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ABSTRACT

Many sounds that humans encounter are hierarchical in na-
ture; a piano note is one of many played during a perfor-
mance, which is one of many instruments in a band, which
might be playing in a bar with other noises occurring. In-
spired by this, we re-frame the musical source separation
problem as hierarchical, combining similar instruments to-
gether at certain levels and separating them at other levels.
This allows us to deconstruct the same mixture in multi-
ple ways, depending on the appropriate level of the hier-
archy for a given application. In this paper, we present
various methods for hierarchical musical instrument sepa-
ration, with some methods focusing on separating specific
instruments (like guitars) and other methods that determine
what to separate based on a user-supplied audio example.
We additionally show that separating all hierarchy levels is
possible even when training data is limited at fine-grained
levels of the hierarchy.

1. INTRODUCTION

The field of source separation has seen notable perfor-
mance improvements with the introduction of deep learn-
ing techniques, most notably in the areas of speech en-
hancement [1–4], speech separation [5–8], and music sepa-
ration [9–12]. These techniques succeed in cases where the
notion of a source is well defined; in the case of speech en-
hancement or separation, the target is always defined as the
speech of a single speaker. However, real-world scenarios
can have more complicated definitions of a source. Con-
sider the case where a band is playing on the radio while
two people are having a conversation: how does one seg-
ment this audio scene? Is the radio one source and the
talkers each a source? Or are each of the instruments in the
band on the radio a source as well? Clearly, there are many
correct answers to this question, but one way to understand
this auditory scene is to apply a hierarchical structure to
its parts. In this work, we re-frame the source separation
problem as hierarchical, focusing on the example of mu-
sic source separation, where we use musical instruments
as elements in a complex hierarchical auditory scene.

When considering music separation, determining what
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Figure 1. Annotated t-SNE [13] projection of the learned
anchors from a hierarchical query-by-example separation
model on a test set.

constitutes a target source is not well defined. Even in a
well-studied problem like singing voice separation [9–11],
in which the singer is isolated from non-vocal background
music, the definition of what is “singing voice” is some-
what muddled. Many popular songs often contain a lead
vocal part, possibly several additional background vocal
parts, and sometimes additional vocal effect tracks. This
is a simple case; when we consider instrument categories
with a larger variety of possible timbres, like synthesizers
or guitars, deciding what particular instrument part to iso-
late can become even harder to nail down. One may want
to go even further and separate each instrument into unique
notes or chord instances.

Framing a musical scene as hierarchical has precedent
in fields that study human audition. Evidence shows that
human auditory perception has many hierarchical charac-
teristics [14–17]. As Bregman notes in Auditory Scene
Analysis [18]: “It makes sense [...] to think of the audi-
tory perceptual organization of [a musical] duet as having
a hierarchical structure [...]. This argument implies that
there are levels of perceptual belongingness intermediate
between ‘the same thing’ and ‘unrelated things”’. While
perceptual auditory hierarchies can involve timing, timbre,
rhythm, and much more, in this paper we focus on the task
of building hierarchical source separation systems via an
instrument hierarchy.

In the field of musicology, musical instruments have
long been thought of as hierarchical. Almost all hu-
man cultures throughout history have created musical in-
strument classification systems [19], many of which are
inherently hierarchical. One prominent example is the



Hornbostel-Sachs system [20], which classifies musical
instruments by their sound production mechanisms in a
hierarchical manner similar to the Dewey Decimal Sys-
tem [21]. Another system widely used in Western music
classifies instruments by their musical range, with terms
named after singing voice classifications: soprano, alto,
etc. We use a hierarchy inspired by both of these ap-
proaches for hierarchical source separation.

There is also an element of a musical instrument hierar-
chy when making recordings in the recording studio. Each
track is assumed to be an isolated recording of a single in-
strument, or part of one instrument. At the mixing board,
a sound engineer can mix together multiple tracks into a
“submix”, which acts as a single unit in the recording ses-
sion, having effects and other signal routing configurations
be specific to the submix rather than the individual tracks
therein [22]. The submixes are then manipulated alongside
other tracks, which may contain only a single instrument.
For example, a standard practice is to record every sepa-
rate piece of a drum kit with a single microphone and then
combine those into a drum submix. This configuration is
hierarchical; the engineer can choose to manipulate all of
the drum sounds (the drum submix) or manipulate individ-
ual drum tracks within it.

