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Abstract

We investigate the mis-match in the classical interpretation of cer-
tain distribution-fitting problems as maximum-likelihood (ML) estima-
tion problems in the particular case of the I-divergence. The general
relation between Bregman divergences and exponential families shown
by Banerjee et al. [8] enables to consider distribution-fitting problems
based on Bregman divergences as ML problems based on the corre-
sponding exponential family. This interpretation is however only valid
if the data is included in the support of the exponential family. This is
the case for the I-divergence, which is associated to the Poisson distri-
bution, when applied to real-valued data. We explain more precisely
the reason for this mis-match, and derive an asymptotically justifiable
alternative to the usual workaround consisting in quantizing the data,
by using the Gamma function as a normalization term.

1 Introduction

The possibility to interpret some distribution-fitting problems as maximum-
likelihood (ML) problems is an important concept in signal processing and
machine learning algorithms. It is well-known for example that the fitting on
a domain D of a model Q(x,Θ) with parameters Θ to observed data W (x)
based on the least-squared error can be interpreted as the ML estimation of
the parameters Θ of the model, assuming that the observation data points
W (x) are independently generated from a Gaussian distribution with mean
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Q(x,Θ) and fixed variance. The parameters Θ minimizing
∫
D ||Q(x,Θ) −

W (x)||2dx and maximizing
∏

x∈D
1√
2πc

exp− ||Q(x,Θ)−W (x)||2
2c2

for any positive
constant c (with an abuse of notation for the product sign) are indeed easily
seen to be the same. This bridge between the two theories is particularly
interesting as it justifies the use of penalty functions on the parameters
as prior functions in a Maximum a Posteriori (MAP) framework, or more
generally enables the use of Bayesian techniques in parameter estimation
problems.

In a wide range of signal processing problems, such as audio signal pro-
cessing [1, 2], linear inverse problems [3], deblurring [4] or problems relying
on Non-negative Matrix Factorization (NMF) techniques [5], the distribu-
tions considered are intrinsically non-negative. Csiszár showed in [6] that
in such situations, the only choice of discrepancy measure consistent with
certain fundamental axioms such as locality, regularity and composition-
consistency is the so-called I-divergence [7]. The question of the possibility
to interpret distribution-fitting problems based on the I-divergence as ML
estimation problems is thus very important.

Banerjee et al. [8] showed that there is a general one-to-one correspon-
dence between a certain type of Bregman divergences, of which the I-
divergence is a particular case, and a certain type of exponential families,
which are families of probability distributions including many common prob-
ability distribution families such as the Gamma, Gaussian, Binomial or Pois-
son distributions. This result justifies a general link between distribution-
fitting using Bregman divergences and ML estimation using the correspond-
ing exponential family. However, as noted in [8], such a relation is only
useful for the instances which can be drawn from the exponential distribu-
tion, and the set of all these instances may be a strict subset of the domain
of definition of the Bregman divergence.

In other words, for some divergence measures, the interpretation of the
distribution-fitting problem as an ML estimation one may not be straight-
forward. This is actually the case for the I-divergence, which is well-defined
for real values of the distributions considered, but can be shown to corre-
spond to ML estimation based on the Poisson distribution, which is only
defined on the integers. Surprisingly, to our knowledge this has never been
clearly stated in the literature, the usual workaround being to quantize and
scale the data to get back to the discrete Poisson distribution [3, 4].

We investigate here this mis-match between the distribution-fitting and
the ML estimation problems in the particular case of the I-divergence. We
explain why the bridge between the two can not be perfectly filled, i.e., why
it is sometimes impossible to interpret in full generality a distribution-fitting
problem as an ML estimation one, and we derive a theoretical workaround
which completes the practical quantization-based one. The goal of this re-
port is simultaneously to clarify and attract the attention of the community
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on this easily over-looked but nonetheless important problem.
We first introduce the framework in Section 2, then give in Section 3 an

insight on the reason for the non-existence of a normalization term giving
the desired result. We finally show in Section 4 that the Gamma func-
tion can be used as a normalization term which asymptotically leads to the
interpretation we are looking for.

