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ABSTRACT

For audio source separation applications, it is common to apply
a Wiener-like filtering to a time-frequency (TF) representation of
the data, such as the short-time Fourier transform (STFT). This ap-
proach, in which the phase of the original mixture is assigned to
each component, is limited when sources overlap in the TF domain.
In this paper, we propose to improve this technique by account-
ing for two properties of the phase. First, we model the sources
by anisotropic Gaussian variables: this model accounts for the non-
uniformity of the phase, and permits us to incorporate some prior in-
formation about the phase that originates from a sinusoidal model.
Second, we exploit the STFT consistency, which is the relation-
ship between STFT coefficients that is due to the redundancy of the
STFT. We derive a conjugate gradient algorithm for estimating the
corresponding filter, which we refer to as the consistent anisotropic
Wiener filter. Experiments conducted on music pieces show that
the proposed approach yields results similar to or better than the
state-of-the-art with a dramatic reduction of the computation time.

Index Terms— Wiener filtering, phase recovery, sinusoidal
modeling, STFT consistency, audio source separation.

1. INTRODUCTION

Audio source separation consists in extracting underlying compo-
nents called sources that add up to form an observable audio signal
called mixture. Many separation techniques act on a time-frequency
(TF) representation of the data, such as the short-term Fourier trans-
form (STFT), because the structure of sound is more prominent
in that domain. Most methods, whether based on graphical mod-
els [1], non-negative matrix factorization [2], or deep neural net-
works [3, 4], only process some function of the STFT modulus
(e.g., magnitude, power, or log-magnitude spectrogram), discarding
the phase information. However, when it comes to resynthesizing
time-domain signals, an estimate for the phase of the corresponding
complex-valued STFT is necessary [5, 6].

In the single-channel source separation framework, a common
practice consists in applying a Wiener-like filtering [7], which as-
signs the phase of the mixture to each extracted component. Such
a filter, which is optimal in a minimum mean square error (MMSE)
sense under a Gaussian [7] or stable [8] assumption, originates from
the observation that the phase appears as uniformly distributed [9].
However, even if this filter leads to quite satisfactory results in prac-
tice [10, 7], it has been pointed out [11] that when sources overlap
in the TF domain, it is responsible for residual interference and ar-
tifacts in the separated signals.

∗The work of P. Magron was partly supported by the Academy of Fin-
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One approach to obtaining better phase estimates is to pro-
mote consistency [12]: indeed, a complex-valued matrix (for in-
stance the output of a Wiener filter) may in general not be con-
sistent, that is, it may not correspond to the STFT of an actual
time-domain signal. Such methods [13, 12] iteratively compute a
complex-valued matrix in order to maximize its consistency. Some
recent works [14, 15, 16] attempted to combine Wiener filtering
and consistency-based techniques in a unified framework for audio
source separation. Consistent Wiener filtering [16] has so far been
shown to be the most promising candidate for this task.

Alternatively, phase recovery can be performed by using phase
models based on signal analysis. For instance, the widely used
model of mixtures of sinusoids [17, 18] leads to explicit constraints
for phase reconstruction that are based on the relationships between
adjacent TF bins [19]. Such an approach has been exploited for
time-stretching in the phase vocoder algorithm [20], as well as for
speech enhancement [21, 22], audio restoration [19], and source
separation [23]. In [24], we introduced an anisotropic Gaussian
(AG) model in which the phase is no longer uniform, which allows
us to incorporate some prior information about the phase that arises
from a sinusoidal model. We derived an MMSE estimator which
generalizes Wiener filtering to AG variables.

In this paper, we propose to combine these two approaches by
exploiting both a consistency constraint and some phase informa-
tion based on a signal model. We propose to address this issue by
extending the consistent Wiener filtering to the AG case. Our ap-
proach consists in minimizing an objective cost function which pe-
nalizes the reconstruction error in the AG model, to which is added
a regularization term which promotes consistency. This function is
minimized by means of the preconditioned conjugate gradient al-
gorithm. Experiments conducted on realistic music signals for a
vocals/accompaniment separation task show that exploiting those
two phase constraints within a unified framework outperforms both
approaches taken separately.

