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ABSTRACT

Non-negative matrix factorization (NMF) has been widely used for
challenging single-channel audio source separation tasks. However,
inference in NMF-based models relies on iterative inference meth-
ods, typically formulated as multiplicative updates. We propose
“deep NMF”, a novel non-negative deep network architecture which
results from unfolding the NMF iterations and untying its parame-
ters. This architecture can be discriminatively trained for optimal
separation performance. To optimize its non-negative parameters,
we show how a new form of back-propagation, based on multiplica-
tive updates, can be used to preserve non-negativity, without the
need for constrained optimization. We show on a challenging speech
separation task that deep NMF improves in terms of accuracy upon
NMF and is competitive with conventional sigmoid deep neural net-
works, while requiring a tenth of the number of parameters.

Index Terms— Deep unfolding, Non-negative Matrix Factor-
ization, Deep Neural Network, Non-negative Back-propagation

1. INTRODUCTION

Non-negative matrix factorization (NMF) [1] is a popular algorithm
commonly used for challenging single-channel audio source separa-
tion tasks, such as speech separation (i.e., speech enhancement in the
presence of difficult non-stationary noises such as music and other
speech) [2, 3]. In this context, the basic idea is to represent the fea-
tures of the sources via sets of basis functions and their activation
coefficients, one set per source. Mixtures of signals are then ana-
lyzed using the concatenated sets of basis functions, and each source
is reconstructed using its corresponding activations and basis set.

A fundamental issue in most NMF-based methods is that their
training-time and test-time objectives differ: their parameters are op-
timized to best represent single sources, but at test time they are used
to analyze mixtures. In particular, the training objective does not
consider separation performance in the context of a mixture signal.
Such optimization, termed discriminative NMF, is generally diffi-
cult, but recently two different approaches have been proposed [4, 5].
While [5] optimizes the original NMF bases by cleverly solving for
some derivatives of the objective function, [4] proposes to circum-
vent the difficulty of the optimization by generalizing the original
NMF model, having the added advantage of leading to a more ex-
pressive model. The key idea is to consider two separate sets of
bases, one used to analyze the mixture and obtain a set of activation
coefficients, and another to reconstruct a target signal using these ac-
tivation coefficients. In other words, the basis parameters used at the
final reconstruction step are untied from those used in the analysis
steps.

As the analysis in NMF is generally performed using an itera-
tive algorithm, we propose to take the parameter untying idea of [4]
further, and untie the parameters not only in the reconstruction step

but also in the iterations of the analysis step. Interestingly, the result-
ing inference algorithm can be interpreted as a novel deep network
architecture with non-linear activation functions that are determined
by the update equations of the NMF iterations. We call it deep NMF.

The concept of unfolding an iterative inference algorithm from a
model-based method and untying its parameters into a deep network
architecture is a very general one, called deep unfolding, which we
recently proposed [6]. Whereas, for example, conventional sigmoid
neural networks can be obtained by unfolding mean-field inference
in Markov random fields, deep NMF is not only novel within the
NMF literature, but it is also the first example of a novel deep net-
work architecture obtained by deep unfolding of a model-based ap-
proach.

Main contributions: a novel non-negative deep network with
non-negative parameters, derived from NMF-based source separa-
tion; a non-negative back-propagation algorithm from which one can
obtain multiplicative update equations for the deep NMF parameters;
finally, experiments showing the benefit of this approach in the do-
main of speech separation.

Relationship to the literature: there is to our knowledge no
prior work on untying NMF basis parameters within the iterative
inference procedure and discriminatively training them, except our
discriminative NMF approach [4], which only took care of the final
reconstruction layer. Various authors in the machine learning liter-
ature have considered unfolding iterative inference procedures into
deep networks and discriminatively training their parameters [7], in-
cluding some with applications to NMF [8, 5], but without untying
the parameters, so they were in essence still within the realm of the
original model.

