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Abstract
Discriminative training applied to hidden Markov model
(HMM) design can yield significant benefits in recognition ac-
curacy and model compactness. However, compared to Max-
imum Likelihood based methods, discriminative training typi-
cally requires much more computation, as all competing candi-
dates must be considered, not just the correct one. The choice
of the algorithm used to optimize the discriminative criterion
function is thus a key issue. We investigated several algorithms
and used them for discriminative training based on the Mini-
mum Classification Error (MCE) framework. In particular, we
examined on-line, batch, and semi-batch Probabilistic Descent
(PD), as well as Quickprop, Rprop and BFGS. We describe each
algorithm and present comparative results on the TIMIT phone
classification task and on the 230 hour Corpus of Spontaneous
Japanese (CSJ) 30K word continuous speech recognition task.

1. Introduction
1.1. Motivation

Discriminative training has been applied to large scale speech
recognition by several groups, using Maximum Mutual Infor-
mation (MMI) [1], Minimum Phone Error (MPE) [2], or Min-
imum Classification Error (MCE) [3] as the theoretical frame-
work for discriminative training. A central issue is the efficient
optimization of the discriminative training criterion function.

In the context of MCE, the on-line, first-order, token-
by-token Probabilistic Descent (PD) method [4] has been ex-
tremely popular. This approach is theoretically grounded, sim-
ple to implement, and shows excellent convergence speed.
However, PD suffers from its on-line nature, making it hard
to parallelize over multiple computers, and also from the fact
that parameters such as the learning rate need to be tuned pre-
cisely. The use of growth transforms to achieve re-estimation
algorithms similar in spirit to the Extended-Baum Welch algo-
rithm for MMI has been proposed for MCE [5], but requires the
use of a modified, “super-string” oriented MCE criterion func-
tion. See [6] for related work. Finally, the use of Quickprop
[7], a heuristic second-order batch-oriented method, has yielded
significant performance gains on some large-scale tasks [3]. Be-
sides being rather heuristic, Quickprop also requires tuning of
a gradient scaling parameter. Our aim was thus to find an al-
gorithm which would surpass the existing ones with respect to
theoretical justification, convergence speed, ease of parameter
tuning, and final optimization effectiveness.

Here we will briefly review the MCE loss function, and then
describe the optimization algorithms we applied to MCE train-
ing: PD-based methods [4, 8], modified versions of Quickprop
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prop [9], and BFGS [10]. We will describe ideas for im-
ng these methods, discuss the difficulties encountered, and
omparative speech recognition results.

MCE misclassification measure and loss function

sequence of feature vectors, xT1 = (x1, . . . ,xT ), the best
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P (Sj) denotes the prior (e.g. language model) prob-

y of string Sj , auv a state transition probability, bs(·) a
sian mixture used to model the observation probability of
ure vector in state s, and Λ the entire set of system param-
consisting of the transition probabilities and the means,

iances and mixing weights used to define bs. The misclas-
tion measure for the correct string category Sk is defined
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work described here, a large setting for ψ was used. The
loss function for a single token xT1 is typically the com-
on of the misclassification measure with a sigmoid,
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1 + e−αdk
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set of tokens, the MCE loss function is defined as the sum
loss functions for each token.

On-line and Batch Probabilistic Descent
bilistic Descent (PD) [8] is a very simple and remarkably
ive on-line optimization method. It consists in computing
adient of the loss function for each token x and updating
eters in the opposite direction, by a proportion determined

earning rate εt that decreases over time:

s = −εt∇Λl(dk(x,Λ)). (4)

ower of such on-line algorithms is that they exploit redun-
es in the data, allowing learning to proceed very quickly.
ver, on-line algorithms cannot be parallelized using the
ht-forward data-parallelism approach that applies to batch
ithms, where processors can accumulate gradient informa-
or a given model over different subsets of the training data



