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ABSTRACT

This paper is an extended abstract of a work in progress, which
proposes latent Dirichlet reallocation (LDR), a probabilistic model
for text data from different dialects over a shared vocabulary. LDR
first uses a topic model to allocate word probabilities to vocabulary
terms; it then uses a “subtopic” model to allow for a possible “real-
location” of probability between a few potentially swappable terms
between dialects. An MCMC inference procedure is derived, com-
bining Gibbs sampling with Hamiltonian Monte-Carlo. Finally, we
demonstate the ability of LDR to correctly switch the probabilities
for swappable terms under the subtopics using a toy example.

Index Terms— topic models, dialect, information retrieval,
Bayesian methods, machine learning

1. INTRODUCTION

Latent Dirichlet allocation (LDA) [1] and its extensions are popular
dimension reduction techniques, commonly applied to the modeling
of large text corpora. We present an extension of LDA to handle the
case of modeling documents from different dialects. In this work, we
consider dialects to be separate corpora, composed from the same
vocabulary. We call a vocabulary term “universal” if its usage is
equivalent across dialects, or “swappable” if it is dialect-specific. In
practice, a swappable term may have a different meaning in another
dialect and/or different dialects could have their own unique, equiv-
alent term.

Consider for example, guides for different programming lan-
guages, product user manuals for different brands, or course cata-
logues from different universities. In these examples, sections of
text in the different dialects may refer to the same topics, however,
they may use different key terms. The problem we wish to address
is: given query terms in one dialect, relevant sections in different di-
alects should be reliably returned. While models such as LDA can
attempt to cluster text based on the topical similarity of common
words across dialects, they will be insufficient as dialects increase
in variation and the need for a more robust method arises. Such an
application will have practical value in information retrieval, where
searching for useful information in an unfamiliar domain can be a
difficult task with differing key terminology.

Toward this goal, we will develop an extension of LDA based on
a technique we call latent Dirichlet reallocation (LDR), which uses
a topic model, similarly to LDA, to allocate a distribution over words
to each document. Then, using a Bayesian method, LDR is able to
reallocate word probabilities between a few vocabulary terms which
are potentially swappable between dialects.

1.1. Related works

Related works on word-sense disambiguation using topic models [2]
attempt to learn a polysemantic word’s hidden sense according to
a predefined labeled hierarchy of words. Other models for multi-
lingual corpora require aligned or syntactically similar documents
[3]. Others such as [4] work on unaligned text, however, they model
corresponding topics in different vocabularies. In comparison, our
method is completely unsupervised and models dialects within a
shared vocabulary.

Highly related to our work in these respects is the dialectical
topic model (diaTM) [5], which associates different documents in
a corpus with different draws from both a mixture of dialects and
a mixture of topics. That is, each word in every document has its
own topic assignment as well as dialect assignment. Motivated by
the three problems described above, we make different modeling as-
sumptions. Firstly, LDR assumes that a corpus is associated with
just one dialect and just a universal set of topics are shared. For the
applications we are interested in, this is a natural assumption. For
instance, you would train each user manual or catalogue as a dif-
ferent corpus and the sections comprising it as different documents.
This information is available at training time and does not need to be
automatically inferred.

Further related works are the topic-adapted latent Dirichlet al-
location model (τLDA) of [6], which models a technicality hier-
archy in parallel with the topic hierarchy and the hierarchical la-
tent Dirichlet allocation (hLDA) model of [7], which models a tree
structured hierarchy for the learned topics using the nested Chinese
restaurant process. These models are best suited to address docu-
ments of differing levels of specificity (called “technicality” in [6]),
which is not the same as our dialect modeling problem. Again, in our
applications, we do not assume different words in a document to be
associated with different levels of technicality (or different dialects).

An important, distinguishing, and novel objective of our model
is that LDR attempts to directly identify the subcluster of key terms
which are swappable across dialects.

2. LATENT DIRICHLET REALLOCATION

We will first state the model for LDR, then, in section 3, we will
explain the motivation and intuition behind the modeling.

LDR considers documents from one dialect to constitute a cor-
pus c = 1, . . . , C. Here, a topic z ∈ {1, . . . ,K} is a distribution
over “subtopics” u ∈ {1, . . . ,M}, which are distributions over vo-
cabulary terms indexed by {1, . . . , V }. We associate each document
d = 1, . . . , Dc with a distribution over topics θc,d, drawn from a
symmetric Dirichlet Distribution shared across all corpora. For each
word n = 1, . . . , Nc,d, a topic is drawn according to θc,d, then a
subtopic is drawn from a topic dependent multinomial φk (each an
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Fig. 1. Graphical model representation for (a) latent Dirichlet allo-
cation and (b) latent Dirichlet reallocation

M -vector), depending on the topic. A vocabulary term is then se-
lected from a multinomial γc,m which depends on both the corpus
and subtopic assignment. We will also be placing symmetric Dirich-
let priors over the φk. A key feature of our model will be subtopic-
dependent Dirichlet priors ηm we place on the γc,m, the motivation
for which will be detailed in section 3.2.