2. DEEP NON-NEGATIVE MATRIX FACTORIZATION

NMF operates on a matrix of F -dimensional non-negative spectral
features, usually the power or magnitude spectrogram of the mixture,
M = [m1 · · ·mT ], where T is the number of frames and mt ∈ RF+,
t = 1, . . . , T are obtained by short-time Fourier transformation of
the time-domain signal. WithL sources, each source l ∈ {1, . . . , L}
is represented using a matrix containing Rl non-negative basis col-
umn vectors, Wl = {wl

r}Rl
r=1, multiplied by a matrix of activation

column vectors Hl = {hlt}Tt=1, for each time t. The rth row of
Hl contains the activations for the corresponding basis wl

r at each
time t. A column-wise normalized W̃l can be used to avoid scaling
indeterminacy. The basic assumptions can then be written as

M ≈
∑
l

Sl ≈
∑
l

W̃lHl = W̃H. (1)

The β-divergence, Dβ , is an appropriate cost function for this ap-
proximation [9], which casts inference as an optimization of Ĥ,

Ĥ = argmin
H

Dβ(M | W̃H) + µ|H|1. (2)



For β = 1, Dβ is the generalized KL divergence, and β = 2 yields
the squared error. An L1 sparsity constraint with weight µ is added
to favor solutions where only few basis vectors are active at a time.

The following multiplicative updates for iteration k ∈ {1, . . . ,K}
minimize (2) subject to non-negativity constraints [9]:

Hk = Hk−1 ◦ W̃
T (M ◦ (W̃Hk−1)β−2)

W̃T (W̃Hk−1)β−1 + µ
, (3)

where ◦ denotes element-wise multiplication, the matrix quotient is
element-wise, and H0 is initialized randomly.

AfterK iterations, to reconstruct each source, typically a Wiener
filtering-like approach is used, which enforces the constraint that all
the source estimates S̃l,K sum up to the mixture:

S̃l,K =
W̃lHl,K∑
l′ W̃

l′Hl′,K
◦M. (4)

A commonly used approach has been to train NMF bases in-
dependently on each source, before combining them. However the
combination was generally not trained for good separation perfor-
mance from a mixture. Recently, discriminative methods have been
applied to sparse dictionary based methods to achieve better perfor-
mance in particular tasks [10]. In a similar way, we can discrimi-
natively train NMF bases for source separation. The following op-
timization problem for training bases, termed discriminative NMF
(DNMF) was proposed in [4, 5]:

Ŵ = argmin
W

∑
l

γlDβ2

(
Sl | W̃lĤl(M,W)

)
, (5)

Ĥ(M,W) = argmin
H

Dβ1(M | W̃H) + µ|H|1, (6)

and where β1 controls the divergence used in the bottom-level anal-
ysis objective, and β2 controls the divergence used in the top-level
reconstruction objective. The weights γl account for the application-
dependent importance of source l; for example, in speech de-noising,
we focus on reconstructing the speech signal. The first part (5) min-
imizes the reconstruction error given Ĥ. The second part ensures
that Ĥ are the activations that arise from the test-time inference ob-
jective. Given the bases W, the activations Ĥ(M,W) are uniquely
determined, due to the convexity of (6). Nonetheless, the above re-
mains a difficult bi-level optimization problem, since the bases W
occur in both levels.

In [5] the bi-level problem was approached by directly solving
for the derivatives of the lower level problem after convergence. In
[4], the problem was approached by untying the bases used for re-
construction in (5) from the analysis bases used in (6), and discrim-
inatively training only the reconstruction bases, while the analysis
bases are classically trained separately on each source type. In addi-
tion, (4) was incorporated into the discriminative criteria as

Ŵ = argmin
W

∑
l

γlDβ2

(
Sl | S̃l,K(M,W)

)
. (7)

Here, we propose to take this further by unfolding the entire
model as a deep non-negative neural network, and untying the pa-
rameters across layers as Wk for k = 0, . . . ,K. This leads to the

