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Abstract

The human auditory system has the ability, known as auditory
induction, to estimate the missing parts of a continuous audi-
tory stream briefly covered by noise and perceptually resynthe-
size them. Humans are thus able to simultaneously analyze an
auditory scene and reconstruct the underlying signal. In this
article, we formulate this ability as a non-negative matrix fac-
torization (NMF) problem with unobserved data, and show how
to solve it using an auxiliary function method. We explain how
this method can also be generally related to the EM algorithm,
enabling the use of prior distributions on the parameters. We
show how sparseness is a key to global feature extraction, and
that our method is ideally able to extract patterns which never
occur completely. We finally illustrate on an example how our
method is able to simultaneously analyze a scene and interpo-
late the gaps into it.
Index Terms: Auditory induction, Bregman divergence,
Missing-data, Auxiliary function, EM algorithm, Non-negative
matrix factorization

1. Introduction
Computational Auditory Scene Analysis (CASA), whose main
goal is to make computers able to imitate the human auditory
segregation abilities, has been an area of intensive research in
the recent years. A particular attention has been given to the
so-called “cocktail party problem”, the computational imple-
mentation of the “cocktail party effect”, i.e., the ability of the
human auditory system to focus on a single talker among a mix-
ture of conversations and background noises, leading to the de-
velopment of many methods for multi-pitch estimation, noise
canceling or source separation [1]. Less emphasis has been put
on the computational realization of another remarkable ability
of the human auditory system, auditory induction. Humans are
able, under certain conditions, to estimate the missing parts of
a continuous acoustic stream briefly covered by noise, to per-
ceptually resynthesize and clearly hear them [2]. Humans are
thus able to simultaneously analyze an auditory scene, as in the
cocktail party effect, in the presence of gaps, and to reconstruct
the signal inside those gaps.

The development of an effective computational counterpart
to this ability would lead to many important engineering appli-
cations, from polyphonic music recording analysis and restora-
tion to mobile communications robust to both packet-loss and
background noise.

This paper aims at developing such a computational coun-
terpart to auditory induction, by simultaneously performing
a decomposition of the magnitude wavelet spectrogram of a
sound with missing or corrupted samples, and filling in the gaps
into that spectrogram. Various approaches have emerged re-
cently which attempt to analyze the structure of the spectrogram
of an acoustical scene [3, 4], while on the other side gap inter-
polation techniques have been the subject of research for many
years [5, 6]. However, only few models [7] so far try to deal
with both issues. While [7] relies on local regularities of the
spectrogram, the framework we introduce can use both local
and global regularities.

We use here the non-negative matrix factor 2-D deconvolu-
tion algorithm (NMF2D) [3] as a representative method to ex-
tract global structures in audio spectrograms, and show how to
extend it such that it can be used to analyze acoustic scenes with
incomplete data. We also show how the introduced method can
be interpreted in terms of the EM algorithm, enabling the use
of prior distributions on the parameters which can enforce lo-
cal smoothness regularities. Finally, we perform a short experi-
mental evaluation to validate our method on a piece of computer
generated music.

2. Audio inpainting
2.1. Problem setting

We consider the problem of interpolating gaps in audio signals
by filling in the gaps in the magnitude spectrogram. We will
not consider here the reconstruction of the phase. If the magni-
tude spectrogram can be accurately reconstructed, other meth-
ods could be used to obtain a phase consistent with it [8, 9]. We
are interested in using local and global regularities in the spec-
trogram to simultaneously analyze the acoustical scene and fill
in gaps that may have occurred into it. We believe that this is
close to what is performed by humans in the auditory induction
mechanism, when for example sounds actually missing from a
speech signal can in certain conditions be perceptually synthe-
sized by the brain and clearly heard [2]. Our goal is thus to “in-
paint” the missing regions of the spectrogram based on global
and local regularities, in the same spirit as is done for image
inpainting [10], where diffusion-based (local) and exemplar-
based (global) techniques are used [11].

As a method able to extract global patterns in non-negative
data, we consider here the non-negative matrix factorization
(NMF) framework. More precisely, we will use Schmidt and



Mørup’s NMF2D algorithm [3, 12], which is well-suited to deal
with audio signals. Local smoothness regularities can be en-
forced by adding prior distributions on the parameters, as ex-
plained in Section 3.

