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Abstract

How does one extract unknown but stereotypical events that are linearly su-
perimposed within a signal with variable latencies and variable amplitudes?
One could think of using template matching or matching pursuit to find
the arbitrarily shifted linear components. However, traditional matching
approaches require that the templates be known a priori. To overcome this
restriction we use instead semi Non-Negative Matrix Factorization (semi-
NMF) that we extend to allow for time shifts when matching the templates
to the signal. The algorithm estimates templates directly from the data
along with their non-negative amplitudes. The resulting method can be
thought of as an adaptive template matching procedure. We demonstrate
the procedure on the task of extracting spikes from single channel extra-
cellular recordings. On these data the algorithm essentially performs spike
detection and unsupervised spike clustering. Results on simulated data and
extracellular recordings indicate that the method performs well for signal-
to-noise ratios of 6dB or higher and that spike templates are recovered
accurately provided they are sufficiently different.

1 Introduction

It is often the case that an observed waveform is the superposition of elementary wave-
forms, taken from a limited set and added with variable latencies and variable but positive
amplitudes. Examples are a music waveform, made up of the superposition of stereotyped
instrumental notes, or extracellular recordings of nerve activity, made up of the super-
position of spikes from multiple neurons. In these examples, the elementary waveforms
include both positive and negative excursions, but they usually contribute with a positive
weight. Additionally, the elementary events are often temporally compact and their oc-
currence temporally sparse. Conventional template matching uses a known template and
correlates it with the signal; events are assumed to occur at times where the correlation is
high. Multiple template matching raises combinatorial issues that are addressed by Match-
ing Pursuit [1]. However these techniques assume a preexisting dictionary of templates. We
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wondered whether one can estimate the templates directly from the data, together with
their timing and amplitude.

Over the last decade a number of blind decomposition methods have been developed that
address a similar problem: given data, can one find the amplitudes and profiles of constituent
signals that explain the data in some optimal way. This includes independent component
analysis (ICA), non-negative matrix factorization (NMF), and a variety of other blind source
separation algorithms. The different algorithms all assume a linear superposition of the
templates, but vary in their specific assumptions about the statistics of the templates and
the mixing process. These assumptions are necessary to obtain useful results because the
problem is under-constrained.

ICA does not fit our needs because it does not implement the constraint that compo-
nents (templates) are added with positive weights. NMF constrains weights to be non-
negative but requires templates to also be non-negative. We will use instead the semi-NMF
algorithm of Chris Ding [2, 3] that allows factoring a matrix into a product of a non-negative
and an arbitrary matrix. To accommodate time shifts we modify it following the ideas of
Morten Mørup [4] who presented a shift-invariant version of the NMF algorithm, that also
includes sparsity constraints. We begin with the conventional formulation of the NMF mod-
eling task as a matrix factorization problem and then derive in the subsequent section the
case of a 1D sequence of data. NMF models a data matrix X as a factorization,

X̂ = AB , (1)

with A ≥ 0 and B ≥ 0 and finds these coefficients such that the square modeling error
||X−X̂||2 is minimized. Matrix A can be thought of as component amplitudes and the rows
of matrix B are the component templates. Semi-NMF drops the non-negative constraint
for B, while shift-NMF allows the component templates to be shifted in time. In the NMF
algorithm, there is an update equation for A and an update equation for B. Semi-NMF and
shift-NMF each modifies one of these equations, fortunately not the same, so their updates
can be interleaved without interference.

2 Review of semi-NMF

Assume we are given N observations or segments of data with T samples arranged as
a matrix Xnt. (The segments can also represent different epochs, trials, or even different
channels.) The goal is to model this data as a linear superposition of K component templates
Bkt with amplitudes Ank, i.e.,

X̂nt =
∑

k

AnkBkt = Ak
nBkt . (2)

The second expression here uses Einstein notation: indices that appear both as superscript
and subscript within a product are to be summed. In contrast to matrix notation, all
dimensions of an expression are apparent, including those that are absorbed by a sum, and
the notation readily extends to more than two dimensions, which we will need when we
introduce delays. We use this notation throughout the paper and include explicit sum signs
only to avoid possible confusion.