This paper is organized as follows. Section 2 presents the gener-
alized anisotropic Wiener filtering and details the estimation of the
sources under a consistency constraint. Section 3 experimentally
validates the potential of this method for an audio source separation
task. Finally, Section 4 draws some concluding remarks.

2. CONSISTENT ANISOTROPIC WIENER FILTERING

2.1. Anisotropic Gaussian model

Let X ∈ CF×T be the STFT of a single-channel audio signal. X is
the linear and instantaneous mixture of J sources Sj , such that for
all TF bin ft, Xft =

∑
j Sjft. Since all TF bins are treated sim-

ilarly, we remove the indices ft when appropriate for more clarity.
We assume that each source Sj follows a complex normal distri-
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bution: Sj ∼ N (mj , γj , cj), where mj , γj and cj are the mean,
variance and relation term of Sj . The covariance matrix is:

Γj =

(
γj cj
c̄j γj

)
, (1)

where z̄ denotes the complex conjugate of z. Many previous stud-
ies [7, 16, 25] model the sources as circular-symmetric (or isotropic)
variables [7] (i.e., such that mj = cj = 0), which is equivalent to
assuming that the phase of each source is uniformly distributed.

In this paper, we adopt a different standpoint, originally devel-
oped in [24]: we model the source signals by mixtures of sinusoids,
which leads to explicit relationships between the phases of adjacent
TF bins [19] and therefore to some prior phase estimate φj . As-
suming there is at most one sinusoid per frequency channel, it can
be shown [19] that the phase follows the unwrapping equation:

φjft = φjft−1 + 2πlνfj , (2)

where l is the hop size (in samples) of the STFT and νfk is the nor-
malized frequency in channel f . We then consider that the phases
should be distributed around the values φj with a concentration pa-
rameter κ ∈ [0,+∞[. Thus, we propose to structure the moments
of the distribution as follows1:

mj = λ
√
vje

iφj , γj = (1− λ2)vj , and cj = ρvje
i2φj , (3)

where λ and ρ are defined as in [24], and vj is an estimate of
the source power |Sj |2. The relation terms cj are non-zero in
general, which conveys the property of anisotropy of the distri-
bution, hence the name of anisotropic Gaussian (AG) model. Fi-
nally, X ∼ N (mX , γX , cX) = N (

∑
jmj ,

∑
j γj ,

∑
j cj), and

ΓX =
∑
j Γj .

2.2. MMSE estimation without constraint

We seek to obtain an estimator of the sources for performing
the separation task. We consider the posterior distribution of the
sources given the mixture. Due to the mixing constraint, this con-
ditional distribution lies on a subspace of dimension J ′ = J − 1,
so we focus on a subset of free variables. Without loss of gener-
ality, we consider the first J ′ sources as free variables given the
mixture and denote them as S = [S1, ..., SJ′ ]T in each TF bin ft,
where T denotes the transpose. It can be shown [26] that S|X fol-
lows a multivariate complex normal distribution with mean vector
µ = [µ1, ..., µJ′ ]T such that:

µ
j

= mj + ΓjΓ
−1
X (X −mX), (4)

where x =
(
x x̄

)T . The posterior covariance matrix is:

Ξ =

Γ1 0 0

0
. . . 0

0 0 ΓJ′

−
 Γ1

...
ΓJ′

Γ−1
X

 Γ1

...
ΓJ′


T

. (5)

In particular, the posterior covariance matrix of each source is
Γ′j = Γj − ΓjΓ

−1
X Γj . Using the Woodbury identity, we obtain the

1The mathematical derivation of the moments can be obtained in [24].

precision matrix Λ defined as the inverse of the covariance matrix:

Λ = Ξ−1 =

Γ−1
1 0 0

0
. . . 0

0 0 Γ−1
J′

+

Γ−1
J . . . Γ−1

J

...
. . .

...
Γ−1
J . . . Γ−1

J

 . (6)

Therefore, the negative log-likelihood of the posterior distribution
− log p(S|X) is equal, up to an additive constant and to a positive
scaling factor, to the following quadratic loss function:

Ψ(S) =
∑
ft

(Sft − µft)
HΛft(Sft − µft), (7)

where S = [S1, S̄1, ..., SJ′ , S̄J′ ]T (and similarly for µ) and H de-
notes the conjugate transpose.