In this paper, we re-frame the problem of musical
source separation as hierarchical. We propose two main
strategies for hierarchical source separation, one solely
based on the well-studied source-specific mask inference
approach to source separation [3], and another based on
more recently proposed query-by-example source separa-
tion systems [23,24]. In both cases, we learn to simultane-
ously separate submixes of instruments corresponding to
multiple levels of an instrument label hierarchy. By learn-
ing to separate sources at multiple levels of granularity, we
observe performance benefits even in cases where training
data is limited for the most fine-grained source types.

2. RELATED WORK

Music source separation has recently seen a great deal of
success. Most of this success is owed to the availability of
the MUSDB18 [25] dataset. This dataset has avoided the
“source definition ambiguity” by grouping all audio within
a track into four target sources: vocals, bass, drums, and
other. The “other” source contains a variety of different
instruments, like guitars, pianos, strings, and synthesizers.
While MUSDB18 has undoubtedly helped to advance the
field of music source separation, its source groupings re-
main overly coarse for many real-world remixing applica-
tions. In this work, we propose systems to separate sources
historically grouped as the “other” source.

Our proposed work is related to source separation al-
gorithms that attempt to estimate multiple musical sources
with one network. Some works accomplish this by out-
putting a set of masks for each target source, improving
performance via specialized training techniques [26,27] or
by giving the networks additional tasks to solve, like music
transcription [28]. Other works accomplish this by condi-
tioning a network to output different sources depending on

the desired source [23, 29, 30]. None of these approaches
have any requirements that the sources they separate have
any inherent structure in relation to other sources, espe-
cially not in a hierarchical manner as we propose here.

This work also draws inspiration from query-by-
example (QBE) networks. Within the speech separation
literature, the task of using a query to separate a spe-
cific speaker from a mixture with many speakers is called
speaker extraction, and this task has garnered much atten-
tion recently [31–33]. Specifically, this work builds off of
work [34] that extends deep attractor networks [35] for the
QBE case. Deep attractor networks have been successfully
used for music separation [23,36], where QBE music sepa-
ration was considered as an auxiliary benefit of the learned
embedding space. Although systems specifically tailored
to QBE separation of musical instruments have also been
proposed [24], none of these systems assume or enforce
any hierarchical structure on an auditory scene.

3. AUDITORY HIERARCHIES
In this work, we are interested in hierarchies of sound
producing objects, where top levels of the hierarchy cor-
respond to broad groups (e.g., midrange stringed instru-
ments) and lower levels are more specific (e.g., acoustic
guitar). With regard to source separation, we can define
an auditory hierarchy such that sources at higher levels in
the hierarchy are composed of mixtures of sources at lower
levels of the hierarchy. Each source node can potentially be
further separated into child sources and combined with its
siblings to create parent sources. Considering a hierarchy
with L levels, we denote by Sl,c the c-th source type node
at hierarchy level l, for l = 1, . . . , L, where we assume that
the set of leaf source types S1,c cannot be decomposed into
further source types, and SL,1 is the sole source type at the
top of the hierarchy and includes all source types. Further
denoting by Cl,c the set of indices of the child sources at
level l − 1 of Sl,c, the hierarchy can be defined as

Sl,c =
⋃

c′∈Cl,c

Sl−1,c′ ,∀l = 2, . . . , L. (1)

We define a path down the hierarchy as a sequence of
source types from a beginning source type node Sa to a
destination source type node Sb at a lower level.

When using this hierarchy to decompose a mixture x,
we denote by Sl,c the corresponding source component in
x whose source type is Sl,c, where the submix of all signals
of the same type are considered as a single component. By
definition, SL,1 = x. Each c-th source component Sl,c at a
level l can be decomposed into source components Sl−1,c′ ,
such that Sl−1,c′ is the signal corresponding to all sources
belonging to the child source type Sl−1,c′ :

Sl,c =
∑

c′∈Cl,c

Sl−1,c′ , s.t. Sl−1,c′ ∈ Sl−1,c′ , (2)

for l = 2, . . . , L. For simplicity, we use the sum opera-
tor to denote mixing, although the mixing process is often
more complex than a simple summation of signals.