2.2. Overview of the NMF2D algorithm

The NMF2D algorithm is an extension of Smaragdis’s non-
negative matrix factor deconvolution (NMFD) [13], itself an ex-
tension of the original NMF [14]. NMF is a general tool which
attempts to decompose a non-negative matrixV ∈ R≥0,M×N

in the product of two usually lower-rank non-negative matrices
W ∈ R≥0,M×R andH ∈ R≥0,R×N ,

V ≈ WH.

In applications to audio, the horizontal and vertical dimensions
of the matrices respectively represent time and frequency (or
log-frequency). NMFD extends NMF by introducing a convo-
lution in the time direction, and looks for a decomposition ofV
as

V ≈ Λ =
X

τ

W τ
→τ

H (1)

where→ τ denotes the right shift operator which moves each
element in a matrixτ columns to the right, and the superscript
τ in W τ is an index. NMFD thus enables the representation
of time structure in the extracted patterns. NMF2D generalizes
this approach to the frequency direction through a 2-D convo-
lution. By using a log-frequency spectrogram, a pitch change
corresponds to a shift on the frequency axis. Assuming that
the spectral patterns to be modeled are roughly pitch-invariant,
NMF2D can thus account for both time and frequency struc-
tures. Concretely, the NMF2D model is

V ≈ Λ =
X

τ

X

φ

↓φ

W τ
→τ

Hφ (2)

where↓ φ denotes the down shift operator which moves each
element in a matrixφ lines down. Up shift and left shift operator
are defined in the same way. Applying NMFD or NMF2D to
audio signals implies making a sparseness assumption on the
signal, as the additivity of magnitudes in the spectral domain is
only true if the underlying components of the signal are sparse
enough to minimize overlaps.

Lee and Seung [14] introduced efficient algorithms for
computing the NMF of a matrixV based on both the least
squares error and theI-divergence, which have been extended
by Smaragdis for NMFD [13] and Schmidt and Mørup for
NMF2D [3, 12]. These algorithms are based on multiplicative
updates. IfΛ is defined as in (2), we define the objective func-
tion asJ (W, H|V ) = ||V − Λ||2F for the least squares error,
where|| · ||F denotes the Frobenius norm (sum of the square

of all the elements), orJ (W, H|V ) =
P

i,j Vi,j log
“

Vi,j

Λi,j

”

−
(Vi,j − Λi,j) for theI-divergence. For the least squares error,
the updates can be written as
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P
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while for theI-divergence they become
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P
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2.3. NMF2D on incomplete spectrograms

We consider the wavelet magnitude spectrogram of an acousti-
cal scene represented as a non-negative matrixVi,j , defined on
a domain of definitionD = [[1, M ]] × [[1, N ]] (corresponding
for example to the time-frequency region{x, t ∈ R | Ω0 6
x 6 Ω1, T0 6 t 6 T0 + T}). We assume in general that
the spectro-temporal patterns to be modeled are roughly pitch-
invariant, and that the signals are sparse enough such that the
additivity assumption on the magnitude spectrograms holds.

We assume that regions of the magnitude spectrogram are
degraded or missing and are interested in performing simulta-
neously an analysis of this acoustical scene with the NMF2D
algorithm despite the presence of gaps, and a reconstruction of
the missing parts.

If the data matrixV is incomplete, i.e., if the valuesVi,j

are missing or considered not reliable for some indices(i, j) ∈
J ⊂ D and only observed onI = D \ J , NMF2D cannot be
used “as is” because the missing data, if for example assumed
to be0, would create a bias in the estimation ofW andH due to
the convolutive nature of the model. We thus need to develop a
framework to make the algorithm usable in spite of the presence
of unobserved data.

2.4. Auxiliary function method

We develop here a framework which can be used in general for
adapting algorithms to missing-data problems, and is not re-
stricted to NMF.

Suppose one wants to fit a parametric distribution to an ob-
served contour which is incomplete, in the sense that its values
are only known on a subsetI ⊂ D ⊆ Rn, whereD is the do-
main of definition of the problem of interest. Suppose also that
if the data were complete, the fitting could be performed (Gaus-
sian distribution fitting, NMF, etc.). Then we show that using
an iterative procedure based on the auxiliary function method,
the fitting to the incomplete data can also be performed.

Let f be the observed contour, andg(·;Θ) a model param-
eterized byΘ such that the fitting of this model to an observed
contour defined on the whole domainD can be performed.