Fig. 1. Illustration of the proposed deep NMF neural network

following architecture with K + 1 layers, illustrated in Fig. 1:

Hk
t = fWk−1(mt,H

k−1
t ),

= Hk−1
t ◦ (W̃

k−1)T (mt ◦ (W̃k−1Hk−1
t )β−2)

(W̃k−1)T (W̃k−1Hk−1
t )β−1 + µ

, (8)

S̃l,Kt = gWK (mt,H
K
t ) =

W̃l,KHl,K
t∑

l′ W̃
l′,KHl′,K

t

◦mt. (9)

We call this new model deep NMF.
In order to train this network while enforcing the non-negativity

constraints, we derive recursively-defined multiplicative update
equations by back-propagating a split between positive and negative
parts of the gradient. Multiplicative updates are often derived using
a heuristic approach which uses the ratio of the negative part to the
positive part as a multiplication factor to update the value of that
variable of interest. Here we do the same for each Wk matrix in the
unfolded network:

Wk ⇐Wk ◦
[∇WkE ]−
[∇WkE ]+

. (10)

To propagate the positive and negative parts, we use:[
∂E
∂hkr,t

]
+

=
∑
r′

([
∂E

∂hk+1
r′,t

]
+

[
∂hk+1

r′,t

∂hkr,t

]
+

+

[
∂E

∂hk+1
r′,t

]
−

[
∂hk+1

r′,t

∂hkr,t

]
−

)
[
∂E
∂hkr,t

]
−
=
∑
r′

([
∂E

∂hk+1
r′,t

]
+

[
∂hk+1

r′,t

∂hkr,t

]
−

+

[
∂E

∂hk+1
r′,t

]
−

[
∂hk+1

r′,t

∂hkr,t

]
+

)
[

∂E
∂wkf,r

]
+

=
∑
t,r′

([
∂E

∂hk+1
r′,t

]
+

[
∂hk+1

r′,t

∂wkf,r

]
+

+

[
∂E

∂hk+1
r′,t

]
−

[
∂hk+1

r′,t

∂wkf,r

]
−

)
[

∂E
∂wkf,r

]
−

=
∑
t,r′

([
∂E

∂hk+1
r′,t

]
+

[
∂hk+1

r′,t

∂wkf,r

]
−

+

[
∂E

∂hk+1
r′,t

]
−

[
∂hk+1

r′,t

∂wkf,r

]
+

)

where hkr,t are the activation coefficients at time t for the rth basis
set in the kth layer, and wkf,r are the values of the rth basis vector in
the f th feature dimension in the kth layer.



3. EXPERIMENTS

The deep NMF method was evaluated along with competitive mod-
els on the 2nd CHiME Speech Separation and Recognition Chal-
lenge corpus1 [11]. The task is speech separation in reverberated
noisy mixtures (S = 2, l = 1: speech, l = 2: noise). The back-
ground noise, recorded in a home environment, consists of naturally
occurring interference such as children, household appliances, tele-
vision, radio, and so on, most of which is non-stationary. Training,
development, and test sets of noisy mixtures along with noise-free
reference signals are created from disjoint parts of the Wall Street
Journal (WSJ-0) corpus of read speech and the noise recordings. The
dry speech recordings are convolved with time-varying room im-
pulse responses estimated from the same environment as the noise.
The training set consists of 7 138 utterances at six SNRs from -6 to
9 dB, in steps of 3 dB. The development and test sets consist of 410
and 330 utterances at each of these SNRs, for a total of 2 460 / 1 980
utterances. By construction of the WSJ-0 corpus, our evaluation is
speaker-independent. The background noise recordings in the devel-
opment and test set are different from the training noise recordings,
and different room impulse responses are used to convolve the dry
utterances. In this paper, we present results on the development set.
To reduce complexity we use only 10 % of the training utterances
for all methods. Our evaluation measure for speech separation is
source-to-distortion ratio (SDR) [12].