In detail, we specify a priori a number of topicsK, subtopicsM
and the vocabulary size V , where we assume K � M < V . The
model has two scalar parameters α and β for symmetric Dirichlet
distributions, and a scalar λ parameterizing an exponential distribu-
tion. The generative model is

1. ηm|λ ∼ exp(λ); m = 1, . . . ,M ;

2. φk|β ∼ Dir(β); k = 1, . . . ,K;

3. For c = 1, . . . , C :

a) γc,m|ηm ∼ Dir(ηm), m = 1, . . . ,M,

b) θc,d|α ∼ Dir(α), d = 1, . . . , Dc;

4. For c = 1, . . . , C, d = 1, . . . , Dc, n = 1, . . . , Nc,d :

a) zc,d,n|θc,d ∼ Mult(θc,d),
b) uc,d,n|zc,d,n;φ1:K ∼ Mult(φzc,d,n),

c) wc,d,n|uc,d,n;γc,1:M ∼ Mult(γc,uc,d,n).

(1)

A graphical model for LDR can be seen in Fig. 1(b). For readers
familiar with LDA, its graphical model is given in figure 1(a) for
comparison (see [1] for details).

3. MODELING REALLOCATIONS BETWEEN TERMS

We now present a thorough motivation for LDR, focusing on intu-
ition. The number of subtopics M characterizes LDR as a wide
spectrum of models. Our motivation begins by considering large
M , where we can interpret subtopics as “meanings” an observation
should express; the exact vocabulary term used is corpus dependent.
However, in practice, we scaleM down, where we will adopt a topic
modeling view.

(a) (0.7, 0.7, 1.2) (b) (0.7, 1.2, 1.2)

Fig. 2. Examples of sparse Dirichlet distributions

3.1. Subtopics as meanings

The M subtopics can be viewed as intended “meanings” for a word
wi. It then makes sense to draw the subtopic ui from a topic-
dependent distribution, independent of the dialect, and for the word
probabilities to depend on both the intended meaning and the dialect.
Ideally, every universal term will correspond to its own subtopic.
For the swappable terms, the model should group those which are
equivalent in meaning and associate one subtopic with all terms in
the group. Now consider selecting a subtopic associated with a uni-
versal term: in this case, the word has already been determined and
an appropriately structured subtopic-dependent multinomial γci,ui

should not reallocate probability to another term. However, when
a subtopic corresponding to a swappable group is selected, γci,ui

needs to correctly reallocate highest probability to the term appro-
priate for the dialect. The next section describes our technique for
automatically learning these appropriately-structured multinomials.

3.2. Sparse Dirichlet priors for reallocation

We take a Bayesian approach to automatically learn the appropriate
γc,m by giving it a subtopic-dependent, asymmetric Dirichlet prior
parameterized by ηm. This Dirichlet distribution is defined over the
probability simplex in V − 1 dimensions, which is a polytope with
each vertex corresponding to a vocabulary term. Furthermore, we
want it to be sparse, i.e., for it to place weight on either a (p−1)-face
of the polytope (corresponding to p swappable terms under subtopic
m) or on a single vertex (a universal term under m). An example of
a sparse Dirichlet distribution favoring a vertex and another hugging
a polytope face are shown in Fig. 2 (Note that the Dirichlet distri-
bution itself is not sparse, but instead the draws from it should favor
sparsity).

3.3. Relaxing combinatorial search to Bayesian reallocation

Consider, more fundamentally, the problem of learning word-
equivalence across dialects. We need to form the multinomial
probabilities over terms for each dialect (here γc) to best explain the
data. This entails finding an optimal sparse selection of terms to rep-
resent swappable terms in the dialect. This combinatorial search is a
computationally intractable task. By taking a Bayesian approach and
using a subtopic-dependent Dirichlet prior shared across dialects,
we are in effect relaxing this combinatorial search to a continuous
optimization which is automatically performed during inference.