Now, to minimize the modeling error

E = ||X − X̂||22 =
∑
nt

(
Xnt − Ak

nBkt

)2
, (3)

the semi-NMF algorithm iterates between finding the optimum B for a given A, which is
trivially given by the classic least squares solution,

Bkt = (An
kAk′n)−1

Ak′

n Xn
t , (4)

and improving the estimate of A for a given B with the multiplicative update

Ank ← Ank

√
(Xt

nBkt)
+ + Ak′

n (Bt
k′Bkt)

−

(Xt
nBkt)

− + Ak′
n (Bt

k′Bkt)
+ . (5)



In these expressions, k′ is a summation index; (M)−1 stands for matrix inverse of M ; and,
(M)+ = 1

2 (|M |+ M) and (M)− = 1
2 (|M | −M) are to be applied on each element of matrix

M . The multiplicative update (5) ensures that A remains non-negative in each step; while,
baring constraints for B, the optimum solution for B for a given A is found in a single step
with (4).

3 Shift-invariant semi-NMF

3.1 Formulation of the model for a 1D sequence

Consider now the case where the data is given as a 1-dimensional time sequence Xt. In
the course of time, various events of unknown identity and variable amplitude appear in
this signal. We describe an event of type k with a template Bkl of length L. Time index l
represents now a time lag measured from the onset of the template. An event can occur at
any point in time, say at time sample n, and it may have a variable amplitude. In addition,
we do not know a priori what the event type is and so we assign to each time sample n and
each event type k an amplitude Ank ≥ 0. The goal is to find the templates B and amplitudes
A that explain the data. In this formulation of the model, the timing of an event is given
by a non-zero sample in the amplitude matrix A. Ideally, each event is identified uniquely
and is well localized in time. This means that for a given n the estimated amplitudes are
positive for only one k, and neighboring samples in time have zero amplitudes. This new
model can be written as

X̂t =
∑

n

Ak
nBk,t−n (6)

=
∑

n

∑
l

Ak
nδn,t−lBkl . (7)

The Kronecker delta δtl was used to induce the desired shifts n. We can dispense with the
cumbersome shift in the index if we introduce

Ãtkl =
∑

n

Ankδn,t−l . (8)

The tensor Ãtkl represents a block Toeplitz matrix, with K blocks of dimension T ×L. Each
block implements a convolution of the k-th template Bkl with amplitudes signal Ank. With
this definition the model is written now simply as:

X̂t = Ãkl
t Bkl , (9)

with Ank ≥ 0. We will also require a unit-norm constraint on the K templates in B, namely,
Bl

kBkl = 1, to disambiguate the arbitrary scale in the product of A and B.

3.2 Optimization criterion with sparseness prior

Under the assumption that the data represent a small set of well-localized events, matrix
A should consist of a sparse series of pulses, the other samples having zero amplitude. To
favor solutions having this property, we use a generalized Gaussian distribution as prior
probability for the amplitudes. Assuming Gaussian white noise, the new cost function given
by the negative log-posterior reads (up to a scaling factor),

E =
1
2
||X − X̂||22 + β ||A||αα (10)

=
1
2

∑
t

(
Xt − Ãkl

t Bkl

)2

+ β
∑
kl

Aα
kl , (11)

where ||·||p denotes the Lp norm (or quasi-norm for 0 < p < 1). The shape parameter α of the
generalized Gaussian distribution controls the odds of observing low versus high amplitude
values and should be chosen based on the expected rate of events. For our data we mostly
choose α = 1/4. The parameter β is a normalization constant which depends on the power
of the noise, σ2

N , and the power of the amplitudes, σ2
A, with β = σ2

N

σα
A

(
Γ(3/α)/Γ(1/α)

)α/2.