2 Presentation of the framework

We consider a non-negative distribution W and a non-negative model Q(·,Θ)
parameterized by Θ, defined on a domain D. The I-divergence [7] is a clas-
sical way to measure the “distance” between two such non-negative distri-
butions:

I(W |Q(Θ)) ,
∫

D

(
W (x) log

W (x)
Q(x;Θ)

−
(
W (x) − Q(x;Θ)

))
dx. (1)

Distribution-fitting based on the I-divergence amounts to looking for Θopt =
argminΘ I(W |Q(Θ)). Keeping only the terms depending on Θ and revers-
ing the sign of this expression, one defines the following function to maximize
w.r.t. Θ:

J (W,Θ) =
∫

D

(
W (x) log Q(x;Θ) − Q(x;Θ)

)
dx. (2)

One would like to find a family of probability distributions with parameter
Q(x,Θ), such that the corresponding likelihood for Θ, defined as the joint
probability of all the variables W (x) independently following the distribution
of parameter Q(x,Θ), depends on Θ only through J (W,Θ). Remembering
the case of least squares estimation and Gaussian distributions, we would
like to define the log-likelihood of Θ as J (W,Θ) itself, up to a constant
which only depends on the data:

log P (W |Θ) , J (W,Θ) +
∫

D
log f(W (x))dx. (3)

Maximization of the log-likelihood of Θ and maximization of J (W,Θ) would
then be equivalent. We thus need to look for a function f such that this
indeed defines a probability measure with respect to W . The point here is
that, for the equality (3) to be useful, the function f needs to be positive on
the values taken by the data, as both terms of the equality would otherwise
be equal to −∞, thus hiding the contribution of the I-divergence. The
corresponding distribution density on [0, +∞), with parameter θ, is then

µf,θ(z) = ez log θ−θf(z) = θze−θf(z),∀z ∈ [0, +∞), (4)
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which needs to be a probability distribution density for any θ:

∀θ,

∫ +∞

0
θxe−θf(x)dx = 1. (5)

3 Non-existence of a continuous normalization

3.1 Relation with the Laplace transform

We show here that there is no solution to this problem with real-valued data,
in the sense that there indeed exists a unique non-negative measure ν on R+

such that

∀θ,

∫ +∞

0
θxe−θν(dx) = 1, (6)

but it is supported by N = {0, 1, 2, . . . }. This measure leads to none other
than the discrete Poisson distribution. In the following, we thus look for a
non-negative measure ν satisfying Eq. (6).

If we rewrite Eq. (6) with µ = log θ, our problem amounts to looking for
ν such that

∀µ,

∫ +∞

0
exµdν(x) = eeµ

, (7)

i.e., to looking for a measure ν whose Laplace transform is µ 7→ eeµ
.

A direct computation gives the Laplace transform of the Poisson distri-
bution p(·, θ) =

∑
k∈N

θke−θ

k! δk(·) of parameter θ with k ∈ N,
∫ +∞

0
exµp(x, θ)dx = e−θ

∑

k∈N

ektθk

k!
= e−θeθet

. (8)

Up to the constant factor e−1, the Poisson distribution with mean parameter
1 is thus a solution to (6), and conversely any solution to (6) must have (up
to a constant factor) the same Laplace transform as the Poisson distribution
of mean 1. But this Laplace transform is holomorphic in a neighborhood
of 0 (it is in fact an entire function, holomorphic on the whole complex
plane), and thus, as shown in [9] (Chap. 30), determines the measure it is
associated with. In other words, a measure with such a Laplace transform
is unique, which shows that the unique probability distribution satisfying
Eq. (6) is ν = e p(·, 1), leading for µν,θ to none other than the classical
Poisson distribution family p(·, θ), which is supported by N.

3.2 Consequences on the interpretation of I-divergence-based
fitting as an ML estimation problem

As there is no function taking positive values on [0; +∞) which verifies (5),
we cannot directly interpret I-divergence-based distribution-fitting prob-
lems with real-valued data as ML estimation problem. If nothing is done,
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this means that all non-integer data points will have zero likelihood, even if
the model fits them perfectly. The usual workaround [3,4] is to quantize the
data and to perform a suitable scaling of the data and the model so as to
act as if the data were integer, justified by the fact that computers quantize
the data anyway. Quantization is a practical justification, but it may seem
rather disappointing and inelegant, as it looses the continuous quality of the
problem. We derive in the following section a theoretical justification which
retains more of the continuity of the problem on real-valued data.

