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Abstract

We have been working on a new speech analyzer based on a para-
metric representation of speech governed by theF0 parameter, to-
wards practical human-machine interfaces. As a precise estimation
of the frequency response of the vocal tract from a real speech sig-
nal requires the power of each component of the harmonic struc-
ture to be accurately estimated, one hopes to have a high-precision
estimation ofF0. At the same time, under the empirical constraint
that speech spectral envelopes are usually smooth in the power do-
main, half pitch errors can be significantly avoided. Therefore,F0

and the envelope should be estimated jointly rather than separately
through an optimal estimation of the spectral envelope and the
spectral fine structure. In this article, we introduce a new speech
analysis method using a spectral model with a composite function
of envelope and fine structure models.
Index Terms: parametric speech analyzer, speech synthesis, pitch
estimation, spectral envelope estimation.

1. Introduction
PSOLA and waveform connection techniques [1, 2] are known
to produce high-quality synthesized speech supposing there is a
large enough variety of speech fragments, but their capacity to
process the characteristics of speech, such as synthesizing speech
with conditions out of the database or adapting to a speaker, is not
very high. Even if it was possible to deal with these problems by
adding speech data corresponding to the various speaking styles
of speech according to what one wants to synthesize, collecting
every possible fragment data would certainly be an unrealistic and
pain-staking process.

On the other hand, filter-type speech synthesizers, as a rep-
resentative example of the parametric speech synthesis methods,
deal with that problem by (approximately) separating the spectral
envelope and the spectral fine structure. One can easily produce
a new speech spectrum of different vocal tract length orF0 by
controlling separately the filter characteristics and excitation sig-
nals through a small number of parameters. One can thus expect
the processing capacity to be very high. Several methods are quite
widely known, such as LPC (Linear Predictive Coding), Cepstrum,
etc. LPC estimates the vocal tract characteristics modeled by an
all-pole filter by assuming the excitation source signal of the vocal
cords to be a white process [3]. MFCCs are also a well-known and
widely used feature quantizer expressing the vocal tract character-
istics of speech [4]. They enable a large variety of processings by

working only on a small number of coefficients and parameters,
and their ease of use made them become the mainstream analysis
method in recent filter-type Text-To-Speech synthesizers. Mean-
while, STRAIGHT is known to enable a high-quality speech syn-
thesis as it starts by estimating theF0, and then, using an analysis
window varying in time according to theF0 estimate, precisely es-
timates the spectral envelope in a non-parametric way [5]. Making
explicit use of theF0 estimates via pitch extractor, as opposed to
the LPC, is certainly one of the reasons that makes STRAIGHT
such a high-quality analysis-synthesis system.

We have thus been aiming at developing a new speech model
with always in mind a high-quality Text-To-Speech synthesis and
analysis-synthesis systems having both these advantages (i.e., de-
fined in a parametric way and governed by theF0 parameter).

In the filter-type speech synthesis, the generation process of
voiced speech is often assumed to be a linear system with as its in-
put an excitation source signal consisting of a sequence of pulses
at intervals of the pitch period. As the input spectrum is a se-
quence of pulses at intervals of the pitch frequencyF0, the power
of each component of the harmonic structure should be extracted
separately in order to obtain accurately the vocal tract characteris-
tic and thus one hopes to have a high precision estimation ofF0.
On the other hand, as making a half pitch error corresponds to sup-
posing the envelope is unnaturally jagged with zero power for all
the odd order harmonics, such an error could be easily corrected
if we know in advance the speech spectral envelope or at least by
assuming that spectral envelopes in the power domain are usually
smooth. Therefore, estimation ofF0 and of the envelope, having
a chicken and egg relationship, should be done jointly rather than
independently with successive estimations. This is the standing
point we chose in this article to formulate a joint estimation model
of the spectral envelope and the fine structure.

2. Formulation of the Proposed Method
2.1. Representation of the Spectral Envelopes

In parametric modeling of speech spectrum towards synthesis sys-
tems, we must discuss before the formulation what we should em-
ploy as a model of spectral envelopes.

In general, the difference between peaks and dips in the speech
spectral envelope (spectral dynamic range) is often as big as sev-
eral dozens of dB. In LPC system for instance, all-pole filters are
used to try to express this kind of envelope with a small number
of parameters. However, the tendency of theQ-value of the res-
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Figure 1:The linear system approximation model in the power domain

onance characteristics of each pole to be larger than that of the
actual vocal tract characteristics may be considered to be one of
the reasons that LPC system often generates an inarticulate synthe-
sized speech due to the successive superpositions of slow decaying
filter outputs, that results in sounding like an echoed speech.