3.3 A update

The update for A which minimizes this cost function is similar to update (5) with some
modifications. In (5), amplitudes A can be treated as a matrix of dimensions T × K and
each update can be applied separately for every n. Here the problem is no longer separable
in n and we need to treat A as a 1 × TK matrix. B is now a TK × T matrix of shifted
templates defined as B̃nkt = Bk,t−n. The new update equation is similar to (5), but differs
in the term BBT :

Ank ← Ank

√√√√√√
(
X̃ l

nBkl

)+

+ An′k′
(
B̃t

n′k′B̃nkt

)−

(
X̃ l

nBkl

)−
+ An′k′

(
B̃t

n′k′B̃nkt

)+

+ αβAα−1
nk

. (12)

The summation in the BBT term is over t, and is 0 most of the time when the events do not
overlap. We also defined X̃ l

n = Xn+l, and the time index in the summation X̃ l
nBkl extends

only over lags l from 0 to L−1. To limit the memory cost of this operation, we implemented
it by computing only the non-zero parts of the TK × TK matrix BBT as 2L − 1 blocks of
size K × K. The extra term in the denominator of (12) is the gradient of the sparseness
term in (11). A convergence proof for (12) can be obtained by modifying the convergence
proof of the semi-NMF algorithm in [2] to include the extra Lα norm as penalty term. The
proof relies on a new inequality on the Lα norm recently introduced by Kameoka to prove
the convergence of his complex-NMF framework [5].

3.4 B update

The templates B that minimize the square modeling error, i.e., the first term of the cost
function (11), are given by a least-squares solution which now writes:

Bkl =
(
Ãt

klÃtk′l′

)−1

Ãk′l′

t Xt . (13)

The matrix inverse is now over a matrix of LK by LK elements. Note that the sparseness
prior will act to reduce the magnitude of A. Any scaling of A can be compensated by a
corresponding inverse scaling of B so that the first term of the cost function remains unaf-
fected. The unit-norm constraint for the templates B therefore prevents A from shrinking
arbitrarily.

3.5 Normalization

The normalization constraint of the templates B can be implemented using Lagrange mul-
tipliers, leading to the constrained least squares solution:

Bkl =
(
Ãt

klÃtk′l′ + Λkl,k′l′

)−1

Ãk′l′

t Xt . (14)

Here, Λkl,k′l′ represents a diagonal matrix of size KL × KL with K different Lagrange
multipliers as parameters that need to be adjusted so that Bl

kBkl = 1 for all k. This can be
done with a Newton-Raphson root search of the K functions fk(Λ) = Bl

kBkl − 1. The K
dimensional search for the Lagrange multipliers in Λ can be interleaved with updates of A
and B. For simplicity however, in our first implementation we used the unconstrained least
squares solution (Λ = 0) and renormalized B and A every 10 iterations.

4 Performance evaluations

We evaluated the algorithm on synthetic and real data. Synthetic data are used to provide
a quantitative evaluation of performance as a function of SNR and the similarity of different
templates. The algorithm is then applied to extracellular recordings of neuronal spiking
activity and we evaluate its ability to recover two distinct spike types that are typically
superimposed in this data.
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Figure 1: Example of synthetic spike trains and estimated model parameters at an SNR
of 2 (6 dB). Top left: synthetic data. Bottom left: synthetic parameters (templates B and
weight matrices A). Top right: reconstructed data. Bottom right: estimated parameters.

4.1 Quantitative evaluation on synthetic data

The goal of these simulations is to measure performance based on known truth data. We
report detection rate, false-alarm rate, and classification error. In addition we report how
accurately the templates have been recovered. We generated synthetic spike trains with
two types of “spikes” and added Gaussian white noise. Figure 1 shows an example for
SNR = σA/σN = 2 (or 6 dB). The two sets of panels show the templates B (original
on the left and recovered on the right), amplitudes A (same as above) and noisy data
X (left) and estimated X̂ (right). The figure shows the model parameters which resulted in
a minimum cost. Clearly, for this SNR the templates have been recovered accurately and
their occurrences within the waveform have been found with only a few missing events.

Performance as a function of varying SNR is shown in Figure 2. Detection rate is measured
as the number of events recovered over the total number of events in the original data.
False-alarms occur when noise is interpreted as actual events. Presence or absence of a
recovered event is determined by comparing the original pulse train with the reconstructed
pulse train A (channel number k is ignored). Templates in this example have a correlation
time (3 dB down) of 2-4 samples and so we tolerate a misalignment of events of up to
±2 samples. We simulated 30 events with amplitudes uniformly distributed in [0, 1]. The
algorithm tends to miss smaller events with amplitudes comparable to the noise amplitude.
To capture this effect, we also report a detection rate that is weighted by event amplitude.
Some events may be detected but assigned to the wrong template. We therefore report also
classification performance. Finally, we report the goodness of fit as R2 for the templates B
and the continuous valued amplitudes A for the events that are present in the original data.

