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ABSTRACT

While significant advances have been made with respect to the sepa-
ration of overlapping speech signals, studies have been largely con-
strained to mixtures of clean, near anechoic speech, not representa-
tive of many real-world scenarios. Although the WHAM! dataset
introduced noise to the ubiquitous wsj0-2mix dataset, it did not in-
clude reverberation, which is generally present in indoor recordings
outside of recording studios. The spectral smearing caused by rever-
beration can result in significant performance degradation for stan-
dard deep learning-based speech separation systems, which rely on
spectral structure and the sparsity of speech signals to tease apart
sources. To address this, we introduce WHAMR!, an augmented
version of WHAM! with synthetic reverberated sources, and provide
a thorough baseline analysis of current techniques as well as novel
cascaded architectures on the newly introduced conditions.

Index Terms— speech separation, speech enhancement, cock-
tail party problem, reverberation

1. INTRODUCTION

In recordings produced in natural settings with multiple speakers
present, it often occurs that more than one person will speak at the
same time. The resulting overlapped speech can cause a severe
degradation in the performance of speech processing technologies
designed for only a single speech signal, such as automatic speech
recognition and speaker identification. Moreover, overlapped speech
can be difficult to understand for human listeners as well. Speech
separation systems aim to solve this problem by producing multi-
ple waveforms, each estimating the clean speech of a single speaker,
from recordings of overlapped speech.

Great advancements have been made in recent years on solv-
ing the speech separation problem through deep learning-based tech-
niques [1–6]. However, the overwhelming majority of research con-
ducted thus far has used the wsj0-2mix dataset [1], which consists
of synthetically-mixed studio recordings of read utterances from the
WSJ0 corpus [7] and is not representative of many real-world scenar-
ios in which overlapped speech may be present [8]. In many cases
where multiple people are speaking at the same time, they are not
speaking directly into the microphone, and are instead captured by a
microphone placed at some distance away in the room, as in meet-
ings or in home settings. In these far-field conditions, the distance
from the source to the microphone can lead to a relative increase in
noise compared to the speech and to increased reverberation [9], nei-
ther of which are present in the most common deep learning-based
speech separation evaluations. The addition of noise not only masks
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the speech signal but also corrupts phase information, while rever-
beration causes spectral smearing of the source. These phenomena
could be challenging for separation systems which rely on the spec-
tral structure of speech in the time-frequency domain [10]. The intro-
duction of the WHAM! dataset [11], consisting of two speaker mix-
tures from the wsj0-2mix dataset together with real ambient noise,
was a first step in the direction of more realism. It did not however
consider reverberation or more generally spatialization of the speech
signals, despite the noise samples being recorded in stereo.

To aid in the development and evaluation of speech separa-
tion systems in even more realistic conditions, we introduce the
WHAMR! dataset that adds reverberation to WHAM!’s noise aug-
mentation of wsj0-2mix. We have generated realistic room param-
eters which are used to generate room impulse responses that can
produce reverberant audio waveforms for each source in a man-
ner similar to the multi-channel version of wsj0-2mix introduced
in [12], but with the microphone geometry constrained by the bin-
aural recording setup used to collect the WHAM! noise corpus.
Although some noisy and reverberant speech separation datasets
were introduced in [13], they are constructed using actual record-
ings of noisy and reverberant speech. As such, they lack ground truth
for clean and anechoic speech. WHAMR! provides a contrasting
and complementary data paradigm; similarly to other WSJ0-based
speech separation datasets, WHAMR! is constructed synthetically,
with artificially-mixed speech plus noise and artificial reverbera-
tion. This synthetic construction provides the ground truth of all
speech signals with and without reverberation, which is necessary to
effectively train and evaluate deep learning-based systems.

In this paper, we investigate the performance of various systems
for clean, noisy, reverberant, and noisy plus reverberant separation as
well as enhancement (denoising and dereverberation) tasks based on
the WHAMR! dataset, establishing strong baselines and proposing
new cascaded combination systems that can be trained end-to-end.

2. WHAMR! DATASET

The WHAMR! dataset1 is an extension of the WHAM! dataset [11],
which is a noise-augmented version of the wsj0-2mix dataset [1].
The wsj0-2mix dataset consists of mixtures of utterances from the
WSJ0 corpus, combined with random gain between 0 and 5 dB to
create overlapping speech. There are four configurations: a min
condition where the mixture is trimmed to the length of the shorter
utterance and the corresponding non-trimmed max condition, both
available at 8 kHz and 16 kHz sampling rate. The mixtures are par-
titioned into training, validation, and test sets of 20,000, 5,000, and
3,000 mixtures respectively. In the WHAM! dataset, each speech
mixture from the wsj0-2mix corpus was associated to a randomly

1Available at: http://wham.whisper.ai



Table 1. Room impulse response parameter sampling distributions.
Units for all parameters are meters with the exception of reverbera-
tion time (T60) which is in seconds and angles in radians.