In this paper, we specifically examine auditory hierar-
chies composed of mixtures of musical instruments, but



we note that this hierarchical formulation can be applied to
mixtures with any type of source content.

4. HIERARCHICAL SOURCE SEPARATION

In general, source separation is formulated as trying to
estimate C complex spectrograms, Sc ∈ CF×T for c =
1, . . . , C, that represent a set of desired sources within the
spectrogram X ∈ CF×T of an audio mixture. In this gen-
eral formulation, there is no requirement that source Sc

have any relationship to source Sd, for c 6= d.
Given an audio mixture X , a hierarchical separation al-

gorithm under a given hierarchy may attempt to extract a
submix of all sources belonging to some source type Sl,c at
a level l. For instance, separating out all guitars (acoustic
and electric) from a mixture that includes electric guitar,
acoustic guitar, piano, and drums (as depicted in Fig. 2).

4.1 Hierarchical Source-Specific Separation

Conventional source-specific separation (SSS) networks
based on mask inference typically attempt to estimate a
real-valued mask M̂c ∈ RF×T for a single target source
c by minimizing some distortion measure between the
source estimate obtained from the mask and a reference Sc.
A commonly used example of such an objective function,
which we use in this work, is the truncated phase sensitive
approximation (tPSA) objective [3]:

LtPSA =
∥∥∥M̂c � |X| − T

|X|
0 (|Sc| � cos(∠Sc − ∠X))

∥∥∥
1
,

(3)

where � denotes element-wise product, |Y | and ∠Y de-
note the magnitude and phase of a spectrogram Y , and
T
|X|
0 (x) = min(max(x, 0), |X|) is a truncation function

ensuring the target can be reached with a sigmoid acti-
vation function. The estimated mask M̂c is element-wise
multiplied with the original mixture spectrogram X to ob-
tain an estimate for the target source Sc.

As a first naive strategy for building hierarchical SSS
networks, we can train single networks which output a sin-
gle node Sn,c at a given level of the hierarchy. Each such
single-level network can be trained to minimize the tPSA
objective above, where the target source is Sn,c, the com-
ponent corresponding to the targeted source type in the hi-
erarchy within the mixture X . Each of these networks out-
puts one mask M̂n,c for its targeted source type, and they
are trained independently of each other.

In order to make further use of the hierarchical struc-
ture of the data, we propose a multi-level strategy in which
we train a network to output multiple levels of the hier-
archy at once. A potential advantage of this strategy is
that the network may be able to leverage learned knowl-
edge about a mask M̂n,c to reinforce and improve its es-
timate for another mask M̂n′,c′ in the hierarchy. A triv-
ial implementation of this strategy would be to output a
mask for each leaf node in the hierarchy, and recompose
the leaf sources as we travel through the hierarchy, train-
ing the network by combining loss functions for all nodes

Figure 2. One of the proposed methods for hierarchical
source separation. We assume that a mixture contains a hi-
erarchy of musical instruments (bottom left), and use an
audio query (the green electric guitar, top left) to sepa-
rate instruments at multiple levels of the hierarchy, with
the closest target at the lowest level (blue electric guitar).

in the hierarchy. However, any sufficiently realistic hierar-
chy likely contains dozens of leaf nodes, leading to mem-
ory and computation issues as well as difficulties balancing
the contributions of all the losses. To avoid these issues,
we consider instead a single network that outputs N masks
for N levels along a single path down the hierarchy, e.g.,
[strings/keys] → [guitars] → [clean guitars] (“Clean” in-
dicates acoustic and electric guitars with no overdrive or
distortion applied).

4.2 Hierarchical Query-by-Example

The approaches described above cannot capture many in-
struments in an instrument hierarchy: using one network
per level only allows the network to learn one node in the
hierarchy at a time, and using a multilevel network only
learns one path down the instrument hierarchy. If we want
to capture relationships between different instruments in a
hierarchy, we need a method for separating multiple instru-
ments at different levels with a single network.