before each model update. This means that although PD con-
verges very quickly in terms of required number of iterations, in
practice it suffers compared to parallelizable batch algorithms.
On the other hand, the purely batch version of this algorithm
may be slow to converge. We would like to be able to have a
parallelizable version of on-line algorithms such as PD, without
getting too far away from their on-line nature. One approach
is to update the model every n tokens, allowing a measure of
parallelization (subject to the possibility of increased between-
process communication time overhead). We refer to this ap-
proach as “semi-batch”. For all three approaches, on-line, semi-
batch, and batch, the proper setting of the initial learning rate,
ε0, is important. A simple heuristic is to use the largest initial
value that doesn’t lead to unstable learning. In our experiments
εt decreases linearly from ε0 to 0.

3. Quickprop
3.1. Description

Quickprop [7] is a simple batch-oriented second-order opti-
mization method. When the Hessian (or an approximation to
it) is positive definite, we want to use it to compute the Newton
step

s = −
`
∆2
F (Λ)

´−1
∇F (Λ), (5)

which leads directly to the minimum of the quadratic approx-
imation of a function F . If we are close to the minimum of
F and the Hessian is positive definite, this step is likely to be
effective.

In Quickprop, the Hessian is not analytically computed;
only the diagonal part is used, and it is approximated by means
of Eq. 6.

∂2F (Λ(p))

∂λ2
i

≈

∂F (Λ(p))
∂λi

−
∂F (Λ(p−1))

∂λi

∆λ
(p−1)
i

, (6)

where Λ
(p) denotes the parameter vector Λ at iteration p, λi

the i-th component of Λ and ∆λ
(p−1)
i is the i-th component of

the update step at iteration p− 1.
Quickprop’s principle is to look at the evolution of the sign

of the gradient w.r.t. one parameter for successive iterations:
if it is the same, we follow the gradient descent direction; if is
different, a minimum is likely to exist in between the preceding
and current values, and we are thus likely to be in a situation
where the second-order approximation is good. We then want
to use the approximation of the diagonal part of the Hessian. In
order to have a somewhat safer update step, Quickprop uses the
simple gradient multiplied by a “learning rate” ε as well, which
makes it a compromise between Newton’s method and simple
gradient descent:

s = −

h`
∆2
F (Λ)

´−1
+ ε

i
∇F (Λ). (7)

The proper setting of ε is important.

4. Rprop
4.1. Description

Rprop [9], which stands for “Resilient back-propagation”, is a
batch optimization algorithm well-known in the field of Arti-
ficial Neural Networks. Its basic principle is to eliminate the
possibly harmful influence of the size of the partial derivative
on the update step. As a remedy, only the sign of the derivative
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ize ∆
(p)
i of the update is different for each parameter

gh initialized uniformly at a user-determined ∆(0)), and
es according to a very simple adaptation rule:

)
=

8>><
>>:
η+

· ∆
(p−1)
i , if ∂F (Λ(p−1))

∂λi
·
∂F (Λ(p))
∂λi

> 0

η− · ∆
(p−1)
i , if ∂F (Λ(p−1))

∂λi
·
∂F (Λ(p))
∂λi

< 0

∆
(p−1)
i , else.

(9)
0 < η− < 1 < η+.

his means that each time the derivative w.r.t. a parameter
es sign, it is regarded as an indication that the last update
oo large and that it jumped over a minimum. The update
is thus decreased by a factor η−. If the derivative’s sign

not change, the update value is increased in order to speed
convergence in shallow regions.
e then have to choose the update parameters η+ and η−.
er common choice is η+ = 0.5 and η− = 1.2.
is possible for the standard version of the algorithm to
ver local minima. We thus implemented three versions
Rprop algorithm, illustrated in Figure 1. The first one

ndard Rprop”) is the original version described by Equa-
8 and 9. The second one is a modified version of “Rprop
eight-backtracking” described in [9]. It consists in not al-

g update step adaptation in the epoch following an update
ecrease. We also tried to decrease the step successively
o epochs after a change in sign of the derivative, enforc-
more thorough search. The “noise” of the change of all

ther parameters actually makes it difficult to predict how
ep should be forced to evolve after one or two updates; the
ht-backtracking” version turned out to be the most effec-
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Figure 1: Different versions of Rprop update

Using a small or evolving update period

ition to batch mode, we can also consider semi-batch ver-
, as well a hybrids of semi-batch and batch, e.g. an evolv-
pdate period which starts small but grows eventually to
e the entire training set.