As an alternative to the all-pole filter models having such in-
herent problems, we model a spectral envelope with a Gaussian
mixture function similar to [6] and thoroughly discuss how to es-
timate its model parameters. Being able to approximate a spectral
envelope with a Gaussian mixture, the mean parameter estimate
of each Gaussian would ideally correspond to the formant (reso-
nance) frequency and the diffusion parameter estimate to the band-
width of each formant. We found this is certainly advantageous in
terms of being able to incorporate all kinds of knowledge derived
from phonetics as well as the classic formant synthesis framework.
Furthermore, using as a model of resonance characteristics a mix-
ture of Gaussians, which are quadratic functions in the dB domain,
one may be able to keep theQ-value relatively low when creating
peaks and dips. Gaussian mixture functions having such merits
and being convenient for modeling, we chose to use them for our
spectral envelope model, which will be embedded in the formula-
tion described below.

2.2. Power Spectrum Model of Speech

Now if we suppose the excitation source signal is a pulse sequence,
its spectrum is again a pulse sequence

S(ω) =

∞
X

n=−∞

δ(ω − nµ), (1)

whereω is the frequency,µ the pitch frequency parameter,δ(·)
the Dirac delta function, andn runs over the integers. Multiply-
ing S(ω) by the vocal tract characteristicH(ω) and then taking
the convolution with the frequency responseW (ω) of the window
function gives the complex spectrum of the voiced parts of speech:

Y (ω) =
“

S(ω)H(ω)
”

∗ W (ω)

=

„ ∞
X

n=−∞

H(nµ)δ(ω − nµ)

«

∗ W (ω)

=
∞
X

n=−∞

H(nµ)W (ω − nµ). (2)

We will use as a model of the speech spectrum the approximation
of its power spectrum (Fig. 1):
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, Y(ω). (3)

This approximation is justified under the assumption that the
power spectrum of the sum of multiple signal components is ap-
proximately equal to the sum of the power spectra generated inde-
pendently from the components. The smaller the spectral leak-
age from adjacent components, so that the cross termW (ω −
nµ)W ∗(ω − n′µ) with n 6= n′ is sufficiently small, the higher
the accuracy of this approximation. We then consider the defini-
tion interval ofω to be limited by the Nyquist frequency, andn
is thus bounded. If we now suppose the analysis window to be a
Gaussian window,W(ω) can be written as a Gaussian distribution
function with diffusion parameterσ:

W(ω) =
1√
2πσ

exp

„

− ω2

2σ2

«

. (4)

From Eq. (3), one can see that with this model each frequency
component power is not free but determined at once throughH(ω),
each component power being dependent on the rest of the compo-
nents. As we wantH(ω) to be a smooth and non-negative function
of ω, we introduce the following Gaussian mixture function as dis-
cussed beforehand:

H(ω) , η

M
X

m=1

θm√
2πνm

exp

„

− (ω − ρm)2

2ν2
m

«

, (5)

where
P

∀mθm =1. We could have employed other types of func-
tion, but choosing a Gaussian mixture function as the envelope
model for the reason mentioned before also had the advantage to
enable a prompt application to the speech synthesis method called
“Composite Wavelet Model (CWM)” developed by our group [8].
From Eqs. (3)–(5), the speech spectrum can now be written as:

Y(ω) =

N
X

n=0

H(nµ)√
2πσ

exp

„

− (ω − nµ2)

2σ2

«

=
η

2πσ

N
X

n=0

 

M
X

m=1

θm

νm
e
− (nµ−ρm)2

2ν2
m

!

e
− (ω−nµ)2

2σ2 . (6)

One notices from Eq. (6) that the spectral model we present here
is a composite function of two Gaussian mixtures each of which
represents the spectral envelope and the spectral fine structure.

So far we have only discussed voiced speech with a harmonic
structure, but by making the up to now constantσ in Eq. (6) a
free parameter, the model can also be used to approximate reason-
ably an unvoiced speech spectrum. White noise is indeed generally
used as excitation source to synthesize unvoiced speech, but as its
power spectrum is a uniform distribution, if in Eq. (6)σ becomes
large enough such that the tails of adjacent Gaussians cover each
other, the harmonic structure disappears and the model appears as
a white spectrum. However, as the approximation given in Eq. (3)
in this case becomes less accurate, a more careful modeling for
unvoiced speech should be investigated in the future.