3.1. Feature extraction

Each feature vector concatenates T = 9 consecutive frames of left
context, ending with the target frame, obtained as short-time Fourier
spectral magnitudes, using 25 ms window size, 10 ms window shift,
and the square root of the Hann window. This leads to feature vectors
of size TF where F = 200 is the number of frequencies. Similarly
to the features in M, each column of Ŝl corresponds to a sliding
window of consecutive reconstructed frames. Only the last frame
in each sliding window is reconstructed, which leads to an on-line
algorithm. For the NMF-based approaches, we use the same num-
ber of basis vectors for speech and noise (R1 = R2), and consider
Rl = 100 and Rl = 1000. We denote the total as R =

∑
lR

l.
We investigate two regimes in the total number of iterations, K = 4
for which NMF-based approaches still have significant room for im-
provement in performance, andK = 25 for which, based on prelim-
inary experiments, they are close to asymptotic performance.

3.2. Baseline 1: Deep Neural Network

To compare our deep NMF architecture with standard K-layer
deep neural networks, we used the following setting. The feed-
forward DNNs have K − 1 hidden layers with hyperbolic tangent
activation functions and an output layer with logistic activation
functions. Denoting the output layer activations for time index
t by yt = (y1,t, . . . , yF,t)

T ∈ [0, 1]F , the DNN computes the
deterministic function

yt = σ(WK tanh(WK−1 · · · tanh(W1xt)) · · · ),

where xt are the input feature vectors and σ and tanh denote
element-wise logistic and hyperbolic tangent functions. As in the
deep NMF experiments, T = 9 consecutive frames of context
are concatenated together, but here the vectors xt are logarithmic
magnitude spectra. Thus, the only difference in the input feature
representation with respect to deep NMF is the compression of the

1http://spandh.dcs.shef.ac.uk/chime challenge/ – as of June 2014

Table 1. DNN source separation performance on the CHiME devel-
opment set for various topologies.
SDR [dB] Input SNR [dB]
Topology -6 -3 0 3 6 9 Avg. # params

3x256 3.71 5.78 7.71 9.08 10.80 12.75 8.31 644 K
1x1024 5.10 7.12 8.84 10.13 11.80 13.58 9.43 2.0 M
2x1024 5.14 7.18 8.87 10.20 11.85 13.66 9.48 3.1 M
3x1024 4.75 6.74 8.47 9.81 11.53 13.38 9.11 4.1 M
2x1536 5.42 7.26 8.95 10.21 11.88 13.67 9.57 5.5 M

spectral amplitudes, which is generally considered useful in speech
processing, but breaks the linearity assumption of NMF.

Previous attempts with DNNs have focused on direct estima-
tion of the clean speech without taking into account the mixture in
the output layer, or on direct estimation of a masking function with-
out considering its effect upon the speech estimate. Here, based on
our experience with model-based approaches, we train the masking
function such that, when applied to the mixture, it best reconstructs
the clean speech, which was also proposed in [13]. This amounts to
optimizing the following objective function for the DNN training:

E =
∑
f,t

(
yf,tmf,t − slf,t

)2
=
∑
f,t

(
s̃lf,t − slf,t

)2
, (11)

where m are the mixture magnitudes and sl are the speech mag-
nitudes. Thus, the sequence of output layer activations yt can be
interpreted as a time-frequency mask in the magnitude spectral do-
main, similar to the ‘Wiener filter’ in the output layer of deep NMF
(7). This approach, which we refer to as signal approximation, leads
in our experiments to 1.5 dB improvements relative to mask approx-
imation, in which the masking function is trained to match a target
mask (mask approximation results are not reported here). Although
this comes from the model-based approach, we include it here so
that the DNN results are comparable solely on the context of the
deep architecture and not the output layer.