We focus on the case J = 2 (i.e., J ′ = 1). This corresponds
to many source separation applications where only 2 sources inter-
act, such as speech/noise or singing voice/musical accompaniment.
Moreover, the general case can be reduced to this special case by
considering in turn each source against all others. Since in this case
Sft reduces to S1ft, we shall remove the index j = 1 for clarity.
The cost function (7) then rewrites:

Ψ(S) =
∑
f,t

(Sft − µft)
HΛft(Sft − µft), (8)

where Λft = Γ−1
1ft + Γ−1

2ft = Γ′−1
ft . Setting the gradient of Ψ in (8)

w.r.t. Sft to 0 leads to the MMSE solution: Sft = µft, ∀f, t.

2.3. Consistency constraint

When the STFT is computed using overlapping analysis windows
(which is usual in practice), it is a redundant TF representation
which implies that certain relationships must hold between its TF
coefficients. This results in the fact that not all matrices in CF×T
are the STFT of a time-domain signal. We will then say that a ma-
trix S is consistent [12] if it is equal to the STFT of its inverse STFT,
or, equivalently, if F(S) = 0, where:

∀S ∈ CF×T , F(S) = S − STFT ◦ iSTFT(S). (9)

The Wiener filter output does not generally satisfy this constraint,
so that STFT◦ iSTFT(µ) no longer minimizes the loss function (7).

As in [16], we propose to promote consistency in the form of a
soft penalty added to the cost (8), which results in:

Ψδ(S) = Ψ(S) + 2δ||F(S)||2, (10)

where ||.|| denotes the Frobenius norm for matrices. The greater δ,
the more consistent the resulting source estimate will be.

We can find the complex spectrogram2 S minimizing Ψδ by set-
ting the gradient of Ψδ(S) to 0 and then solving. The consistency
term is identical to that in [16], but the gradient of Ψ(S) is here
slightly more involved. To make its derivation easier to understand,
it helps to consider the whole complex spectrogram S as the equiva-
lent vector ~S obtained by concatenating the real and imaginary parts
of all the frames of S. The gradient of Ψ(S) can be derived with re-
spect to the elements of ~S, leading to an R-linear operator on ~S−~µ,
which can be reformulated as an R-linear operator on S − µ. We

2For convenience, we call “complex spectrogram” any complex-valued
matrix, even if it is not the STFT of an actual signal.
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eventually obtain the gradient of Ψ(S) w.r.t. Sft as:

∇SftΨ(S) = 4Ωft(Sft − µft), (11)

where
Ωft(y) =

1

|Γ′ft|
(γ′fty − c′ftȳ), ∀y ∈ C, (12)

and |Γ′ft| = γ′2ft−|c′ft|2. Altogether, setting the gradient of Ψδ(S)
to 0 leads to

(Ω + δF∗ ◦ F)S = Ωµ, (13)

where ∗ denotes the Hermitian adjoint and Ω is defined as the R-
linear operator that consists in independently applying Ωft to each
TF bin Yft of a complex spectrogram Y :

(ΩY )ft = Ωft(Yft), ∀Y ∈ CF×T .

SinceF is a projector, thenF◦F = F . Furthermore, if the analysis
and synthesis windows are equal up to a scaling factor (which is
generally the case in practice), then it can be shown [16] that F is
Hermitian, i.e., F∗ = F . Therefore, F∗ ◦ F = F , and the global
minimum verifies:

(Ω + δF)S = Ωµ. (14)

Drawing on [16], we propose to solve (14) with the preconditioned
conjugate gradient method [27], since the operator Ω + δF is ill-
conditioned. The preconditioner M is derived similarly to [16],
leading here at each TF bin to

(MY )ft = Ωft(Yft) + δ
FT − L
FT

Yft, (15)

where L is the time-signal length. Inverting M is slightly more
involved than in [16], where it amounted to a simple scalar multi-
plication, because Ωft(Yft) here involves both Yft and Ȳft as can
be seen in Eq. (12). A short calculation leads to

(M−1(Y ))ft =
1

ηft

{( γ′ft
|Γ′ft|

+ δ
FT − L
FT

)
Yft +

c′ft
|Γ′ft|

Ȳft

}
,

(16)

where ηft =

(
γ′ft
|Γ′ft|

+ δ
FT − L
FT

)2

−
|c′ft|2

|Γ′ft|2
.