3.4. From meanings to subtopics

As mentioned at the beginning of this section, we are motivated by
a value of M close to V , with every vocabulary term (or group of



swapped terms) to have a corresponding word-multinomial per cor-
pus, dictating exactly when the terms should be used. However, this
not only entails fitting CMV ≈ CV 2 word-multinomial parame-
ters, which is a daunting computational task. We thus decrease the
value of M , moving our viewpoint from one of selecting words to
represent meanings, to one of topic modeling, performing two re-
ductions onto lower dimensional subspaces.

4. INFERENCE BY MCMC

For observation wi, we sample the topic zi and subtopic ui assign-
ments using Gibbs sampling [8], [9], which samples from the con-
ditional distribution given all other variables in the model. Unfor-
tunately, the exponential and Dirichlet distributions are not conju-
gate, so implementing Variational Bayes [1] or Gibbs sampling for
the subtopic priors η will not be straightforward. We use Hamilto-
nian Monte-Carlo (also known as hybrid Monte-Carlo) [10], which
is based on Hamiltonian dynamics and avoids the random walk be-
havior of other Gibbs sampling methods.

4.1. Sampling the topic and subtopic assignments

We sample the topic and subtopic assignments as a block. For Gibbs
sampling, we follow standard derivations, as in [8], to obtain the
required conditional distribution for observation wi

p(zi = k, ui = m|W ,Z−i,U−i,η;α, β, λ)

∝
n
(ci)
−i,m,wi

+ ηm,wi∑
j

(
n
(ci)
−i,m,j + ηm,j

) n−i,k,m + β∑
m (n−i,k,m) +Mβ

×
n
(ci,di)
−i,k + α∑

k

(
n
(ci,di)
−i,k

)
+Kα

.

(2)

where the subscript −i indicates removal of the current observation
in the following counts: n(ci)

−i,m,wi
, the number of times word wi is

assigned to subtopic m in corpus ci; n−i,k,m, the number of ob-
servations assigned to both subtopic m and topic k; and n(ci,di)

−i,k ,
the number of observations assigned to topic k in document di (in
corpus ci). Once each observation is sampled, we update the count
matrices, which can be stored efficiently in sparse matrix format.

4.2. Sampling the sparse Dirichlet priors

Given an assignment for each observation of z and u, we sample
the sparse Dirichlet priors ηm,m = 1, . . . ,M using Hamiltonian
Monte-Carlo (HMC). Originating in the statistical physics literature,
HMC is motivated by Hamiltonian dynamics in order to avoid the
random walk nature of other MCMC procedures.

We do not provide the details of the HMC algorithm here, only
the required expressions. However, one may refer to [10] and [11]
for the details. Firstly, the conditional distribution for ηm gives the
proportionality

p(ηm|η−m,W ;U , λ)

∝

Γ
(∑

j ηm,j
)

∏
j Γ(ηm,j)

C ∏
c

∏V
j Γ(ncjm + ηm,j)

Γ
(∑

j n
c
jm + ηm,j

)


× exp

{
−λ
∑
j

ηm,j

}
.

(3)

The HMC algorithm requires the state variables to be unbounded,
thus, we transform ηm,j ∈ (0,∞) to xj ∈ (−∞,∞) using xj =
log(ηm,j). Using the change of variables theorem, the prior distri-
bution for the sparse Dirichlet parameters ηm expressed in terms of
x is given by

p(x|λ) ∝ exp

{
V∑
j=1

xj − λ
V∑
j=1

exp(xj)

}
(4)

and, thus, the negative of the j-th gradient component of the log
probability Lx is given by

−∂Lx

∂xj
=− 1 + exp(xj)

{
−
∑
c

Ψ(ncjm + exp(xj))

+

[∑
c

Ψ

(∑
j

ncjm + exp(xj)

)]

− CΨ

(∑
j

exp(xj)

)
+ CΨ(exp(xj)) + λ

}
.

(5)

The algorithm chooses to explore areas of the state space using
the gradient of the current state, say xτ , and a corresponding vector
of momentum variables pτ . The evolution of the Hamiltonian dy-
namics in the system, here given by τ and interpreted as “time”, can
be approximated using various methods. We use “leapfrog” steps
[11], which are popular in the machine learning literature. In order
to sample from the marginal distribution for x, samples are drawn
from the phase space {x,p} and the samples p are simply discarded.
Proofs of the validity of this procedure can be found in [11]. In sum-
mary, inference will proceed as follows:

1. Initialize the values of U ,Z,η.

2. For each observation wi, sample zi and ui from (2) by Gibbs
sampling and update the count matrices.

3. Given the assignments Z and U , sample each ηm, m =
1, . . . ,M from (3) using HMC.

4. Iterate between steps 2 and 3 until convergence.

In practice, we run this procedure for a suitable “burn-in” period,
to allow the Markov Chain to approach the target distribution, and
discard the burn-in samples.