4 Asymptotically satisfactory normalization using
the Gamma function

By analogy with the discrete case, for which for any θ ∈ R
+, θne−θ

Γ(1+n) is a
probability density distribution on n ∈ N called the Poisson distribution, we
consider the distribution of the variable x ∈ [0, +∞) with parameter θ,

fθ(x) =
θxe−θ

Γ(1 + x)
, (9)

where Γ is the Gamma function. Note that if we reverse the roles of x and
θ, it is nothing else than the Gamma distribution.

This distribution is unfortunately not a probability distribution (it could
not be, as shown in Section 3), and needs a normalizing constant. Let
us consider the evolution of this normalizing constant with respect to the
parameter θ. We denote by

g(θ) =
∫ +∞

0

θxe−θ

Γ(1 + x)
dx (10)

the mass of the distribution fθ and by

h(θ) =
∫ +∞

0

xθxe−θ

Γ(1 + x)
dx (11)

its first-order moment.

4.1 Limit of g at the origin

We notice that ∀η > 0,

∫ η

0

θxe−θ

Γ(1 + x)
dx ≤

∫ η

0

1
Γ(1 + x)

dx −→
η→0

0,

and ∀θ < 1,∀η > 0,

∫ +∞

η

θxe−θ

Γ(1 + x)
dx ≤ θη

∫ +∞

0

e−θ

Γ(1 + x)
dx ≤ Cθη −→

θ→0
0.
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Thus, for any ε > 0, by choosing η0 such that

∀η < η0,

∫ η

0

θxe−θ

Γ(1 + x)
dx ≤ ε

and then θ0 such that

∀θ < θ0,

∫ +∞

η0

θxe−θ

Γ(1 + x)
dx ≤ ε,

we show that
g(θ) −→

θ→0
0. (12)

4.2 Rewriting g(θ)

As we can write

∀ζ > 0,∀θ > 0, g(θ) = g(ζ) +
∫ θ

ζ
g′(t)dt, (13)

we look more closely at the derivative of g w.r.t. θ:

g′(θ) =
∫ +∞

0

xθx−1e−θ − θxe−θ

Γ(1 + x)
dx

=
∫ +∞

0

xθx−1e−θ

Γ(1 + x)
dx −

∫ +∞

0

θxe−θ

Γ(1 + x)
dx

=
∫ +∞

−1

θue−θ

Γ(1 + u)
du − g(θ)

=
∫ 0

−1

θue−θ

Γ(1 + u)
du. (14)

By using the definition of the Gamma function

Γ(z) =
∫ +∞

0
e−ttz−1dt

and Euler’s reflection formula

Γ(z)Γ(1 − z) =
π

sinπz
,

we can perform the following derivation:

g′(t) =
∫ 1

0

t−ue−t

Γ(1 − u)
du

=
∫ 1

0

sinπu

π
t−ue−tΓ(u)du

=
∫ 1

0

sinπu

π
t−ue−t

∫ +∞

0
e−ssu−1ds du

=
∫ +∞

0

e−se−t

πs

(∫ 1

0

(s

t

)u
sin(πu)du

)
ds. (15)
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The inside integral can be analytically computed. If we note α = log s
t , then

∫ 1

0

(s

t

)u
sin(πu)du =

∫ 1

0

e(α+iπ)v − e(α−iπ)v

2i
du

= − 1
2i

(
1

α + iπ
− 1

α − iπ

)
(1 + eα)

= π
1 + eα

π2 + α2

= π
1 + s

t

π2 + (log s
t )

2
. (16)

We get

g′(t) =
∫ +∞

0
e−se−t

1
s + 1

t

π2 + (log t − log s)2
ds. (17)

Altogether, for θ > 0 and ζ > 0,

g(θ) = g(ζ) +
∫ θ

ζ

∫ +∞

0
e−te−s

1
t + 1

s

π2 + (log t − log s)2
ds dt. (18)

By letting ζ go to 0 in this last expression, we deduce from Eq. (12) another
expression for g(θ):

g(θ) =
∫ θ

0

∫ +∞

0
e−te−s

1
t + 1

s

π2 + (log t − log s)2
ds dt. (19)