5. BFGS
Description of the update

ewton techniques ideally require the computation of the
essian and its inversion. Both these tasks, as well as the



storage issue, make such techniques impossible to use directly
in large scale problems. Quasi-Newton techniques, however,
compute adaptively an approximation of the inverse of the Hes-
sian. BFGS update [10] is one such method.

Using gk = ∇F (Λ(k)), ∆Λ
(k) = −Hkgk the descent

direction, qk = gk+1 − gk, and pk = λk∆Λ
(k), where λk is

a step factor that ensures pTk qk > 0, the update can be written
as follows:

Hk+1 = Hk −
pkq

T
kHk + Hkqkp

T
k

pTk qk

+

„
1 +

qTkHkqk
pTk qk

«
pkp

T
k

pTk qk
. (10)

It is then used as an approximation of the inverse of the Hessian
in Equation (5).

5.2. Partial BFGS update

Storage and computation problems both make a direct use of
this update impossible for large scale problems. Battiti [11]
proposed to take the previous matrix to always be the iden-
tity, Hk = I . But due to this crude assumption, it might be
impossible to get good results. The key idea to be able to ap-
ply BFGS update to MCE optimization was found in [12]. It
is called “partial BFGS update”, and consists in computing di-
rectly during s iterations the parameter update by means of a
recurrence formula, without actually computing or storing the
matrix Hk, and then restarting the update. Keeping the last s
vectors only is another possibility, but did not work well in our
case and lacks theoretical justification. This approach is a dif-
ferent implementation of an idea described in [13]. If we set
rk = Hkqk, we have

Hkgk+1 = Hkqk + Hkgk = rk −
pk
λk
, (11)

∆Λ
(k+1) = −rk +

pk
λk

+
pkr

T
k gk+1 + rkp

T
k gk+1

pTk qk

−

„
1 +

qTk rk

pTk qk

«
pkp

T
k gk+1

pTk qk
. (12)

For k = 1, r1 = g2 − g1. As long as k ≤ s, if we have
stored the pi’s and ri’s, the sets of scalars αi = 1

p
T
i

qi
and

βi = αi(1 + αiq
T
i ri) for i < k, then we can compute rk

using the following recurrence formula:

rk = qk +

k−1X
i=1

“
−αipir

T
i qk − αirip

T
i qk + βipip

T
i qk

”
.

(13)

5.3. Application to MCE: restarting the update or not

The “partiality” factor, controled by s, is very important when
the number of updates is very large, but is not necessarily an
issue in MCE batch optimization, as the number of epochs is
typically less than a few dozen, and most often around ten. We
can thus afford to have an exact BFGS update at low cost.

5.4. Line search

Once a search direction ∆Λ
(k) has been determined by some

algorithm, we might want to look for a λ > 0 which mini-
mizes the function F (Λ(k)+λ∆Λ

(k)), i.e. along this direction.
While for Quickprop or Rprop, there is no particular need for
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search, in the case of BFGS, it is a part of the algorithm,
does not need to be very accurate.
erforming a line search implies computing the value of the
unction, which in the MCE case is as costly as performing
epoch. We thought it best to keep the updated step as long
makes the loss decrease. If the loss increases, we restart
the previous step after dividing λ by 2.
he step given by the BFGS update (λk = 1) is actually
arge, and needs to be reduced if we don’t want to perform
search at every step. We thus introduced a learning rate,
can be decreased after a chosen number of epochs. This

ng rate and the speed of its decrease are the only parame-
tune in our version of BFGS.

6. Experiments
databases were used to evaluate the methods considered
the TIMIT phone classification task [14], and the Cor-

f Spontaneous Japanese (CSJ) LVCSR lecture speech tran-
ion task [15].