The full procedure is summarized in Algorithm 1, and a MAT-
LAB implementation is available at [28].

3. EXPERIMENTAL EVALUATION

3.1. Dataset and protocol

We propose to experimentally assess the potential of the consistent
anisotropic Wiener filtering procedure described in Algorithm 1.
We consider 100 music songs from the Demixing Secrets Database
(DSD100), a remastered version of the database used for the SiSEC
2015 campaign [29]. The database is split into two sets of 50 songs,
a training set and a test set. Each song is made up of J = 2 sources:
the vocal track and the musical accompaniment track (which may
contain various instruments such as guitar, bass, drums, piano...).
The signals are sampled at Fs = 44100 Hz and the STFT is com-
puted with a 46 ms long Hann window and 75 % overlap.

Two scenarios are considered. First, an Oracle scenario, in
which the powers v are assumed to be known (i.e., equal to the
ground truth). Second, an Informed scenario, as in an informed
source separation framework [25]: an NMF with Kullback-Leibler
divergence [10] is applied to the spectrogram of each isolated

Algorithm 1 Consistent anisotropic Wiener filtering. Note: matrix
operations are element-wise.

Inputs:
Posterior expectation µ ∈ CF×T ,
Anisotropy and consistency parameters κ ≥ 0 and δ ≥ 0,
Prior power v ∈ R2×F×T

+ and phase φ ∈ [0, 2π[2×F×T ,
Stopping criterion ε > 0.
Posterior moments
γ1 = (1− λ2)v1, γ2 = (1− λ2)v2, γX = γ1 + γ2.
c1 = ρv1e

i2φ1 , c2 = ρv2e
i2φ2 , cX = c1 + c2.

γ′ = γ1 −
(
γX(γ2

1 + |c1|2)− 2γ1<(c1c̄X)
)
/(γ2

X − |cX |2),
c′ = c1 −

(
2γXγ1c1 − γ2

1cX − c21c̄X
)
/(γ2

X − |cX |2),
|Γ′| = γ′2 − |c′|2.
Preconditioned conjugate gradient
Ω as defined in (12) and M−1 as defined in (16),
S0 = µ,
R0 = −δF(S0),
P0 = M−1(R0),
ξnew = 〈R0, P0〉,
k = 0.
repeat
Qk = Ω(Pk) + δF(Pk),
αk = ξnew/〈Pk, Qk〉,
Sk+1 = Sk + αkPk,
Rk+1 = Rk − αkQk,
Zk+1 = M−1(Rk+1),
ξold = ξnew,
ξnew = 〈Rk+1, Zk+1〉,
βk = ξnew/ξold,
Pk+1 = Zk+1 + βkPk,
k = k + 1.

until α2
k−1||Pk−1||2 < ε||Sk||2

Output:
Sk ∈ CF×T .

source, which provides an estimate of the powers vft. Each NMF
uses 100 iterations of multiplicative update rules and a rank of fac-
torization K = 50. This scenario will inform us about the per-
formance of the methods when the power estimates differ from the
ground truth, while still remaining of relatively good quality.

The following approaches are compared: first, we consider
two non-iterative techniques, namely Wiener filtering [7] and
anisotropic Wiener (AW) filtering [24], which correspond to ap-
plying (4) with κ = 0 and κ 6= 0, respectively. These estimates
are then used to initialize Algorithm 1, respectively leading to the
consistent Wiener filtering (CW) [16] and to the proposed consis-
tent anisotropic Wiener filtering (CAW). As in [16], the stopping
criterion is chosen as ε = 10−6.

Source separation quality is measured with the signal-to-
distortion, signal-to-interference, and signal-to-artifact ratios (SDR,
SIR, and SAR) [30] expressed in dB, where only a rescaling (not a
refiltering) of the reference is allowed.

A demonstration on an audio excerpt is available at [28].