We can further simplify Eq. (19). We perform a change of variables
u = log s/t,

g(θ) =
∫ θ

0

∫ +∞

−∞
e−teu

e−t 1 + eu

π2 + u2
du dt

=
∫ +∞

−∞

1
π2 + u2

∫ θ

0
(1 + eu)e−(1+eu)tdt du

=
∫ +∞

−∞

1 − e−(1+eu)θ

π2 + u2
du

=
∫ +∞

−∞

1
π2 + u2

du − e−θ

∫ +∞

−∞

e−θeu

π2 + u2
du

=
1
π

[
arctan(

x

π
) − arctan(

x

π
)
]+∞

−∞
− e−θ

∫ +∞

−∞

e−θeu

π2 + u2
du

= 1 − e−θ

∫ +∞

−∞

e−θeu

π2 + u2
du. (20)

and we conclude that
∫ +∞

0

θxe−θ

Γ(1 + x)
dx = 1 − e−θ

∫ +∞

−∞

e−θeu

π2 + u2
du. (21)
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We note that this result can be also interpreted as an alternative expres-
sion for the Laplace transform of the function x 7→ 1

Γ(1+x) . Indeed, if we
write s = log θ, we have

∫ +∞

0
exs 1

Γ(1 + x)
dx = ees −

∫ +∞

−∞

e−es+u

π2 + u2
du. (22)

4.3 Asymptotic behavior

We can easily see that g(θ) is concave and increasing by looking at its
derivatives. We see from Eq. (21) that g is bounded by 1. It thus converges
to a finite value.

By noticing that

∀θ > 0,∀u ∈ R, 0 ≤
∫ +∞

−∞

e−θeu

π2 + u2
du ≤ 1,

we can conclude from Eq. (21) that

lim
θ→+∞

∫ +∞

0

θxe−θ

Γ(1 + x)
dx = 1. (23)

The normalization factor of fθ thus converges to 1.
We also notice that h(θ) = θ(g(θ) + g′(θ)), from which we deduce in the

same way that
lim

θ→+∞
h(θ) − θ = 0. (24)

So, asymptotically, fθ behaves in the same way as the Poisson distribution,
i.e., its mass converges to 1 and its first moment is asymptotically equal to
its parameter.

4.4 Justifying again the cross-interpretation

As evoked in Section 3.2, several authors present their work with the I-
divergence directly on discretized data, enabling them to fall back to the
discrete Poisson distribution after proper scaling of the data and the model.
The above results on the normalization factor and the mean justify in a dif-
ferent way the bridge between I-divergence-based fitting and ML estimation
for real-valued data without quantization.

For sufficiently large values of the model, the distribution is indeed al-
most a probability distribution which behaves like the discrete Poisson dis-
tribution. If one can ensure that the values taken by the model will be
bounded from below by a positive value, then by rescaling both the model
and the data by multiplying them by a large constant, the continuous dis-
tribution fQ(x,Θ) parameterized by the model Q(x,Θ) can be made as close
to a probability distribution as desired for all the values taken by the model.
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Meanwhile, the optimal parameters Θ are not changed by the scaling oper-
ation, as the log-likelihoods before and after scaling are equal up to scaling
and addition of a constant which does not depend on the parameters:

∫
(αW log αQ(Θ) − αQ(Θ)) = α

∫
(W log Q(Θ) − Q(Θ)) + C (25)

where α > 0 is the scaling parameter.
One can ensure that the model is bounded from below by a positive value

for example if the data are themselves bounded from below by such a value
and if the model is well-designed, such that it should not take infinitely
small values if the data to fit is large enough. One can also add to both the
model and the data a small value ε > 0. The optimal parameters for this
shifted problem can be made as close as desired to the optimal parameters
for the original problem by choosing ε small enough, while, for ε fixed, the
shifted problem can be made as close to a righteous ML problem as desired
through scaling.

The interpretation of I-divergence-based fitting as a ML problem is thus
justified. In particular, it justifies the use of prior distributions in a MAP
framework such as performed in [1, 2].

5 Conclusion

We presented the inherent mis-match occurring in the interpretation of some
distribution-fitting problems as ML estimation ones, focusing on the example
of the I-divergence. We gave insights on the reason why distribution-fitting
based on the I-divergence on real-valued data cannot be seen directly as an
ML estimation problem, and derived a theoretical workaround to this issue
using the Gamma function, thus justifying MAP estimation as performed
in [1, 2]. We plan to use this result in a forthcoming paper on missing-data
problems.
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