The free parameters of the model areΘ = (µ, σ, η, ρ1, · · · ,
ρM , ν1, · · · , νM , θ1, · · · , θM−1)

T , and their optimal estimation
from a real speech signal is the goal of the following subsection.

2.3. Parameter Optimization

Denoting byF (ω) the observed speech power spectrum, the prob-
lem we are solving is the minimization of the Kullback-Leibler
(KL) divergence betweenY(ω) andF (ω):

J ,
Z

D

F (ω) log
F (ω)

Y(ω)
dω, (7)



which henceforth allows us to derive an elegant parameter opti-
mization algorithm. When

R

D
F (ω)dω =

R

D
Y(ω)dω, this mea-

sure is non-negative and gives a notion of distortion between dis-
tributions, andη is the normalization parameter that ensures this
equality. Since the modelY(ω) is characterized by both the pa-
rameters for envelope and fine structures, this optimization leads
to a joint estimation ofF0 and the envelope. Now if we writeY(ω)
in the form of the sum overn andm of

Ln,m(ω) , ηθm

2πσνm
e
− (ω−nµ)2

2σ2 − (nµ−ρm)2

2ν2
m , (8)

for any weight functionsλn,m(ω) such that06λn,m(ω)6 1 and
∀ω :

P

∀n,mλn,m(ω) = 1, from Jensen’s inequality based on the
concavity of the logarithm function we have

J+
λ ,

N
X

n=0

M
X

m=1

Z

D

λn,m(ω)F (ω) log
λn,m(ω)F (ω)

Ln,m(ω)
dω > J (9)

and equalityJ+
λ = J holds if and only if

∀n, ∀m, ∀ω : λn,m(ω) = Ln,m(ω)/Y(ω). (10)

Eq. (10) is obtained by setting the variation of the functionalJ+
λ

with respect toλn,m(ω) equal to0. By looking atJ+
λ , one can see

that, if λn,m(ω) is fixed, the minimization ofJ+
λ w.r.t Θ:

bΘ = argmin
Θ

J+
λ (11)

with
P

∀m θm = 1 (the Lagrange multiplier terms are omitted),
can be done analytically, which is impossible withJ .

When λn,m(ω) is given by Eq. (10) with arbitraryΘ, the
original objective functionJ is equal toJ+

λ . Then, the parame-
ter Θ, by which bothJ andJ+

λ are governed, that minimizesJ+
λ

with λn,m(ω) fixed according to Eq. (10) necessarily decreasesJ ,
since the original objective function is always guaranteed by the
inequation (9) to be even smaller than the minimizedJ+

λ . There-
fore, by repeating the update ofλn,m(ω) by Eq. (10) and the up-
date ofΘ by Eq. (11), the objective function, bounded by below,
decreases monotonically and converges to a stationary point. No-
tice that this is our original interpretation of the well-known EM
algorithm without using the Bayes rule and thus implies that prac-
tically the same algorithm can also be used even thoughF (ω) and
Y(ω) are not probability density functions.

Now the parameter update equations obtained through Eq.
(11) forµ, ρm, θm, σ andνm are derived as follows:
0
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Figure 2: Power spectra of voiced (top) and unvoiced (bottom)
speech and the estimated envelopes
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η(i) ←

√
2π

Z

D

F (ω)dω

X

∀n

X
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θ
(i)
m

ν
(i)
m

exp

„

− (nµ(i) − ρ
(i)
m )2

2ν
(i)
m

2

«

. (16)

whereΦn,m =
R

D
λn,m(ω)F (ω)dω and the superscripti refers to

the iteration cycle. Each update ofη adjusts the total power of the
model to

R

D
F (ω)dω. Some examples of the estimated envelope

H(ω) with M =15 can be seen in Fig. 2.

3. Experimental Evaluations
3.1. Pitch Extraction and Evaluation of the Speech Model

To confirm its performance as a pitch extractor, we tested our
method on 10 Japanese speech data of male (‘myi ’) and female
(‘ fym ’) speakers from the ATR speech database and chose the
well-known pitch extractor “YIN”[7] for comparison. All power
spectra were computed with a sampling rate of16kHz, a frame
length of32ms and a frame shift of10ms. The spectral model
was made usingN +1 = 60 Gaussians, and the envelope model
was made usingM = 15 Gaussians. The number of free param-
eters is thus3 + 15 × 3 = 48. The initial values ofµ were set
to 47Hz, 94Hz and141Hz, respectively, and among these condi-
tions, the converged parameter set that gave the minimum ofJ was
considered as the global optimum. The initial values ofθm were
determined uniformly, andσ andνm were initialized to31Hz and
313Hz, respectively. For anF0 estimation task, we defined two er-
ror criteria: deviations over 5% and 20% from the hand-labeledF0