We consider a distortion functiond : S × S → [0, +∞)
whereS ⊆ Rn, such thatd(x, y) ≥ 0, ∀x, y ∈ S and equality
holds if and only ifx = y. As this functiond is not required
to respect the triangle inequality, it is not necessarily a distance,
sensu stricto. For such a distortion function, we can introduce
a measure of the distance between the observed data and the
model by integratingd betweenf andg(·;Θ) on the subsetI:

L(Θ) =

Z

I

d(f(x), g(x;Θ))dx. (5)

In this kind of situation, it is often preferable, instead of
defining an “incomplete model” whose estimation would be
cumbersome, to try to fall back on a complete data estimation
problem. This is what we do here by introducing an auxiliary
function. For any functionh taking values inS and defined on
D \ I, let us define

L+(Θ, h) = L(Θ) +

Z

D\I

d(h(x), g(x;Θ))dx. (6)

As the second term on the right-hand side is itself derived from
the distortion measure, it is non-negative, and thus

L(Θ) ≤ L+(Θ, h), ∀h. (7)

Moreover, there is equality in the inequality forh = g(·;Θ).



The minimization procedure can now be described as fol-
lows. After initializing Θ for example by performing the dis-
tribution fitting on the observed data completed by0 on D \ I,
one then iteratively performs the following updates:

Step 1 Estimateh such thatL(Θ) = L+(Θ, h):

ĥ = g(·;Θ). (8)

Step 2 UpdateΘ with ĥ fixed:

Θ̂ = argminL+(Θ, ĥ). (9)

Step 2 is simply the fitting of the modelg(·;Θ) on the complete
data formed byf onI andĥ onD\I. The optimization process
is illustrated in Fig. 1.

2.5. Missing-data NMF2D with auxiliary function

Applying the method introduced above to NMF2D leads to the
following algorithm, which can be used to analyze incomplete
spectrograms, with both objective functions:

Step 1 V
(p+1)

i,j =



Vi,j if (i, j) ∈ I

Λ
(p)
i,j if (i, j) /∈ I

Step 2 UpdateW andH through (3) or (4)

2.6. Sparseness as a key to global structure extraction

A sparseness term can be added to the NMF2D objective func-
tion, in the form of theL1 norm of the matrixH, leading to
the so-called Sparse NMF2D (SNMF2D) [12]. As pointed out
by Mørup and Schmidt, there is an intrinsic ambiguity in the
decomposition (2). The structure of a factor inH can to some
extent be put into the signature of the same factor inW and vice
versa. Imposing sparseness onH forces the structure intoW
and thus alleviates this ambiguity. In the case of spectrograms
with gaps, this is even more critical, and sparseness becomes
compulsory. Indeed, without a sparseness term, assuming that
the spectral envelopes were time and pitch invariant (which is
only approximately true), a perfect reconstruction of the spec-
trogram with gaps could be obtained with a single frame rep-
resenting the spectral envelope template inW and the power
envelope in the time direction (again, gaps included) inH. The
role of sparseness is thus to ensure that global structures are ex-
tracted and used throughout the spectrogram, and it will be the
key that will enable us to fill in the gaps in the spectrogram.

3. Probabilistic interpretation for Bregman
divergences

3.1. Relation between Bregman divergence-based opti-
mization and Maximum Likelihood estimation

Due to length considerations, we shall only give a rough
overview of the concepts of exponential families and Bregman
divergences, and refer to [15] for more details and rigorous
derivations.

A Bregman divergence is a particular case of distortion
measure defined as

dφ(x, y) = φ(x) − φ(y) − 〈∇φ(y); x − y〉,

whereφ : S → R is a strictly convex and differentiable func-
tion on an open convex setS ⊆ Rd, ∇φ(y) is the gradient
vector ofφ evaluated aty and〈·; ·〉 the inner product. Bregman

L+(Θ, h)

L+(Θ, ĥ)

L+(Θ̂, ĥ)

L(Θ)

L(Θ̂)

Step 2

Step 1

Figure 1: Optimization through the iterative procedure. Dur-
ing the step 1, the auxiliary parameterh is updated tôh so
thatL(Θ) = L+(Θ, ĥ). Then, during the step 2,L+(Θ, ĥ)

is optimized w.r.t.Θ, ensuring thatL(Θ̂) ≤ L+(Θ̂, ĥ) <

L+(Θ, ĥ) = L(Θ). The minimization ofL(Θ) can thus be
performed through the minimization of the auxiliary function
L+(Θ, h) alternately w.r.t.h andΘ.

divergences include a large number of useful loss functions such
as squared loss, KL-divergence, logistic loss, Mahalanobis dis-
tance, Itakura-Saito distance, and theI-divergence. They are
non-negative, and equal to zero if and only ifx = y.