Room
L U(5, 10)
W U(5, 10)
H U(3, 4)

T60

high U(0.4, 1.0)
med. U(0.2, 0.6)
low U(0.1, 0.3)

Mic.
Center

L LRoom
2

+ U(−0.2, 0.2)

W WRoom
2

+ U(−0.2, 0.2)

H U(0.9, 1.8)

Mic.
Array

sep. noise mic. separation
θ U(0, 2π)

Sources
H U(0.9, 1.8)

dist. U(0.66, 2)
θ U(0, 2π)

sampled excerpt from noises recorded with binaural microphones in
various urban environments throughout the San Francisco Bay Area,
and mixed such that the louder speaker was at a randomly selected
SNR between −6 and +3 dB relative to the noise [11].

WHAMR! extends WHAM! by introducing reverberation to the
speech sources in addition to the existing noise. Room impulse re-
sponses were generated and convolved using pyroomacoustics [14]
according to the random room configurations shown in Table 1. Re-
verberation times were chosen to approximate domestic and class-
room environments [9] (as we expect these to be similar to the restau-
rants and coffee shops where the WHAM! noise was collected), and
further classified as high, medium, and low reverberation based on a
qualitative assessment of the mixture’s noise recording.

We created spatialized versions—anechoic and reverberant—of
all components of the original WHAM! dataset, except noise, which
was recorded spatialized. The anechoic sources (i.e., direct path sig-
nals) serve as targets to reverberated sources for models involving
dereverberation, allowing them to be trained without needing to ac-
count for the time delay of the spatialized sources. In spatializing
the audio, we generated a two-channel version of the dataset, using
microphone spacing from the WHAM! noise metadata, but in this
study we focus on single-channel separation and use only the left
channel. The spatialized audio was rescaled to remove attenuation,
such that the non-spatialized WHAM! and anechoic WHAMR! dif-
fer only by small time delays, and we found negligible performance
differences when training and testing models using the two datasets.
While the results for non-reverberant conditions in Section 4 use ane-
choic WHAMR!, they are directly comparable with WHAM! [11].

Since all source, noise, and reverberated components and their
combinations are included in the corpus, several enhancement, sepa-
ration, and joint enhancement-separation tasks are enabled for train-
ing and evaluation. For example, in separating noisy and reverberant
speech, we may want to produce either two clean, anechoic record-
ings or two clean, reverberant recordings, leaving dereverberation to
post-processing. We choose to define four core separation tasks:

• clean – anechoic clean mixture to anechoic sources
• noisy – anechoic noisy mixture to anechoic sources
• reverberant – reverberant clean mixture to anechoic sources
• noisy and reverberant – reverberant noisy mixture to ane-

choic sources

All other configurations are only considered and evaluated as sub-
components to the above tasks. Since each condition has its own un-
processed signal-to-distortion ratio (SDR), comparisons across tasks
can be difficult. By restricting to the above tasks, where the targets
are the same in all four conditions, raw SDR can be thought of as a
directly comparable, “objective” quality metric of the output sources
across tasks. SDR improvement also brings insight by reporting how
much improvement a system has made to the signal.

3. EXPERIMENTAL CONFIGURATIONS

3.1. Network Configurations

For our experiments, we use four basic network configurations, all
under the same paradigm. First, the waveforms are projected to a
spectro-temporal representation. Next, an internal network takes
the spectral representation and produces a spectral mask with val-
ues from 0 to 1. Finally, this spectral mask is applied to the original
representation, suppressing interfering signals, before the represen-
tation is projected back to produce an estimated source waveform. In
enhancement, the internal masking network produces a single mask,
attempting to suppress noise and/or reverberation. In separation, the
masking network produces a mask for each speech signal, attempt-
ing to suppress the interfering speakers from each target speaker.

The four configurations we use are the possible combinations of
two spectral feature extractors and two internal masking networks.
The feature extractors we compare are a standard short-time Fourier
transform (STFT) and a TasNet-style learned basis transform [5,
15], which consists of projecting sliding-window subsegments of
the waveform onto a set of learned basis functions. The resulting
weights can be applied to a reconstruction set of basis functions and
summed together along the same sliding window to reconstruct the
signal under a similar paradigm to overlap-and-add for the STFT.
For internal masking, we evaluate both bi-directional long short-term
memory (BLSTM) networks (the typical internals of earlier deep
learning-based speech separation systems [1–4,11,15]) and temporal
convolutional networks (TCN) [16] with dilated convolutions (pop-
ular in recent state-of-the-art separation techniques [5, 6]).