A successful recent strategy involves query-by-example
(QBE) networks that ingest a mixture and an example of
the desired source to separate from the mixture [24]. By
extending this to a hierarchical case, we can model an en-
tire instrument hierarchy for source separation. Note that,
instead of conditioning on a query, we could alternatively
condition the separation on the leaf node label, leading to
a hierarchical extension of conditional source separation
methods [23, 29, 30]. We here focus on QBE, as an audio
query can be considered as a generalization of a class la-
bel, and QBE may further provide the ability to interpolate
to unseen source types during inference.

Our proposed realization of hierarchical QBE relies on
two networks, a query net and a masking net. The query
net calculates a query anchor Aq ∈ Rk for some input
query Q ∈ RF×Tq as a weighted sum of k-dimensional
query embeddings Vq,i produced by the network at each
time-frequency bin i = (f, t) of the query spectrogram
space:

Aq =

∑
i Pq,iVq,i∑

i Pq,i
, (4)



where Pq ∈ RFTq is a query presence vector for query Q,
defined such that Pq,i = 1 if the magnitude at bin i = (f, t)
is above a threshold (set to -60 dB from the maximum in
our experiments), and 0 otherwise. The query anchor Aq is
concatenated with the frequency vector of the mixture Xt

at each frame t, and used as input to the masking network,
which produces, for each hierarchy layer n of interest, a
mask M̂n,c for a target source Sn,c which is in the same
node Sn,c of the hierarchy as the query Q. This architec-
ture is depicted in Fig. 2.

This QBE system is trained to minimize the tPSA objec-
tive in Eq. 3 based on a target source Sn,c, where the target
source used to train the network is here determined both
by the query and a given level in the hierarchy. Other QBE
systems [24] apply a loss directly on the query embedding
space; while we leave this direction to future work, we note
that we are already able to learn some form of hierarchical
structure without introducing a specific loss on the embed-
ding space, as exemplified in Fig. 1.

Using an acoustic guitar query as example, the train-
ing procedure for a hierarchical QBE system is as follows:
an acoustic guitar query is used to train a network that at-
tempts to extract the corresponding sources at the leaf node
level, in which case the target will consist of the submix
of all clean guitars in the mixture. Note that we leave the
problem of separating instruments of the same fine-grained
type (e.g., multiple clean guitars) using techniques such as
permutation-invariant training [5, 6] for future work. The
same acoustic guitar query may also be used to train a net-
work that attempts to extract the corresponding sources one
level up, in which case the target will consist of the submix
of all guitars in the mixture, regardless of whether they are
clean guitars or not. When there is no target in the mix-
ture corresponding to the query at the given level of the
hierarchy, the target is set to silence.

As with hierarchical SSS networks, we can make a
single-level QBE network for each separate level in the
hierarchy and only separate instruments at that level, as
described in the above example, or we can make a single
hierarchical multi-level QBE network that returns multiple
(or even all) levels of the hierarchy. For the latter strategy,
we can consider enforcing a hierarchical constraint on the
masks, as described below.

4.3 Constraints on Hierarchical Masks

Assuming the components of a mixture exist in some hi-
erarchy, we can leverage knowledge about its structure to
impart constraints on the network. For instance, we can use
the relationship defined in Eq. 2 to require the set of masks
produced by a multi-level hierarchical network to follow
the same structure as the hierarchy, namely that masks at
higher levels be composed of masks at lower levels.

However, this would require us to output masks for ev-
ery node in the hierarchy, which is infeasible for any suf-
ficiently realistic hierarchy. Instead, we consider imposing
a hierarchical constraint that does not depend on knowl-
edge of the whole hierarchy. This hierarchical constraint
requires that masks at higher levels in the hierarchy must

Level Submixes to be separated
3 Keyboards, guitars, and orchestral strings
2 All guitars (both clean and effected)
1 Only clean guitars (both electric and acoustic)

Table 1. Contents of hierarchical levels used for train-
ing and testing the hierarchical single-instrument source-
specific separation (SSS) networks1. Hierarchical SSS can
only learn one path down the hierarchy at a time.

apportion at least the same amount of energy as masks at
lower levels. More precisely, the mask at level l is set as

M̂l = max(M̂ ′l , M̂l−1), (5)

where max is applied element-wise to every TF bin, and
M̂ ′l is the mask estimate output by the network for level l.