Table 1:Results of the evaluation

F0 accuracy (%)
Speech File

±5% ±20%
Cosine (%)

myisda01 98.4 ( 85.3 ) 98.6 ( 98.6 ) 96.7

myisda02 93.3 ( 82.6 ) 97.8 ( 97.8 ) 98.0

myisda03 94.2 ( 79.9 ) 97.5 ( 96.9 ) 96.0

myisda04 98.0 ( 86.3 ) 99.0 ( 95.1 ) 96.8

myisda05 93.7 ( 71.7 ) 97.8 ( 96.1 ) 95.9

fymsda01 97.2 ( 87.0 ) 98.0 ( 98.0 ) 98.3

fymsda02 96.8 ( 88.5 ) 98.1 ( 98.1 ) 97.6

fymsda03 95.4 ( 84.6 ) 98.5 ( 98.5 ) 98.2

fymsda04 97.0 ( 88.2 ) 98.1 ( 98.1 ) 98.2

fymsda05 95.7 ( 86.5 ) 99.2 ( 98.5 ) 98.1

reference as fine and gross errors, respectively. The former crite-
rion shows how precisely the proposed analyzer is able to estimate
F0 and the latter shows the robustness against the double/half pitch
errors. The areas where referenceF0s are given by zero were not
considered in the computation of the accuracy. As a second eval-
uation, we took the average of the cosine measures betweenY(ω)
andF (ω) on the whole analysis interval to verify how well the
choices of the distortion measure to minimize and of the model for
expressing actual speech power spectra are. These results can be
seen in Table 1. The numbers in the brackets in Table 1 are the
results obtained with YIN. Its code was kindly provided to us by
its authors. One can verify from the results that our method is as
accurate as YIN when it comes to roughly estimateF0 and signif-
icantly outperforms YIN for precise estimation. Thus, our method
would be especially useful for situations in which a highly precise
F0 estimate is required. We should note however that the param-
eters used for YIN may not do it full justice. The results seem
to be rather good for a frame-by-frame algorithm, which encour-
ages us to embed this envelope structured model into the paramet-
ric spectrogram model proposed in [9, 10] to exploit the temporal
connectivity of speech attributes for a further improvement.

3.2. Analysis and Synthesis

We compared through a psychological experiment the processing
capacity and the intelligibility of the synthesized speech restored
from the parameters obtained via the proposed and LPC analyzers.
The parameters extracted via the proposed analyzer were trans-
formed to a synthesized speech using the1CWM method [8]. As
a test set, we used speech data of5 vowels (/a/, /i/, /u/, /e/, /o/) and
40 randomly chosen words uttered by a female speaker excerpted
from the same database. Analyses were done with a sampling rate
of 16kHz, a frame shift of10ms and a frame length of32ms for
the proposed method and30 ms for the LPC. The dimension of the
parameters for the proposed model and the LPC’s were both set to
45. For the LPC analysis, theF0s were extracted via the supple-
mentary pitch extraction tool included in the Snack Sound Toolkit.
Each synthesized speech used for the evaluation was excited with
an estimated vocal tract characteristic by a pulse sequence at in-
tervals of a different pitch period from the original one. The pitch
periods were modified to 80% and 120% of the pitch periods ob-
tained from the original speech. We let10 listeners choose the one

1CWM synthesizes speech by spacing composite Gabor functions,
transformed from a Gaussian mixture envelope, by a pitch period interval.

Table 2: Preference score(%) of the synthesized speech generated by
CWM[8] using the parameter estimates of the proposed model.

listener vowel word

A 60 84

B 60 83

C 40 68

D 80 80

E 60 95

F 80 96

G 100 100

H 40 64

I 80 94

J 60 88

Ave. 66 83

they thought was more intelligible and obtained a preference score
of the results via the proposed analyzer. The preference score,
shown in Table 2, shows that the processing capacity and the intel-
ligibility of the synthesized speech generated through the proposed
analyzer are higher than that from through LPC analyzer.

4. Concluding Remark and Future Work
In this article, we formulated the estimation ofF0 and the spectral
envelope as a joint optimization of a composite function model of
the envelope and the fine structures, and confirmed through experi-
ments the effectiveness of this method. Encouraged by the results,
we are planning to embed this envelope structured model into a 2D
time-frequency power spectrum model, towards a novel computa-
tional acoustic scene analysis as discussed in [9, 10].
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