For consistency with the prior WHAM! work [11], our BLSTM
architecture has four BLSTM layers with 600 units in each direc-
tion followed by a fully-connected layer for each output mask. A
dropout of 0.3 is applied on each BLSTM layer output except the
last. The TCN architecture was chosen to match the best system
reported in [5]. It consists of a 128-dimensional bottleneck, 128-
dimensional skip-connection paths, and 512 channels in the convo-
lutional blocks, with kernel size 3, 8 blocks per repeat, and 3 repeats.

The STFT features are also chosen to be consistent with [11],
with a window length of 32 ms and hop size of 8 ms. The log of the
magnitude spectrum is used as input to the internal masking network.
The learned basis feature parameters are also chosen to be consistent
with [11], with a 10 ms window and 5 ms hop, with 500 learned
basis vectors. While the original BLSTM TasNet [15] used a gated
convolutional encoder, in this work we use a single learned encoder
and ReLU nonlinearity as in Conv-TasNet [5] for both the BLSTM
and TCN masking networks with learned bases.

For separation, we evaluate learned basis configurations only, as
they have been shown to outperform STFT-based methods on clean
data, and performed best in preliminary experiments. However, we
perform full comparisons of the differing features for enhancement,
for which TasNet-like systems have only rarely been evaluated [17].

We train all networks using permutation invariant training [1,
3] with the scale-invariant signal-to-distortion ratio (SI-SDR, also
referred to as SI-SNR) waveform-level training objective [2, 15, 18].
SI-SDR is also the evaluation metric and allows for end-to-end joint
training of cascaded enhancement and separation models:

SI-SDR = 10 log10(‖αs‖2/‖αs− ŝ‖2), α = 〈ŝ, s〉/‖s‖2. (1)

Because the loss is scale-invariant and the outputs are not con-
strained to sum up to the mixture, the outputs may be in a different
dynamic range as the mixture, which as we will see can lead to
problems with the cascaded models proposed in this work.



3.2. Cascaded Models

In addition to training single models for each of the WHAMR! core
tasks, we evaluate combinations of models in which enhancement
(i.e., denoising and/or dereverberation) and separation systems are
cascaded, with the output of one system being fed into the next.
The main motivation is that jointly separating and enhancing may
be too difficult for a single network to learn, and modularization
may allow the networks to focus on specific tasks. Two-stage ap-
proaches have previously been explored for denoising plus derever-
beration [19,20], separation plus dereverberation [21], and denoising
plus separation [11].

The cascaded configurations we consider consist of an optional
pre-enhancement system cascaded into a separation network cas-
caded into an optional post-enhancement system. We evaluate all
combinations where noise is removed by either pre-enhancement
or the separator, and reverberation is removed by either pre-
enhancement, post-enhancement, or the separator. Post-separation
denoising is not considered, as separation-without-denoising is a
somewhat ill-defined task: noise does not ‘belong’ to either speech
signal, so it is unclear how the network should distribute the noise
when not removing it.

For cascaded systems, the sub-models are trained with appropri-
ate input and targets for each sub-task. For example, in the system
consisting of denoising followed by separation then dereverberation,
the networks are trained as follows: pre-enhancement is trained with
noisy reverberant mixtures as input and clean reverberant mixtures
as output; the separator with reverberant mixtures as input and re-
verberant sources as output; and post-enhancement with single re-
verberant sources as input and single anechoic sources as output.

As mentioned above, due to the scale-invariant loss function,
each model’s outputs have no constraint to be within any particular
dynamic range, and we thus observe strong degradation in perfor-
mance in cascaded systems when sub-models are trained separately,
due to the scaling mismatch between the output of one model and
the training data of the next. To address this problem, we scale each
output ŝ, obtained from an input mixture x as an estimate for a target
source s, to make it consistent with the scaling of s in x. Because
s is unknown, we need to rely on ŝ and x alone. If we assume that
the interfering signal n = x − s is orthogonal to s, which is gen-
erally approximately the case, and that the direction of ŝ is close to
that of s, then a reasonable choice for the rescaling factor β(ŝ|x) is
that obtained by ensuring that β(ŝ|x)ŝ is orthogonal to the residual
n̂ = x− β(ŝ|x)ŝ. This results in a scaling factor

β(ŝ|x) =
〈x, ŝ〉
‖ŝ‖2 . (2)

As the estimate ŝ improves (i.e., ŝ and s become more colinear), the
scaling factor improves as well.