On the other hand, exponential families form a group of
probability distributions which comprise many common fam-
ilies of probability distributions such as the normal, gamma,
Dirichlet, binomial and Poisson distributions, among others.
They can be represented in their so-calledmean-value parame-
terization

Pφ,µ(X) = eφ(µ)+〈∇φ(µ);X−µ〉r(X), (10)

wherer is a non-negative function. The mean ofPφ,µ is µ,
called the expectation parameter of the exponential family, itself
denoted byFφ.

Banerjee et al. [15] show that a correspondence exists be-
tween a wide subclass of Bregman divergences, including the
loss functions mentioned above, and certain exponential fami-
lies. More precisely, they show that, under certain conditions,
there exist functionsbφ such that the relation

Pφ,µ(x) = e−dφ(x,µ)bφ(x) (11)

holds. The point here is that although the set of all the instances
for which this relation holds can be shown [15] to be included
into the domain of definitiondom(φ) of φ, it may in some cases
be strictly included. This is what happens for example for theI-
divergence (withφ(µ) = µ log µ−µ) for whichdom(φ) = R+

(extending the definition ofφ for µ = 0). The corresponding
exponential family is the Poisson family, for which the set of
instances is onlyN.

The relation (11) builds a bridge between optimization
based on Bregman divergences and Maximum Likelihood (ML)
estimation with exponential families. Trying to fit a model
g(·;Θ), defined on a domainD with parameterΘ, to an ob-
served distributionf with a measure of distance between the
two based on a Bregman divergencedφ amounts to looking
for Θ minimizing

R

D
dφ(f(x), g(x;Θ))dx. But according to

(11), this is equivalent (up to some precautions regarding the
domain of definition evoked above) to maximizing w.r.t.Θ the
log-likelihood

R

D
log P

φ,g(x;Θ)
(f(x))dx where the observed

data pointsf(x) at pointx are assumed to have been indepen-
dently generated fromP

φ,g(x;Θ)
.



3.2. Relation to the EM algorithm

We consider the framework of Section 2.4, with as distortion
function a Bregman divergencedφ associated to an exponential
family Fφ. In the following, we will denote byν

x,φ,Θ(z) the
density of a probability distribution fromFφ with expectation
parameterg(x;Θ). Following (11), we can write

ν
x,φ,Θ(z) = e−dφ(z,g(x;Θ))bφ(z). (12)

As in the ML counterpart to Bregman divergence based op-
timization the data are assumed to have been generated inde-
pendently from probability distributions ofFφ, we notice that
observed and unobserved data are independent conditionally to
Θ. We can now derive the Q-function of the EM algorithm:

Q(Θ, Θ̄) = E(log P (h|Θ))
P (h|f,

¯Θ)
+E(log P (f |Θ))

P (h|f,
¯Θ)

=

Z

Rn\I

Z

ν
x,φ,

¯Θ(z) log ν
x,φ,Θ(z)dz dx

+

„

Z

P (h|f, Θ̄)

«

Z

I

log P (f(x)|Θ)dx

=

Z

Rn\I

Z

ν
x,φ,

¯Θ(z)
“

log bφ(z) − dφ(z, g(x;Θ))
”

dz dx

+

Z

I

“

log bφ(f(x)) − dφ(f(x), g(x;Θ))
”

dx

= −
Z

Rn\I

Z

ν
x,φ,

¯Θ(z)dφ(z, g(x;Θ))dz dx

−
Z

I

dφ(f(x), g(x;Θ))dx + C1(f, Θ̄), (13)

whereC1(f, Θ̄) does not depend onΘ. If we now rewrite
dφ(z, g(x;Θ)) as

dφ(z, g(x;Θ)) = dφ(g(x; Θ̄), g(x;Θ)) + φ(z) − φ(g(x; Θ̄))

− 〈z − g(x; Θ̄);∇φ(g(x;Θ))〉, (14)

we can simplify the first term in Eq. 13:
Z

ν
x,φ,

¯Θ(z)dφ(z, g(x;Θ))dz

= dφ(g(x; Θ̄), g(x;Θ)) + C2(f, Θ̄),

whereC2(f, Θ̄) does not depend onΘ. To lead the calculation
above, we used the fact that the mass ofν

x,φ,
¯Θ is 1 and its

mean isg(x; Θ̄). We then obtain for the Q-function

Q(Θ, Θ̄) = −
Z

Rn\I

dφ(g(x; Θ̄), g(x;Θ))dx

−
Z

I

dφ(f(x), g(x;Θ))dx + C(f, Θ̄)