5. EXPERIMENTAL DESIGN

We design a set of experiments to determine the validity of
our hierarchical source separation methods outlined above.
We want to understand how well the proposed methods
work in a hierarchical scenario. We look specifically at
the case of a musical instrument hierarchy.

5.1 Dataset and Evaluation

To test the proposed methods in this paper, we required
a large dataset with isolated sources of many instruments
that could be combined in a hierarchical way. Specifi-
cally, we required a dataset with a wide variety of granular
source labels, i.e., not only “guitars”, but “acoustic gui-
tars”, “electric guitars”, “effected guitars”, and so on for
every instrument in the dataset. Because of this, we chose
Slakh2100 [37], which contains 2,100 musical mixtures
along with isolated sources. This dataset has 145 hours
of mixture data split into 34 instrument categories.

Before selecting excerpts from the dataset, we created
a musical instrument hierarchy from Slakh’s included in-
strument categories 1 . For these experiments, we define
a hierarchy with three levels (excluding the trivial level
consisting of the mixtures of all sources). The top level
contains four categories: mid-range strings and keys (gui-
tars, keyboards, and orchestral strings), bass instruments
(acoustic and electric basses), winds (flutes, reeds, and
brass), and percussion (drum sets and chromatic percus-
sion). The middle level has seven categories (e.g., from
mid-range strings: orchestral strings, guitars, keyboards,
and electric keyboards), and the lowest level has eighteen
categories (e.g., from guitars: clean guitars, and effected
guitars). We note that this is just one of many possible hi-
erarchies and almost all of the instruments described here
would be classified as “other” in MUSDB18 [25].

To select examples from the dataset, we create multi-
ple instantaneous submixes for each track, corresponding
to the different levels of the hierarchy. As an example il-
lustrated in Table 1, at the highest level, all pianos, guitars,
and strings are considered one source, while at the next

1 The full hierarchy can be seen at: https://git.io/JJ4gx



level all guitars are considered one source, and at the low-
est level only clean guitars are considered one source. For
each mixture in the dataset, we compute the saliency of
each hierarchical submix in 10 second chunks, with a hop
size of 2.5 seconds. If the source in the submix has en-
ergy above -30 dB in that chunk, it is considered salient.
For the experiments involving multiple levels, we ensure
that for a given node, its parent (or grandparent) has en-
ergy from child nodes other than itself. In other words, we
want to make sure that a parent is not exactly the same as
the child, meaning that some of the child node’s siblings or
cousins are also salient.

For our experiments, we use the Slakh2100-split2 strat-
ification and downsample the audio to 16 kHz. We do
the mixing on the fly and select chunks randomly from
the pool of salient examples for the specific experiment.
For training, the networks see 20,000 examples per epoch
(≈55.5 h), and we use 3,000 examples (≈8.3 h) for the
validation and test sets. To ensure we have enough exam-
ples and a rich enough hierarchy to train, for the hierarchi-
cal SSS experiments we choose to separate sources down a
path of the hierarchy as shown in Table 1, although the pro-
posed methods can be extended to other paths down this
or other hierarchies. For the QBE networks, we separate
every instrument type in the hierarchy. Query chunks are
selected from the pool of salient chunks such that they are
always leaf nodes along the same path as the target regard-
less of the target level, but originate from different tracks.

For all experiments, we use the scale-invariant source-
to-distortion ratio (SI-SDR) [38] to determine the output
quality of our models. For reference, we also report the
SI-SDR when doing no processing on the mixes.

5.2 Experiments and Model Configurations

In this paper, we evaluate four types of hierarchical source
separation models. We vary models along two dimensions:
whether they are single-instrument (i.e., source-specific
separation, or SSS) or multi-instrument (i.e., query-by-
example, or QBE), and whether they output a single level,
or multiple levels. We describe each configuration below:

• Single-instrument, Single-level: A trio of instrument-
specific SSS models each corresponding to one level of
the hierarchy along one hierarchical path.

• Single-instrument, Multi-level: One SSS model that
outputs a hierarchical set of masks, separating at all lev-
els of a single hierarchical path simultaneously.

• Multi-instrument, Single-level: A trio of multi-
instrument QBE models outputting one mask at one level
of the hierarchy as determined by an input query.

• Multi-instrument, Multi-level: One QBE model that
outputs a hierarchical set of masks for every level of the
hierarchy along a path determined by an input query.

