on error minimizing training criteria for discriminative training
in automatic speech recognition,” in Proc. Eurospeech, 2005,
pp. 2133–2136.

[48] R. Schlueter, W. Macherey, S. Kanthak, H. Ney, and L. Welling, “Com-
parison of optimization methods for discriminative training criteria,” in
Proc. Eurospeech, 1997, vol. 1, pp. 15–18.

[49] Q. Li and B.-H. Juang, “A new algorithm for fast discriminative
training,” in Proc. IEEE ICASSP, 2002, vol. 1, pp. 97–100.

[50] X. He and W. Chou, “Minimum classification error linear regression
for acoustic model adaptation of continuous density HMMs,” in Proc.
IEEE ICASSP, 2003, vol. 1, pp. 556–559.

[51] S. Amari, “A theory of adaptive pattern classifiers,” IEEE Trans. Elec-
tron. Comput., vol. EC-16, no. 3, pp. 299–307, Mar. 1967.

[52] L. Bottou, “Une approche théorique de l’apprentissage connection-
niste: Application à la reconnaissane de la parole,” Ph.D. dissertation,
Univ. de Paris Sud, Paris, France, 1991.

[53] S. E. Fahlman, An empirical study of learning speed in back-propa-
gation networks Canergie Mellon Univ., Pittsburgh, PA, 1988, Tech.
Rep..

[54] S. Kapadia, V. Valtchev, and S. J. Young, “MMI training for continuous
phoneme recognition on the TIMIT database,” in Proc. ICASSP, 1993,
vol. 2, pp. 491–494.

[55] R. Battiti, “First- and second- order methods for learning: Between
steepest descent and newton’s method,” Neural Comput., vol. 4, pp.
141–166, 1992.

[56] J. Leroux and E. McDermott, “Optimization methods for discrimina-
tive training,” in Proc. Eurospeech, 2005, pp. 3341–3344.

[57] M. Riedmiller and H. Braun, “A direct adaptive method for faster back-
propagation learning: The RPROP algorithm,” in Proc. IEEE Intl. Conf.
Neural Networks, San Francisco, CA, 1993, pp. 586–591 [Online].
Available: http://www.citeseer.ist.psu.edu/riedmiller93direct.html

[58] D. Kanevsky, “A generalization of the Baum algorithm to functions on
nonlinear manifolds,” in Proc. IEEE ICASSP, 1995, pp. 473–476.

[59] K.-F. Lee and H.-W. Hon, “Speaker-independent phone recognition
using hidden Markov models,” IEEE Trans. Acoustics, Speech, Signal
Process., vol. 37, no. 11, pp. 1641–1648, Nov. 1989.

[60] P. Clarkson and P. Moreno, “On the use of support vector machines
for phonetic classification,” in Proc. IEEE ICASSP, 1999, vol. 2, pp.
585–588.

[61] A. Halberstadt and J. Glass, “Heterogeneous measurements and mul-
tiple classifiers for speech recognition,” in Proc. ICSLP, Sydney, Aus-
tralia, Dec. 1998, pp. 995–998.

[62] A. Gunawardana, M. Mahajan, A. Acero, and J. Platt, “Hidden con-
ditional random fields for phone classification,” in Proc. Eurospeech,
2005, pp. 1117–1120.

[63] J. Odell, “The use of context in large vocabulary speech recognition,”
Ph.D. dissertation, Univ. Cambridge, Cambridge, U.K., 1995.

[64] S. Young and P. Woodland, “State clustering in hidden Markov model-
based continuous speech recognition,” Comput. Speech Lang., vol. 8,
pp. 369–383, 1994.

[65] L. Wang and P. Woodland, “Discriminative adaptive training using the
MPE criterion,” in Proc. ASRU, 2003, pp. 279–284.

[66] H. Hermansky and N. Morgan, “RASTA processing of speech,” IEEE
Trans. Speech Audio Process., vol. 2, no. 4, pp. 578–589, Mar. 1994.

[67] V. Zue et al., “JUPITER: A telephone-based conversational interface
for weather information,” IEEE Trans. Speech Audio Process., vol. 8,
no. 1, pp. 85–96, Jan. 2000.

[68] J. Glass, “A probabilistic framework for segment-based speech recog-
nition,” Comput. Speech Lang., vol. 17, no. 2–3, pp. 137–152, Apr.–Jul.
2003.

[69] T. Hazen, S. Seneff, and J. Polifroni, “Recognition confidence scoring
for use in speech understanding systems,” Comput. Speech Lang., vol.
16, no. 1, pp. 49–67, Jan. 2002.

[70] I. Bazzi and J. Glass, “A multi-class approach for modelling
out-of-vocabulary words,” in Proc. ICSLP, Denver, CO, Sep. 2002,
pp. 1613–1616.

[71] C. Meyer and G. Rose, “Improved noise robustness by corrective and
rival training,” in Proc. ICASSP, 2001, vol. 1, pp. 293–296.

[72] D. Willett, “Error-weighted discriminative training for HMM param-
eter estimation,” in Proc. Int. Conf. Spoken Language Processing,
2004, pp. 1661–1664.