Our implementation is based on the open-source software CUR-
RENNT2. During training, the above objective function is minimized
on the CHiME training set, using back-propagation, stochastic gra-
dient descent with momentum, and discriminative layer-wise pre-
training. Early stopping based on cross-validation with the CHiME
development set, and Gaussian input noise (standard deviation 0.1)
are used to prevent aggressive over-optimization on the training set.
Unfortunately, our current experiments for deep NMF do not use
cross-validation, but despite the advantage this gives to the DNN, as
shown below deep NMF nevertheless performs better.

We investigate different DNN topologies (number of layers and
number of hidden units per layer) in terms of SDR performance on
the CHiME development set. Results are shown in Table 1.

3.3. Baseline 2: sparse NMF

Sparse NMF (SNMF) [14] is used as a baseline, by optimizing the
training objective,

W
l
,H

l
= argmin

Wl,Hl

Dβ(S
l | W̃lHl) + µ|Hl|1, (12)

for each source, l. A multiplicative update algorithm to optimize
(12) for arbitrary β ≥ 0 is given by [15]. During training, we set
S1 and S2 in (12) to the spectrograms of the concatenated noise-free
CHiME training set and the corresponding background noise in the
multi-condition training set. This yields SNMF bases W

l
, l = 1, 2.

2http://currennt.sf.net/



Table 2. Deep NMF source separation performance on CHiME Challenge (WSJ-0) development set.
SDR [dB] Input SNR [dB]
Rl = 100 -6 -3 0 3 6 9 Avg. PD P
K = 4, C = 0 (SNMF) 2.03 4.66 7.08 8.76 10.67 12.74 7.66 - 360 K
K = 4, C = 1 (DNMF) 2.91 5.43 7.57 9.12 10.97 13.02 8.17 40 K 400 K
K = 4, C = 2 3.19 5.68 7.78 9.28 11.09 13.07 8.35 80 K 440 K
K = 4, C = 3 3.22 5.69 7.79 9.28 11.09 13.05 8.35 120 K 480 K
K = 4, C = 4 3.32 5.76 7.84 9.31 11.11 13.05 8.40 160 K 520 K
K = 25, C = 0 (SNMF) 4.16 6.46 8.51 9.90 11.61 13.40 9.01 - 360 K
K = 25, C = 1 (DNMF) 4.92 7.09 8.90 10.24 12.02 13.83 9.50 40 K 400 K
K = 25, C = 2 5.16 7.28 9.05 10.36 12.12 13.89 9.64 80 K 440 K
K = 25, C = 3 5.30 7.38 9.14 10.43 12.18 13.93 9.73 120 K 480 K
K = 25, C = 4 5.39 7.44 9.19 10.48 12.22 13.95 9.78 160 K 520 K

Rl = 1000 -6 -3 0 3 6 9 Avg. PD P
K = 4, C = 0 (SNMF) 1.79 4.45 6.94 8.66 10.61 12.76 7.54 - 3.6 M
K = 4, C = 1 (DNMF) 2.94 5.45 7.60 9.15 11.00 13.06 8.20 400 K 4 M
K = 4, C = 2 3.14 5.62 7.74 9.26 11.10 13.12 8.33 800 K 4.4 M
K = 4, C = 3 3.36 5.80 7.89 9.37 11.19 13.18 8.47 1.2 M 4.8 M
K = 4, C = 4 3.55 5.95 8.01 9.48 11.28 13.23 8.58 1.6 M 5.2 M
K = 25, C = 0 (SNMF) 4.39 6.60 8.67 10.06 11.82 13.67 9.20 - 3.6 M
K = 25, C = 1 (DNMF) 5.74 7.75 9.55 10.82 12.55 14.35 10.13 400 K 4 M
K = 25, C = 2 5.80 7.80 9.59 10.86 12.59 14.39 10.17 800 K 4.4 M
K = 25, C = 3 5.84 7.82 9.62 10.89 12.61 14.40 10.20 1.2 M 4.8 M

As initial solution for W, we use exemplar bases sampled at random
from the training data for each source. For the sparsity weight we
use µ = 5, which performed well for SNMF and DNMF algorithms
for both Rl = 100 and Rl = 1000 in the experiments of [4]. In
the SNMF experiments, the same basis matrix W is used both for
determining Ĥ according to (2) and for reconstruction using (4).