Note that the proposed algorithm implements implicitly a clustering and classification pro-
cess. Obviously, the performance of this type of unsupervised clustering will degrade as the
templates become more and more similar. Figure 2 shows the same performance numbers
as a function of the similarity of the templates (without additive noise). A similarity of 0
corresponds to the templates shown as examples in Figure 1 (these are almost orthogonal
with a cosine of 74◦), and similarity 1 means identical templates. Evidently the algorithm
is most reliable when the target templates are dissimilar.

4.2 Analysis of extracellular recordings

The original motivation for this algorithm was to analyze extracellular recordings from
single electrodes in the guinea pig cochlear nucleus. Spherical and globular bushy cells in
the anteroventral cochlear nucleus (AVCN) are assumed to function as reliable relays of
spike trains from the auditory nerve, with “primary-like” responses that resemble those of
auditory nerve fibers. Every incoming spike evokes a discharge within the outgoing axon [6].
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Figure 2: Left graph: performance as a function of SNR. Error bars represent standard
deviation over 100 repetitions with varying random amplitudes and random noise. Top left:
detection rate. Top center: weighted detection rate. Top right: misclassification rate (events
attributed to the wrong template). Bottom left: false alarm rate (detected events which
do not correspond to an event in the original data). Bottom center: R2 of the templates
B. Bottom right: R2 of the amplitudes A. Right graph: same as a function of similarity
between templates.

However, recent observations give a more nuanced picture, suggesting that the post-synaptic
spike may sometimes be suppressed according to a process that is not well understood [7].

Extracellular recordings from primary-like cells within AVCN with a single electrode typi-
cally show a succession of events made up of three sub-events: a small pre-synaptic spike
from the large auditory nerve fiber terminal, a medium-sized post-synaptic spike from the
initial segment of the axon where it is triggered (the IS spike), and a large-sized spike pro-
duced by back-propagation into the soma and dendrites of the cell (the soma-dendritic or
SD spike) (Fig. 3). Their relative amplitudes depend upon the position of the electrode
tip relative to the cell. Our aim is to isolate each of these components to understand the
process by which the SD spike is sometimes suppressed. The events may overlap in time (in
particular the SD spike always overlaps with an IS spike), with varying positive amplitudes.
They are temporally compact, on the order of a millisecond, and they occur repeatedly
but sparsely throughout the recording, with positive amplitudes. The assumptions of our
algorithm are met by these data, as well as by multi-unit recordings reflecting the activity
of several neurons (the “spike sorting problem”).

In the portions of our data that are sufficiently sparse (spontaneous activity), the compo-
nents may be separated by an ad-hoc procedure: (a) trigger on the high-amplitude IS-soma
complexes and set to zero, (b) trigger on the remaining isolated IS spikes and average to
derive an IS spike template (the pre-synaptic spike is treated as part of the IS spike), (c) find
the best match (in terms of regression) of the initial portion of the template to the initial
portion of each IS-SD complex, (d) subtract the matching waveform to isolate the SD spikes,
realign, and average to derive an SD spike template. The resulting templates are shown in
Fig. 3 (top right). This ad-hoc procedure is highly dependent on prior assumptions, and
we wished to have a more general and “agnostic” method to apply to a wider range of
situations.

Figure 3 (bottom) shows the result of our automated algorithm. The automatically recovered
spike templates seem to capture a number of the key features. Template 1, in blue, resembles
the SD spike, and template 2, in red, is similar to the IS spike. The SD spikes are larger and
have sharper peaks as compared to the IS spikes, while the IS spikes have an initial peak
at 0.7 ms leading the main spike. The larger size of the extracted spikes corresponding to
template 1 is correctly reflected in the histogram of the recovered amplitudes. However the
estimated spike shapes are inaccurate. The main difference is in the small peak preceding
the template 1. This is perhaps to be expected as the SD spike is always preceded in the
raw data by a smaller IS spike. The expected templates were very similar (with a cosine of
38◦ as estimated from the manually extracted spikes), making the task particularly difficult.
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Figure 3: Experimental results on extracellular recordings. Top left: reconstructed waveform
(blue) and residual between the original data and the reconstructed waveform (red). Top
right: templates B estimated manually from the data. Bottom left: estimated templates
B. Bottom right: distribution of estimated amplitudes A. The SD spikes (blue) generally
occur with larger amplitudes than the IS spikes (red).