= −L+(Θ, g(x; Θ̄)) + C(f, Θ̄), (15)

whereC(f, Θ̄) again does not depend onΘ.
Altogether, we find that there is a correspondence between

the Q-function and the auxiliary functionL+ that we intro-
duced in 2.4. Computing the Q-function, i.e., the E-step of
the EM algorithm, corresponds to computing the auxiliary func-
tion, which is done by replacing the unknown data by the model
at the current step. Maximizing the Q-function w.r.t.Θ, i.e.,
the M-step of the EM algorithm, corresponds to minimizing the
auxiliary function w.r.t.Θ. This shows how to derive the auxil-
iary function in an EM point of view, and enables us for example

to consider prior distributions on the parameters and perform a
MAP estimation.

We shall note however that one has to pay attention to the
support of the probability distributions of the exponential family
involved. Indeed, as noted earlier, it may happen that these dis-
tributions have a smaller support than the original set on which
the Bregman divergence is defined. The formulation presented
in Section 2.4 is thus more general than its EM counterpart, al-
though it does not justify the use of penalty functions as prior
distributions on the parameters. This is what happens with the
I-divergence, as noted above, although it is still possible to jus-
tify the use of the ML interpretation with continuous data in this
particular case [16].

3.3. Use of prior distributions with SNMF2D

The NMF framework can be considered in a Bayesian way
based on the correspondence between Bregman divergence
based optimization and ML estimation either for the least
squares error or theI-divergence. Indeed, the NMF objec-
tive function can be converted into a log-likelihood [14, 17], to
which prior constraints on the parameters can further be added.

Sparseness terms involvingLp norms ofH can be con-
sidered as such, theL1 norm sparseness term used here cor-
responding for example to a Laplace distribution.

But one can also introduce Markovian constraints on the pa-
rameters to ensure smooth solutions. Using Gamma chains on
the coefficients ofW andH in the time direction, one can show
that analytical update equations can still be obtained and the
objective function can be optimized based on the Expectation-
Constrained Maximization (ECM) algorithm [18].

4. Experimental evaluation
4.1. Toy example: reconstructing a 2D image

We first tested our algorithm on simulated data used by Mørup
and Schmidt in [12]. The data, shown in Fig. 2 (a), were created
with W consisting of one cross in the first factor and one circle
in the second, convolved withH given in the top of the figure to
yield the full data matrixV . The SNMF2D algorithm was used
in the same conditions as in [12], withτ = {0, . . . , 16} and
φ = {0, . . . , 16}. The circle and cross templates span roughly
15 frames in both horizontal and vertical directions, while the
whole data is200 frames wide. To construct the incomplete
data, we erased 3 frames horizontally and 2 frames every 10
frames vertically, as shown in Fig. 2 (b). Note that none of the
occurrences of the structures (circle and cross) is fully avail-
able. However, in this ideal case where the original data is a
strict convolution of the patterns, the proposed algorithm is able
to extract the original patterns and their occurrences and to re-
construct the original data, as can be seen in Fig. 2 (c) for theI-
divergence update equations (similar results were obtained with
the least squares updates). This shows that the reconstruction is
based on global features of the data.

4.2. Audio example: reconstructing gaps in a sound

4.2.1. Experimental setting

For auditory restoration experiments, contrary to what is done
in [3], we did not use the short time Fourier transform after-
wards converted into a log-frequency magnitude spectrogram,
but a wavelet transform, which directly gives a log-frequency
spectrogram. More precisely, the magnitude spectrogram was
calculated from the input signals digitized at a 16kHz sampling
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(a) Original simulated data.

(b) Incomplete data with erased regions in black.

φ
φ

τ τ

(c) Reconstruction using theI-divergence.

Figure 2: SNMF2D with missing-data on a toy example.

rate using a Gabor wavelet transform with a time resolution of
16ms for the lowest frequency subband. Higher subbands were
downsampled to match the lowest subband resolution. The fre-
quency range extended from 50Hz to 8kHz and was covered by
200 channels, for a frequency resolution of 44 cent.

We used a 4.8s piece of computer generated polyphonic
music containing a trumpet and a piano, already used by
Schmidt and Mørup in [3]. Its spectrogram can be seen in
Fig. 3 (a). The incomplete waveform was built by erasing 80ms
of signal every 416ms, leading to a signal with about 20% of
data missing. Its spectrogram is shown in Fig. 3 (b).