3.4. Deep NMF

In the deep NMF experiments, the KL divergence (β1 = 1) is used
for the update equations (i.e., in layers k = 1, . . . ,K−1), but we use
the squared error (β2 = 2) in the discriminative objective (7) (i.e.,
in the top layer k = K) since this corresponds closely to the SDR
evaluation metric, and this combination performed well in [4]. In all
the deep NMF models we initialize the basis sets for all layers using
the SNMF bases, W, trained as described in Section 3.3. We then
consider the C last layers to be discriminatively trained, for various
values ofC. This means that we untie the bases for the finalC layers
(counting the reconstruction layer and analysis layers), and train the
bases Wk for k such thatK−C+1 ≤ k ≤ K using the multiplica-
tive back-propagation updates described in Section 2. Thus C = 0
corresponds to SNMF, C ≥ 1 corresponds to deep NMF, with the
special case C = 1 previously described as DNMF [4]. While all
layers could be discriminatively trained, as in the general framework
of Section 2, we here focus on a few last layers to investigate the
influence of discriminatively training more and more layers.

In the experiments, the K−C non-discriminatively trained lay-
ers use the full bases W, which contain multiple context frames. In
contrast the C discriminatively trained layers are restricted to a sin-
gle frame of context. This has the advantage of dramatically reduc-
ing the number of parameters, and is motivated by the fact that the
network is being trained to reconstruct a single target frame, whereas
using the full context in Wk and M would enforce the additivity
constraints across reconstructions of the full context in each layer.
Here, Wk>K−C is thus of size (F × R), and is initialized to the
last F rows of W (those corresponding to the features of the cur-
rent frame), and the matrix M′, consisting of the last F rows of

M, is used in place of M. For deep NMF, the fixed basis functions
W contain DF = TFR parameters that are not discriminatively
trained, whereas the final C layers together have PD = CFR dis-
criminatively trained parameters, for a total of P = (T + C)FR.

4. DISCUSSION

Results in terms of SDR are shown for the experiments using DNNs
in Table 1, and for the deep NMF family in Table 2, for a range of
topologies. The first thing to note is that the deep NMF framework
yields strong improvements relative to SNMF. Comparing the DNN
and deep NMF approaches, we can first see that the best deep NMF
topology achieves an SDR of 10.20 dB, outperforming the best DNN
result of 9.57 dB, for a comparable number of parameters (4.8M
for deep NMF versus 5.5M for the DNN). The smallest deep NMF
topology that outperforms the best DNN topology, is obtained for
Rl = 100,K = 25, C = 2, and achieves an SDR of 9.64 dB
using at least an order of magnitude fewer parameters (only 440K
parameters overall, only 80K of which are discriminatively trained).

For deep NMF, discriminatively training the first layer gives the
most improvement, but training more and more layers consistently
improves performance, especially in low SNR conditions, while only
modestly increasing the parameter size. Increasing the parameter
size from Rl = 100 to Rl = 1000 does not lead to as much gain as
one might expect. This may be because we are currently only train-
ing on 10 % of the data, and used a conservative convergence crite-
rion. For the same model size, using K = 25 layers leads to large
gains in performance without increasing training time and complex-
ity. However, it comes at the price of increased computational cost
at inference time. Intermediate topology regimes need to be further
explored to better understand the speed/accuracy trade-off.

In subsequent experiments on DNNs, improved features and
training procedures brought the best DNN performance to 10.46 dB
with 4.1M parameters [16]. Application of these improvements to
deep NMF is indicated so that the two methods can be compared on
an equal footing. In [16] recurrent networks further improved per-
formance on the same task to 12.23 dB. Future work on deep NMF
should therefore also focus on developing recurrent extensions.
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