For the single-instrument models, we separate along
one path of the hierarchy as referenced in Table 1. The
multi-instrument, multi-level model is trained to separate a
source based on a query, and thus can learn the full hierar-
chy (i.e., all instruments) instead of just one path as in the
single-instrument, multi-level case.

Model Type HC Level 3 Level 2 Level 1
SSS (Guitar) 3.5 4.0 4.0
SSS (Guitar) 3 3.2 3.6 3.8

QBE 3.2 2.4 0.2
QBE 3 3.3 2.1 1.6

Table 2. Improvement in SI-SDR (dB) for hierarchical
SSS (Guitar) and QBE models. Each model is trained ei-
ther with the hierarchical constraint (HC) described in Sec-
tion 4.3 or with no constraints on the masks produced for
sources at different levels of granularity.

For the multi-level models, we test the effect of the hi-
erarchical constraint proposed in Section 4.3. We can also
test how well they learn with limited data about the leaf
source. To do this, we train the three-level SSS and QBE
models under the assumption that the leaf ground truth is
unavailable either 50% or 90% of the time, in which cases
only the upper levels are directly involved in the objective
function. For comparison, we also evaluate models where
all nodes are missing either 50% or 90% of the time during
training. These experiments can tell us how well the multi-
level network can leverage higher (i.e., coarser) levels of
the hierarchy at the leaf node. Such an ability would be
particularly advantageous as it is typically more difficult
to collect data with fine-grained ground truth sources com-
pared to data with a mixture and only a few source compo-
nents gathered in broad categories, and could potentially
help breaking open the “other” category of MUSDB18
with limited annotations.

All single-level and multi-level networks we test have
the same architecture. The SSS models are composed of
4 bidirectional long short-term memory (BLSTM) layers
with 600 hidden units in each direction and dropout of 0.3,
followed by a fully connected layer with sigmoid activation
function that outputs a mask. As described in Section 4.2,
the QBE models are composed of two sub-networks, a
query net and a masking net. The query net is composed
of 2 BLSTM layers with 600 nodes in each direction and
dropout of 0.3, followed by a fully-connected layer with
linear activation that maps each time-frequency bin to an
embedding space with 20 dimensions. The masking net
is the same as the SSS models, with a larger input feature
vector to accommodate the concatenated query anchor.

All models were trained with the Adam optimizer at a
learning rate of 1e-4 for 100 epochs and a batch size of 25.
The learning rate was halved if the loss on the validation
set did not decrease for 5 straight epochs. The gradient was
clipped to the 10th percentile of historical gradient norms
if the norm of the minibatch was above that value [39].

6. RESULTS

In Table 2, we examine the effect of the hierarchical con-
straint (HC) on multi-level hierarchical networks. We
observe that, for the source-specific separation network
(which in this case only separates guitars), the HC slightly
diminishes performance at all levels, indicating that SSS
models are able to learn the specific hierarchical relation-



#
lv

ls All Levels Level 3 Level 2 Level 1

Model Type Mix SI-SDR ∆ Mix SI-SDR ∆ Mix SI-SDR ∆ Mix SI-SDR ∆

SSS (Guitar) 1 −3.9 −2.1 1.8 0.9 4.1 3.2 −5.9 −3.2 2.7 −6.6 −7.3 −0.7
SSS (Guitar) 3 −3.9 0.0 3.9 0.9 4.3 3.4 −5.9 −1.9 4.0 −6.6 −2.6 4.0

QBE 1 −4.9 −3.9 1.0 −1.3 2.0 3.3 −5.3 −3.9 1.4 −8.0 −9.8 −1.9
QBE 3 −4.9 −2.5 2.3 −1.3 2.0 3.3 −5.3 −3.2 2.1 −8.0 −6.4 1.6

Table 3. SSS and QBE model results in terms of SI-SDR (dB), where ∆ denotes improvement over the noisy mix. SSS
networks are only trained to separate sources in the hierarchy containing clean guitars (See Table 1), whereas QBE networks
separate any source in the hierarchy. Here we compare single-level networks (denoted by a “1”) to multi-level networks
(denoted “3”). There is only one multi-level network for all three levels, but three single-level networks (one for each level).