The mask indicating the regionI to inpaint was built ac-
cording to the erased portions of the waveform. With a Gabor
wavelet transform, the influence of a local modification of the
signal theoretically spans the whole interval. However, as the
windows are Gaussian, one can consider that the influence be-
comes almost null further than about three times the standard
deviation. This standard deviation is inversely proportional with
the frequency, and the influence should thus be considered to
span a longer interval for lower frequencies. Although it leaves
some unreliable portions of the spectrogram out of the mask in
the lower frequencies, for simplicity, we did not consider here
this dependence on frequency, and simply considered unreli-
able, for each 80ms portion of waveform erased, 6 whole spec-
trogram frames (corresponding to about 96ms of signal in the
highest frequencies). The incomplete spectrogram is shown in
Fig. 3 (c), with areas to inpaint in black.

The SNMF2D parameters were as follows. As in [3], we
used two factors,d = 2, since we are analyzing a scene with
two instruments, and the number of convolutive components in

Table 1:Results of the reconstruction experiment
SNR SSNR

in out in out
MI / C 10.7 12.9 10.5 11.7
MI / I -3.7 13.1 3.4 12.1

SC / C 13.1 13.0 12.3 11.9
SI / I 6.2 10.5 7.3 9.9
I / C 2.2 15.7 2.4 16.9

pitch was set toφ = {0, . . . , 11}, as the pitch of the notes in the
data spans three whole notes. For the convolutive components
in time, we used empiricallyτ = {0, . . . , 31}, for a time range
of about 500ms, thus roughly spanning the length of the eighth
notes in the music sample. TheI-divergence was used as the
distortion measure, and the sparseness term coefficient set to
0.001. The algorithm was ran for 100 iterations.

4.2.2. Results

To evaluate the reconstruction accuracy of the spectrogram, we
use two measures: Signal to Noise Ratio (SNR) and Segmen-
tal SNR (SNR) computed as the median of the individual SNRs
of all the frames. We note that computing the SNR directly on
the magnitude spectrogram amounts to assuming that the phase
is perfectly reconstructed. The results are summarized in Ta-
ble 1, where “in” refers to the measure computed inside the gaps
(the inpainted part), “out” to the measure computed outside the
gaps (the part more classically reconstructed based on observed
data), “M” refers to the proposed Missing-data SNMF2D, “S”
to SNMF2D, “C” to the magnitude spectrogram of the complete
waveform, and “I” to the one of the incomplete waveform. Fi-
nally, “WX” refers to the spectrogram reconstructed by apply-
ing algorithm W on spectrogram X, and “Y/Z” to the compar-
ison of spectrogram Y with spectrogram Z as a reference. For
example, the SNR of “MI/C” is the SNR of the spectrogram
reconstructed using our missing-data approach on the spectro-
gram of the incomplete data w.r.t. the spectrogram of the full
waveform.

One can see through MI/I that the proposed algorithm cor-
rectly performs its task of reconstructing the observed data
(“out”), which is not the case for SI/I, showing that the gaps
hinder SNMF2D from performing well. The MI/C results show
that the formerly erased regions (“in”) are correctly inpainted,
with a great improvement over the incomplete spectrogram, as
seen in I/C, and that our method performs closely to SNMF2D
applied on the complete spectrogram, as seen in SC/C.

Graphical results are shown in Fig. 3 (d), (e), (f), where
one can see in particular that the acoustic scene analysis is per-
formed correctly, and that blind source separation is also per-
formed in spite of the presence of gaps.

5. Conclusion
We presented a computational framework to model auditory in-
duction, i.e. the human auditory system’s ability to estimate the
missing parts of a continuous auditory stream briefly covered
by noise, by extending the SNMF2D algorithm to handle un-
observed data. We related the method to the EM algorithm,
enabling the use of priors on the parameters. We finally illus-
trated on a simple example how the proposed framework was
able to simultaneously perform acoustic scene analysis and gap
interpolation. Future works include a more thorough experi-
mental evaluation of the method and the use of smoothing prior
distributions.
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(a) Spectrogram of the original waveform.
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(b) Spectrogram of the incomplete waveform.
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(c) Incomplete spectrogram with areas to inpaint in black.
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(d) Spectrogram reconstructed using theI-divergence.
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(e) Reconstructed and separated spectrogram of the piano part.
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(f) Reconstructed and separated spectrogram of the trumpet part.

Figure 3: SNMF2D with missing-data on the spectrogram of a waveform with missing samples.
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