[73] J. E. Dennis and R. B. Schnabel, “Numerical methods for uncon-
strained optimization and nonlinear equations,” in Classics in Applied
Mathematics. Philadelphia, PA: SIAM, 1996.

[74] L. E. Scales, Introduction to Non-Linear Optimization. New York:
Macmillan, 1985.

[75] D. Rainton and S. Sagayama, “Minimum error classification training of
HMMs—Implementation details and experimental results,” J. Acoust.
Soc. Jpn., vol. 13, no. 6, pp. 379–387, 1992.

Erik McDermott (M’03) received the B.S. degree
from Stanford University, (Symbolic Systems Pro-
gram), Stanford, CA, in 1987 and the Ph.D. degree
from the School of Engineering, Waseda University,
Tokyo, Japan, in 1997.

He has been a Research Specialist at Nippon
Telegraph and Telephone Corporation (NTT), Com-
munication Science Laboratories, Kyoto, Japan,
since December 1999. From 1987 to 1991, he
worked at ATR Auditory and Visual Perception
Research Laboratories, Kyoto, and at ATR Human

Information Processing Laboratories from 1991 to 1999. He spent six months
in 2000 in the SRI Speech Technology Laboratory, and one month in 2003 in
the Massachusetts Institute of Technology Spoken Language Systems Group.
His research has primarily been in speech recognition, with a focus on acoustic
modeling paradigms for hidden Markov model (HMM)-based speech recogni-
tion. His recent work has focused on improving both theoretical and practical
aspects of discriminative training applied to speech recognition system design.

MCDERMOTT et al.: DISCRIMINATIVE TRAINING FOR LARGE-VOCABULARY SPEECH RECOGNITION USING MCE 223

Timothy J. Hazen (M’04) received the B.S., M.S.,
and Ph.D. degrees from the Massachusetts Institute
of Technology (MIT), Cambridge, in 1991, 1993, and
1998, respectively.

He is a Research Scientist at the MIT Computer
Science and Artificial Intelligence Laboratory,
where he works in the areas of automatic speech
recognition, automatic person identification, multi-
modal speech processing, and conversational speech
systems.

Dr. Hazen is an Associate Editor for the IEEE
TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING.

Jonathan Le Roux received the degree in mathe-
matics from the Ecole Normale Supérieure, Paris,
France, the M.Sc. degree in partial differential
equations from the University of Paris XI, Paris, in
2001, and the M.Sc. degree in stochastic processes
from the University of Paris VI, Paris, in 2003 and is
currently pursuing the Ph.D. degree at the Graduate
School of Computer Science, Telecommunications
and Electronics of Paris, University of Paris VI, and
in the Graduate School of Information Science and
Technology, Department of Information Physics and

Computing, University of Tokyo, Tokyo, Japan.

Atsushi Nakamura (M’03) received the B.E., M.E.,
and Dr. Eng. degrees from Kyushu University,
Fukuoka, Japan, in 1985, 1987, and 2001, respec-
tively.

In 1987, he joined Nippon Telegraph and Tele-
phone Corporation (NTT), Musashino Electrical
Communication Laboratories, Tokyo, Japan, where
he was engaged in the research and development
of network service platforms, including studies
on application of speech processing technologies
into network services. From 1994 to 2000, he was

with Advanced Telecommunications Research (ATR) Institute, Kyoto, Japan,
as a Senior Researcher, where he was engaged in research on spontaneous
speech recognition, the construction of spoken language databases, and the
development of speech translation systems. Since April, 2000, he has been
with NTT Communication Science Laboratories, Kyoto. His research interests
include acoustic modeling of speech, speech recognition and synthesis, spoken
language processing systems, speech production and perception, computational
phonetics and phonology, and the application of learning theories to signal
analysis and modeling.

Dr. Nakamura is a member of the Institute of Electronics, Information and
Communication Engineering (IEICE) and the Acoustical Society of Japan
(ASJ). He received the Best Paper Award from the IEICE in 2004.

Shigeru Katagiri (M’88–SM’97–F’01) received the
B.E. degree in electrical engineering and the M.E.
and Dr.Eng. degrees in information engineering from
Tohoku University, Sendai, Japan, in 1977, 1979, and
1982, respectively.

From 1982 to 1986, he was with the Electrical
Communication Laboratories, Nippon Telegraph
and Telephone Public Corporation (currently NTT),
Tokyo, Japan. From 1986 to 1998, he was with the
Advanced Telecommunications Research Institute,
Int. (ATR), Kyoto, Japan. Since 1999, he has been

with NTT Communication Science Laboratories (CS Labs), Kyoto, Japan,
where he currently serves as Director of NTT CS Labs. In addition to the
above, from 1989 to 1990, he was a Visiting Researcher in the Speech Research
Department, AT&T Bell Laboratories, Murray Hill, NJ. From 1998 to 2004, he
also served as an Adjunct Professor at the Graduate School of Kyoto University.
His research interests include studies on pattern recognition and multimodal
telecommunications.

Dr. Katagiri is an NTT R&D Fellow.