When the best-performing system of a WHAMR! task is a cas-
caded model, we also evaluate the system with additional end-to-end
tuning. Since all component systems are waveform-to-waveform, we
can tune the entire system by performing additional training through
all cascaded sub-models directly. End-to-end joint training of sub-
models has been shown to be successful in joint training of automatic
speech recognition with enhancement and separation [22–25].

3.3. Training Configurations

All networks are trained on 4 second segments using the Adam algo-
rithm [26]. The learning rate is decreased by a factor of 2 if valida-
tion loss does not improve for 3 consecutive epochs. Gradient clip-
ping is applied with a maximum `2 norm of 5. Models are trained for

Table 2. SI-SDR [dB] results for a single separation network. High-
lighted rows represent new WHAMR! conditions.

Input Conv-TasNet TasNet-BLSTM

Noise Reverb Input Output ∆ Output ∆

0.0 12.9 12.9 14.2 14.2
X −4.5 7.0 11.5 7.5 12.0

X −3.3 4.3 7.6 5.6 8.9
X X −6.1 2.2 8.3 3.0 9.2

Table 3.∆SI-SDR [dB] comparison of our implementations with the
best Conv-TasNet number in [5] and the corresponding learned fea-
ture configuration of 512 bases, window length 16, window shift 8.

TasNet-BLSTM Conv-TasNet Conv-TasNet [5]

16.6 14.4 15.3

100 epochs with an initial learning rate of 10−3, with the exception
of cascaded model tuning, during which we train the models for 25
epochs with a learning rate of 10−4. Because the SI-SDR loss is un-
defined for silent sources, training models on the max data subset is
cumbersome, as the 4 s segments randomly sampled during training
occasionally fall within regions where only one speaker is talking.
Thus, for the 16 kHz max condition, we train on 16 kHz min. Unless
otherwise noted, all results are for the 8 kHz min condition.

4. EXPERIMENTAL RESULTS

For all experiments, we report results using scale-invariant source-
to-distortion ratio (SI-SDR) [18], which is also the training objec-
tive. Furthermore, because the input SI-SDR between tasks is highly
variable, we also report the SI-SDR improvement (∆), i.e., the dif-
ference between output and input SI-SDR.

Table 2 shows the results of our core systems, without cascade.
Reverberation seems to be more challenging than noise as reflected
by the lower SI-SDR. While the noisy and clean conditions are com-
parable in terms of SI-SDR improvement, they still differ signifi-
cantly in terms of raw SI-SDR. Interestingly, we observe consistently
better performance from the BLSTM model over the TCN model,
which is somewhat unexpected. Indeed, although the BLSTM con-
tains many more parameters than the TCN, this result contradicts
prior results in the literature [5, 15]. A comparison of clean sep-
aration models with a smaller basis window is shown in Table 3,
confirming that the performance difference is not due to the window
parameters.

In addition, we note that the TasNet-BLSTM numbers in the first
two rows are considerably better than the corresponding numbers in
the original WHAM! paper [11]. The newer network uses the same
configuration, but is trained with more aggressive gradient clipping
and stagnation learning rate adjustment, which supports the findings
regarding training optimizer parameters reported in [5, 17].

Table 4 shows experimental results with enhancement networks.
We use denoising and dereverberation of two-speaker mixtures as
a proxy for all other enhancement conditions. Since performance
trends are consistent across these two tasks, we think this is reason-
able evidence to conclude that the learned feature BLSTM model
(TasNet-BLSTM) is the best architecture for enhancement. While
the learned basis TCN and BLSTM perform similarly, we see sig-
nificant drops in performance moving from learned basis to STFT
features. This suggests that the benefits shown in speech separation
are also likely present in speech denoising and dereverberation.

Table 5 shows the results of the cascaded model experiments.
In accordance with the previous results, all sub-models are TasNet-



Table 4. SI-SDR [dB] for two-speaker enhancement tasks.
Net Denoise Dereverb

Feature Processor Output ∆ Output ∆

Learned TCN 10.8 9.6 7.2 3.2
Learned BLSTM 11.2 10.1 8.5 4.4
STFT TCN 8.4 7.2 4.0 0.0
STFT BLSTM 9.5 8.4 5.9 1.8

Input SI-SDR: 1.2 4.0

Table 5. Comparison of cascaded models. A dash indicates speech
separation without denoising/dereverberation, while 5 indicates no
enhancement sub-model was used. Results are sorted by increas-
ing performance. The highlighted rows indicate the non-cascaded
single-model baseline.