Given any single sample for {Z,U ,η}, following [8], we can
use the counts to estimate the values for γ,Φ and Θ as follows: for
any c, d, k, and/or m, the components of θc,d, φk, and γc,m can be
estimated, respectively, by

θ̂c,d,k =
n
(c,d)
k + α∑

k′ (nk′) +Kα
, φ̂k,m =

nk,m + β∑
m′ (nk,m) +Mβ

,

and γ̂c,m,j =
ncm,j + ηm,j∑

j′

(
ncm,j′ + ηm,j′

) , (6)

where the counts are analogous to those used in equations (2) and
(3), however, including all observations. These values are the pre-
dictive distributions over the new words j, topics k and subtopicsm,
given the U ,Z,W and η.

5. EXPERIMENTS

We experiment with LDR on a toy data example as a sanity check
to ensure the model learns swappable terms correctly. We compose



a corpus out of four short documents taken from Wikipedia articles
on computer science. We make a second corpus out of three of these
documents, randomly chosen. The documents are stemmed and stop
words are removed. We choose several key terms from the first cor-
pus and replace every instance of those terms in the second corpus
with a different, new term. For example, in the second corpus, one
replacement we make is “system”→ “systemC2”, so that the docu-
ments in each corpus are identical, with exception of these swapped
terms.

We set M = V = 544 and α = 1/K, β = 1/M and λ = 12.
We run LDR on these corpora for a 1000-iteration burn-in and use a
sample to compute the estimates for γc=1,1:M and γc=2,1:M accord-
ing to (6). For illustration, consider the term “system” which was
replaced with “systemC2” in corpus two. We find that the term “sys-
tem” has the highest probability (highest entry in γ1,m) in corpus
one under subtopic m = m? = 384. Since this subtopic should rep-
resent the meaning “system”, we expect the same subtopic in corpus
two to switch its probability onto the term “systemC2”. The com-
parison of γ1,m? and γ2,m? is shown in Fig. 3. For visualization,
we have only show the terms immediately before and after “sys-
tem” (fourth bar) and “systemC2” (eigth bar), and instead of the true
probabilities, we have plotted the proportional probabilities for each
corpus, with γ1,m? on the bottom and γ2,m? on top. As expected,
the term “system”, represented by the fourth bar, has very high prob-
ability in corpus one and low probability in corpus two. Conversely,
“systemC2”, represented by the eigth bar, has high probability in
corpus two but low probability in corpus one. The figure does not
show the true probability masses for each of the other terms; in real-
ity, the mass differs from term to term, but they were all significantly
lower than that for the key term “system” or “systemC2” (depending
on the corpus). Importantly, we can see that LDR correctly learned
that the probability for non-swappable terms remain relatively the
same across the two different corpora. We saw similar results for the
subtopic maximizing the probability of “system” in corpus two and
for the other terms we manually swapped.

We note that when viewing the true word probabilities under the
γ, while the key term does have significantly higher probability than
any other term under a subtopic, it does not hold the majority of the
mass in the multinomial distribution over words. For example, under
γ1,384, the key term “system” only has a mass of 0.18. In practice,
we would like the key term to dominate the multinomial distribution.
This is also seen in the sparse Dirichlet priors η, where the mass
in the high-probability term clusters do not contain the majority of
the mass. This is likely due to the fact that the exponential prior
on λ is too restrictive. To alleviate this, the authors are currently
investigating the use of a Gamma prior on λ.

6. CONCLUSION AND FURTHER WORK

This extended abstract has described this work in progress and has
demonstrated its ability to correctly model swapped terms on a toy
example. Our next step is to conduct large experiments on real data
to test LDR. These experiments should investigate two things: 1) at-
tempt to verify whether LDR successfully clusters swappable terms
under subtopics, and 2) compare its performance on modeling docu-
ments from different dialects to other models such as [1], [5], or [7].
In particular, experiments should be designed to evaluate the abil-
ity of different models to correctly associate sections of text from
different dialects, given some query terms in one dialect. Such an
experiment could be carried out with a labeled dataset, for example,
and the authors are working on collecting a realistically sized dataset
of one of the motivating examples given in the introduction.

Fig. 3. A toy, two dialect example comparing the relative entries in
γ1,384 (bottom) and γ2,384 (top). LDR correctly learns that terms
four and eight are swappable across the two corpora under this
subtopic. See section 5 for details.
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