4.3 Implementation details

As with the original NMF and semi-NMF algorithms, the present algorithm is only locally
convergent. To obtain good solutions, we restart the algorithm several times with random
initializations for A (drawn independently from the uniform distribution in [0, 1]) and select
the solution with the maximum posterior likelihood or minimum cost (11). In addition to
these multiple restarts, we use a few heuristics that are motivated by the desired result
of spike detection. We can thus prevent the algorithm from converging to some obviously
suboptimal solutions:
Re-centering the templates: We noticed that local minima with poor performance typ-
ically occurred when the templates B were not centered within the L lags. In those cases
the main peaks could be adjusted to fit the data, but the portion of the template that
extends outside the window of L samples could not be adjusted. To prune these suboptimal
solutions, it was sufficient to center the templates during the updates while shifting the
amplitudes accordingly.
Pruning events: We observed that spikes tended to generate non-zero amplitudes in A
in clusters of 1 to 3 samples. After convergence we compact these to pulses of 1-sample
duration located at the center of these clusters. Spike amplitude was preserved by scaling
the pulse amplitudes to match the sum of amplitudes in the cluster.
Re-training with a less conservative sparseness constraint: To ensure that templates
B are not affected by noise we initially train the algorithm with a strong penalty term (large
β effectively assuming strong noise power σ2

N ). Only spikes with large amplitudes remain
after convergence and the templates are determined by only those strong spikes that have
high SNR. After extracting templates accurately, we retrain the model amplitudes A while
keeping the templates B fixed assuming now a weaker noise power (smaller β).
As a result of these steps, the algorithm converged frequently to good solutions (approxi-
mately 50 % of the time on the simulated data). The performance reported here represents
the results with minimum error after 6 random restarts.

5 Discussion and outlook

Alternative models: The present 1D formulation of the problem is similar to that of
Morten Mørup [4] who presented a 2D version of this model that is limited to non-negative
templates. We have also derived a version of the model with observations X arranged as
a matrix, as well as a version in which event timing is encoded explicitly as time delays τn



following [8]. We are omitting these alternative formulations here for the sake of brevity.
Alternative priors: In addition to the generalized Gaussian prior, we tested also Gaussian
process priors [9] to encourage orthogonality between the k sequences and refractoriness in
time. However, we found that the quadratic expression of a Gaussian process competed
with the Lα sparseness term. In the future, we intend to combine both criteria by allowing
for correlations in the generalized Gaussian. The corresponding distributions are known
as elliptically symmetric densities [10] and the corresponding process is called a spherically
invariant random processes, e.g., [11].
Sparseness and dimensionality reduction: As with many linear decomposition meth-
ods, a key feature of the algorithm is to represent the data within a small linear subspace.
This is particularly true for the semi-NMF algorithm since, provided a sufficiently large K
and without enforcing a sparsity constraint, the positivity constraint on A actually amounts
to no constraint at all (identical templates with opposite sign can accomplish the same
as allowing negative A). For instance, without sparseness constraint on the amplitudes, a
trivial solution in our examples above would be a template B1l with a single positive spike
somewhere and another template B2l with a single negative spike, and all the time course
encoded in An1 and An2.
MISO identification: The identifiability problem is compounded by the fact that the
estimation of templates B in this present formulation represents a multiple-input single-
output (MISO) system identification problem. In the general case, MISO identification is
known to be under-determined [12]. In the present case, the ambiguities of MISO identi-
fication may be limited due to the fact that we allow only for limited system length L as
compared to the number of samples N . Essentially, as the number of examples increases
with increasing length of the signal X, the ambiguity in B is reduced.
These issues will be adressed in future work.
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