System
SI-SDR

Pre-Enh.
Removes

Separate Speech
while Removing Output ∆

5 noise 7.5 12.0
noise – 8.1 12.6

Input SI-SDR: −4.5

(a) noisy condition

System
SI-SDR

Pre-Enh.
Removes

Separate Speech
while Removing

Post-Enh.
Removes Output ∆

5 rev. 5 5.6 8.9
rev. – 5 6.4 9.7
5 – rev. 6.6 9.9

Input SI-SDR: −3.3

(b) reverberant condition

System
SI-SDR

Pre-Enh.
Removes

Separate speech
while removing

Post-Enh.
Removes Output ∆

5 noise, rev. 5 3.0 9.2
noise rev. 5 3.5 9.7

noise, rev. – 5 3.6 9.7
rev. noise 5 3.7 9.8
5 noise rev. 3.7 9.8

noise – rev. 4.0 10.1

Input SI-SDR: −6.1

(c) noisy and reverberant condition

BLSTM models. We see that in general, moving the speech en-
hancement (i.e., denoising and/or dereverberation) tasks to a sepa-
rate model from separation seems to help performance. From Ta-
bles 5(b) and (c), reverberation appears to be particularly difficult
for the separation network to remove. We also see that removing
reverberation post-separation is slightly better than pre-separation.
As two sources will not have the same room impulse response, the
dual-source (pre-enhancement) dereverberation network would have
to appropriately compensate for two reverberation patterns, while the
single-source dereverberation (post-enhancement) network handles
only one. The separator network likely has a harder time separating
the still-reverberant speech, but this effect appears to be smaller than
the difference in single- and double-source dereverberation.

While the cascaded systems do have 2 or 3 times as many pa-

Table 6. SI-SDR comparison of best models with and without addi-
tional training. Dashes indicate the best system was not cascaded.

Best System
w/o TuningInput Tuned

Noise Reverb Input Output ∆ Output ∆

0.0 14.2 14.2 – –
X −4.5 8.1 12.6 8.3 12.9

X −3.3 6.6 9.9 7.0 10.3
X X −6.1 4.0 10.1 4.7 10.8

Table 7. SI-SDR evaluation of 16 kHz conditions using the best
model configuration trained on the 16 kHz min subset.

Input 16 kHz Min 16 kHz Max

Noise Reverb Input Output ∆ Input Output ∆

0.0 12.9 12.9 0.0 12.7 12.7
X −4.6 7.8 12.4 −5.8 7.5 13.3

X −3.3 5.6 8.9 −3.4 5.4 8.8
X X −6.2 3.7 9.9 −7.2 3.5 10.7

rameters as the non-cascaded system, this does not seem to be the
sole source of performance improvement, as single models with in-
creased numbers of BLSTM layers provided little performance gain
over the results in Table 2. Furthermore, training equivalent cas-
caded systems from scratch without individual pre-training of the
pre-enhancement, separation, and post-enhancement stages provided
noticeably less performance improvement over the single network
results from Table 2 than the reported cascaded systems in Table 5.

Table 6 shows the results of tuning the cascaded systems with
additional end-to-end training. Tuning the systems helps, although
the performance gains are minor. The noisy and reverberant system,
which contains three sub-models in contrast to the others with two,
shows the greatest improvement. This suggests training helps with
improving the coupling of the connected models.

Table 7 shows the results of our 16 kHz systems. As mentioned
earlier, we trained on 16 kHz min and evaluated on both the min and
max conditions. Although the performance on 16 kHz data is worse
than in the 8 kHz systems, there does not appear to be any signifi-
cant breakdown in performance. Similarly, performance in the max
condition is only slightly worse than the min condition. Although
the SI-SDR improvement in the noisy case is better in max than min,
this is likely due to differences in amount of speech and does not
reflect any significant difference in performance.

5. CONCLUSION

We have introduced WHAMR!, an extension of the WHAM! noisy
speech separation dataset to include reverberation, with the goal of
further promoting the advancement of speech separation technolo-
gies towards more realistic conditions. Preliminary results demon-
strate that, although noise and reverberation do degrade overall per-
formance, networks with learned basis feature representations are
effective not only in separation but also in speech enhancement. We
have also demonstrated the value in using cascaded models com-
bining pre-trained separation and enhancement modules, and of fur-
ther jointly fine-tuning them, establishing strong baseline results for
the WHAMR! dataset. Extending the proposed model cascades to
stereo is an important topic of future work, and is supported in the
WHAMR! scripts available at http://wham.whisper.ai.
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