3.2. Influence of the consistency weight

First, similarly as in [24], we study the impact of the anisotropy
parameter κ on the separation quality on the training set: the best
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Scenario Method Accompaniment Singing voice Avg. number
SDR SIR SAR SDR SIR SAR of iterations

Oracle
Wiener [7] 16.7 27.2 17.2 12.1 26.7 12.3 -
CW [16] 18.4 29.5 18.8 13.9 30.3 14.0 30
AW [24] 17.5 27.9 17.9 13.0 28.0 13.1 -
CAW (proposed) 18.9 30.0 19.4 14.5 31.2 14.7 26

Informed
Wiener [7] 15.9 26.1 16.4 11.3 25.7 11.5 -
CW [16] 16.6 27.0 17.1 12.1 27.5 12.2 17
AW [24] 16.1 26.3 16.6 11.5 26.2 11.7 -
CAW (proposed) 16.8 27.1 17.3 12.2 27.8 12.4 16

Table 1: Average source separation performance for various methods on the DSD100 test dataset.
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Figure 1: Influence of the consistency parameter δ on the source
separation quality in Algorithm 1. The test is conducted in the Ora-
cle (left) and Informed (right) scenarios.

results in terms of SDR, SIR, and SAR are obtained for κ = 1 in
the Oracle scenario, and κ = 0.8 in the Informed scenario.

We then investigate here the influence of the consistency pa-
rameter δ on the separation quality. The results in terms of SDR
averaged over the 50 songs composing the training set are presented
in Fig. 1 (similar trends are observed for the SIR and SAR). We ob-
serve that promoting consistency leads to improving the separation
quality over other approaches that do not account for this property
(i.e., when δ → 0), whether the magnitude values are known or
estimated beforehand. The optimal value of δ is dependent on the
data, with a peak in the SDR here at 10 in the Oracle scenario and
1 in the Informed scenario. This corresponds to a trade-off between
excessively promoting the consistency and only accounting for the
MMSE estimates.

3.3. Separation results

We now consider the 50 songs that form the test set, and set δ to
its learned optimal value. The results averaged over the dataset are
presented in Table. 1.

In the Oracle scenario, the proposed method outperforms all the
other approaches. While the AW technique improves the separation
quality over the Wiener estimates, it performs slightly worse than
the CW filtering. The proposed CAW method overcomes this limit,
since it combines the potential of both AW and CW approaches,
and improves the criteria by approximately 0.5 dB over the CW
technique. In the Informed scenario, the improvement is less im-
portant (about 0.2 dB), which suggests that even if the proposed
phase retrieval method can improve the separation quality over the
other techniques, its full potential is reached when the power esti-
mates are close to the ground truth.
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Figure 2: Separation quality (SDR in dB) over iterations. The black
solid line indicates that the performance of 60 iterations of CW is
similar to that of 14 iterations of CAW.

Finally, the last column of Table 1 also indicates that CAW con-
verges in less iterations on average than CW. We then show in Fig. 2
the evolution over iterations of the SDR, averaged over the test set in
the Oracle scenario. For each excerpt, we run CW and CAW with-
out using the stopping criterion, for 60 iterations (by 60 iterations,
the algorithms had converged in all our experiments). We observe
that the initial AW filtering approximately leads to the same results
as 8 iterations of CW. Furthermore, 60 iterations of CW lead to a
result (black solid line on the plot) that is similar to what is ob-
tained with only 14 iterations of CAW. Given that one iteration in
both CW and CAW methods is roughly as demanding in terms of
computational cost, this shows that the anisotropic model, which
accounts for a signal-based phase property, leads to a faster pro-
cedure than a phase-unaware source model. Overall, the proposed
CAW method reaches results similar to or better than CW with a
significantly lower computational cost.

4. CONCLUSION

The consistent anisotropic Wiener filtering procedure introduced in
this paper is a promising approach for recovering the phase of the
components in a source separation framework, since it combines a
phase property that originates from signal modeling, and a consis-
tency constraint which accounts for the redundancy of the STFT.
Future work will focus on extending this procedure to the case of
more than two sources and to multichannel mixtures. In addition,
such a technique can be implemented in an online fashion through
a frame-by-frame processing, similarly as in some real-time imple-
mentations of the Griffin and Lim algorithm [31].
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