TIMIT phone classification

tandard TIMIT training set (3696 utterances) and “core”
et (192 utterances) were used. The feature vectors used
st of 39 MFCCs, deltas and delta-deltas using a 25 ms win-
nd a 10 ms shift rate. Though 48 phones are modeled, the
on procedure of mapping these to 39 phones during test-
as followed. Each phone was modeled with a 3 state, 8

sian per state HMM.
he optimization methods described here were run using
me phone-level MCE loss function (Equ. 3), applied to
labeled speech segment. Each optimization method was
r 45 epochs (presentations of the training set).
or each method, training set phone classification error af-
ch epoch is shown in Figure 2. Test set classification error
are shown in Table 1 (“SB-PD” : Semi-batch PD; “B-PD”:
PD; “Qprop”: Quickprop). Two results for each method
ted: the result for the final model, after 45 epochs of opti-
ion, and the best result over all iterations. The latter results
spond to the best we could do if we were to use a devel-
nt set to select the model to use on the core test set. The
esult obtained, 22.0% classification error, is a significant



Table 1: TIMIT phone classification test set error rates

PD SB-PD B-PD Qprop Rprop BFGS

E45 23.3 24.6 22.3 22.2 22.9 24.7
Best 22.4 23.5 22.2 22.0 22.7 23.0

improvement over the baseline Maximum Likelihood model’s
performance on the core test set, 29.2%.

6.2. Corpus of Spontaneous Japanese

The CSJ A set (male & female) consisting of about 186K utter-
ances (approximately 230 hours of audio) was used for training.
The trained models were tested on the standard test set of 10
lecture speeches, each from a different speaker, comprising 130
minutes of audio in total. The trigram language model WFST
used in the recognition tests models 30,000 words and has a per-
plexity of 78.7. The feature vectors used consist of 38 MFCCs,
deltas, and delta-deltas. A single acoustic model was used, with
approximately 3000 states and 8 Gaussians per state, for a total
of 24,000 Gaussian pdfs. MCE training was performed using a
unigram WFST modeling about 48,000 words. This covers both
all words in the training utterances and the 30K vocabulary used
in the trigram language model used for testing. Beam search
through the unigram WFST is fast enough that MCE training
could be carried out without resorting to lattices. Starting with
the baseline ML model, optimization based on semi-batch PD,
Quickprop, semi-batch Rprop (“SB-Rprop”, with an update pe-
riod starting at 20,000 utterances, but doubling after every full
presentation of the training set), and (batch) Rprop was carried
out for 5-10 epochs. The model at the end of training was used
for testing. The word error rate for each method on the training
set using the unigram WFST, and the word error rate for each
method on the test set using the standard trigram WFST, are
shown in Table 2.

All the methods described here have parameters requiring
tuning. For both TIMIT and CSJ, we found that the Rprop initial
step was the easiest to tune: erring on the small side, a wide
range of initial update steps yielded good convergence speed
and final results.

7. Conclusion
Several optimization methods were applied to HMM design
based on the MCE criterion function. For TIMIT, examining
the evolution of performance on the training set, we see that on-
line and semi-batch PD converge much more rapidly than batch
PD. The differences between the other methods may or may not
be significant. The differences on the test set may also not be
significant, with the exception of semi-batch PD, which does
not perform as well as the other methods. The classification
error rate of 22.0% obtained for Quickprop is one of the best
results for a standard HMM on this well-known task.

The results on the CSJ lecture speech transcription task
show that for optimization on the training set, Rprop is very
effective. Given the simplicity of the method and the ease of
parameter tuning, Rprop seems like an attractive choice. How-
ever, Quickprop yielded the best test performance. More tests
with these methods are needed to determine whether this pattern
is robust on a task such as CSJ.

Altogether, the results obtained on both TIMIT and CSJ are
good for all the methods evaluated, showing that the MCE crite-
rion can be optimized effectively using very different methods.
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