Data
Reduction Levels

% type All Level 3 Level 2 Level 1

SS
S

(G
ui

ta
r) 0 - 3.8 3.5 4.0 4.0

50 all 3.3 3.1 3.4 3.4
50 leaf 3.5 3.3 3.6 3.6
90 all 0.1 1.5 −0.7 −0.5
90 leaf 3.6 3.4 3.7 3.7

Mix −3.9 0.9 −5.9 −6.6

Q
B

E

0 - 2.3 3.3 2.1 1.6
50 all −1.5 −2.1 −1.4 −1.1
50 leaf 2.2 3.4 2.1 1.1
90 all −1.8 −2.1 −1.8 −1.5
90 leaf 1.9 3.1 1.7 0.8

Mix −4.9 −1.3 −5.3 −8.0

Table 4. SI-SDR improvement (dB) over the unprocessed
mix (“Mix”) for hierarchical SSS and QBE models (sepa-
rated by the thick broken line). Each model is trained while
removing either just the leaf (“leaf”) or the whole example
(“all”) for a specified percentage of the data. Reducing just
leaf nodes up to 90% shows only a 0.3 dB drop for SSS and
0.8 dB drop for QBE compared to using all of the leaves.

ship for a single source (in this case, guitar) at different
levels without additional help. For the query-by-example
network (which separates all types of instruments), the HC
marginally hinders performance at Level 2, but helps con-
siderably for the leaf node (Level 1). We hypothesize that
QBE networks benefit more because they are unable to
learn the specific mask “shapes” of any individual source,
and thus need the additional help offered by the HC. There-
fore, in all subsequent experiments we include the HC for
QBE networks, but omit it for the SSS networks.

In Table 3, we expand on the results from Table 2 and
compare the results from single-level and multi-level hi-
erarchical models for both SSS and QBE separation mod-
els. In both cases, the multi-level hierarchical networks im-
prove over the single-level models, with the largest gains
occurring at lower hierarchy levels. This implies that the
networks can leverage their shared knowledge of the hier-
archy to aid themselves at the lower levels, where individ-
ual instruments are more difficult to discern in the mix.

From the Level 1 results in Table 3, we see that sepa-

rating sources at this fine level of detail (e.g., clean elec-
tric guitars vs. distorted electric guitars) is extremely dif-
ficult, especially with a MIDI-synthesized data set such as
Slakh2100, where several different instrument types may
sound similar. In fact, when trying to train a single network
to only separate these fine-grained sources, we are unsuc-
cessful as noted by the negative SI-SDR improvements in
the # lvls=1 (single level) rows for Level 1 sources. Train-
ing networks on multiple levels simultaneously mitigates
this to some extent, although we have informally noticed
the multi-level network sometimes outputting nearly iden-
tical separated sources between Level 1 and Level 2. We
also note that the highest output SI-SDR values are ob-
tained when separating Level 3 sources in Table 3, and
we mention that Level 3 sources can be considered simi-
lar to the “other” source class in MUSDB18 [25]. There-
fore, separating sources at the more fine-grained Levels (1
and 2) is more difficult than what is typically attempted in
musical source separation.

In Table 4, we can observe the effect of removing leaf
sources (Level 1 sources, see Table 1 for guitar example)
from the training set. Compared to reducing all of the
data by 50% or 90%, the performance of reducing only the
leaves degrades very minimally. In cases where we have
rich data at higher levels but sparse data at lower levels,
hierarchical multi-level networks can do a respectable job
at separating lower levels. We see the same story for both
SSS and QBE networks: even a small amount of leaf data
can help ward off a large drop in performance.

7. CONCLUSIONS

In this paper, we re-framed the source separation problem
as hierarchical, and demonstrated the benefit of learning to
simultaneously separate sources at different levels of gran-
ularity. In the present work, we considered network ar-
chitectures that output masks for source separation at all
relevant levels together. We showed that in doing so, we
are still able to separate out the most granular source types
when training data is severely limited. A major drawback
of this work is the need for a large quantity of labeled and
curated data, a limitation that we hope future work can
address. Other future directions include architectures that
output relevant levels sequentially, such as cascaded mod-
els [40], or directions inspired by hierarchical audio clas-
sification models [41, 42].
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