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Abstract. We investigate the behavior in N of the N–particle entropy func-
tional for Kac’s stochastic model of Boltzmann dynamics, and its relation to
the entropy function for solutions of Kac’s one dimensional nonlinear model
Boltzmann equation. We prove results that bring together the notion of prop-
agation of chaos, which Kac introduced in the context of this model, with
the problem of estimating the rate of equilibration in the model in entropic
terms, showing that the entropic rate of convergence can be arbitrarily slow.
Results proved here show that one can in fact use entropy production bounds
in Kac’s stochastic model to obtain entropic convergence bounds for his non
linear model Boltzmann equation, though the problem of obtaining optimal

lower bounds of this sort for the original Kac model remains open and the
upper bounds obtained here show that this problem is somewhat subtle.

2000 Mathematics Subject Classification. Primary: 76P05, 60G50; Secondary: 54C70.
Key words and phrases. Entropy, propagation of chaos.
The work of E.C. and M.L. was partially supported U.S. National Science Foundation grant

DMS 06-00037. The work of M.C.C. was partially supported by POCI/MAT/61931/2004.

1



2 CARLEN, CARVALHO, LOSS, LE ROUX AND VILLANI

1. Introduction.

1.1. The origins of the problem to be considered. In a remarkable paper [18]
of 1956, Mark Kac investigated the probabilistic foundations of kinetic theory, and
defined the notion of propagation of chaos, which has since then developed into
an active field of probability.

Kac introduced the concept of propagation of chaos in connection with a specific
stochastic process modeling binary collisions in a gas made of a large number N of
identical molecules, and he was particularly concerned with its rate of equilibration,
i.e., of its approach to stationarity.

While his ideas concerning propagation of chaos had an immediate resonance
and impact, this was not the case with the issues he raised concerning rates of
equilibration. These had to wait much longer for progress and development, as
we shall relate below. In this paper, we bring these two lines of investigation back
together, proving several theorems relating chaos and equilibration for the Kac walk.

1.2. The Kac walk. We begin with a precise description of the Kac walk as a
model for the evolution of the distribution of velocities in a gas of like molecules
undergoing binary collisions. For simplicity, Kac assumed the gas to be spatially
homogeneous, and the velocities vj (1 ≤ j ≤ N) to be one-dimensional. The latter
assumption is incompatible with the conservation of both momentum and kinetic
energy, so Kac only assumed conservation of the kinetic energy E, where

E =
m

2

N∑

j=1

v2
j ,

with m denoting the mass of the particle species, and vj denoting the velocity of
the jth particle.

The natural state space for this system (i.e., state space for the walk) is the sphere

SN−1(
√

(2/m)E) ⊂ R
N , the (N−1)-dimensional sphere with radius

√
(2/m)E. For

the sequel of the discussion, let us choose units in which the mass of each particle
is 2. We also choose units in which the total value of the kinetic energy is N , so
that the state space is SN−1(

√
N), and each particle has unit mean kinetic energy.

Let V = (v1, . . . , vN ) denote a generic point in SN−1(
√
N).

Here is how to take a step of the Kac walk: First, randomly pick a pair (i, j) of
distinct indices in {1, . . . , n} uniformly from among all such pairs. The molecules i
and j are the molecules that will “collide”. Second, pick a random angle θ uniformly
from [0, 2π). Then update V = (v1, . . . , vN ) by leaving vk unchanged for k 6= i, j,
and updating velocities vi and vj by rotating in the vi, vj plane as follows:

(vi, vj) →
(
(cos θ)vi − (sin θ)vj , (sin θ)vi + (cos θ)vj

)
.

Let Ri,j,θV denote the new point in SN−1(
√
N) obtained in this way. This process,

repeated again and again, is the Kac walk on SN−1(
√
N).

Associated to the steps of this walk is the Markov transition operator QN on
L2(SN−1(

√
N), dσN ) where σN is the uniform probability measure on SN−1(

√
N).

(This notation shall be used throughout the paper.)
If Vj denotes the position after the jth step of the walk, and ϕ is any continuous

function on SN−1(
√
N), the transition operator QN is defined by

QNϕ(V ) = E
{
ϕ(Vj+1) | Vj = V

}
.
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From the description provided above, one finds that

QNϕ(V ) =

(
N
2

)−1∑

i<j

1

2π

∫

[0,2π)

ϕ(Ri,j,θV )dθ .

It is easily seen that σN is the unique invariant measure.
A closer match with the physics being modeled is attained if the steps of the

walk arrive not in a metronome beat, but in a Poisson stream with the mean wait
between steps being 1/N . This “Poissonification” of the Kac walk yields a continu-

ous time process on SN−1(
√
N). Since QN is self adjoint on L2(SN−1(

√
N), dσN ),

this process is reversible, and so if the law µ0 of the initial state V0 has a density
FN

0 with respect to σN , then for all t > 0, the law µt of Vt has a density FN
t with

respect to σN , and FN
t is the solution to the Cauchy problem

∂

∂t
FN = LNF

N with lim
t→0

FN
t = FN

0 (1)

where LN = N(QN − I), and I is the identity operator. This equation is known as
the Kac master equation, which is nothing other than the Kolmogorov forward
equation for the continuous time Kac walk. The solution is of course given by

Ft = etLNF0 . (2)

Since V → Ri,j,θ is a rotation, it follows that for each positive integer k, QN

preserves the subspace of L2(SN−1(
√
N), dσN ) consisting of spherical harmonics

of degree no greater than k. Hence, all of the eigenfunctions of QN are spherical
harmonics. Since the constant is the only spherical harmonic that is invariant under
rotations, 1 is an eigenvalue of Q of multiplicity one.

Therefore, for any initial data F0 in L2(SN−1(
√
N), dσN ), the solution FN

t =
eLNFN

0 of the Kac master equation satisfies

lim
t→∞

FN
t = 1 . (3)

We refer to the invariant density 1 as the equilibrium, and the process of approaching
this limit as equilibration.

The rate at which this limit is achieved is physically interesting for reasons that
will be explained shortly. But apart from its physical motivation, the problem is
quite interesting on purely probabilistic grounds: While the subject of quantifying
the rate of equilibration for random walks on large discrete sets has been vigorously
developed in recent years, much less has been done in the case of continuous state
spaces of high dimension, and the Kac walk is a very natural example.

Kac proposed to investigate the rate of equilibration for his walk in L2 terms
through the spectral gap of LN : Define

∆N = sup
{
− 〈ϕ,LNϕ〉 : 〈ϕ, 1〉 = 0 and 〈ϕ,ϕ〉 = 1

}

where the inner products are taken in L2(SN−1(
√
N), dσN ). In his paper [18], Kac

conjectured that lim infN→∞ ∆N > 0.
Since one already knows that the eigenfunctions of LN are spherical harmonics,

this may seem like a trivial problem. In fact, it is very easy to guess the exact value
for ∆N and the corresponding eigenfunction. Indeed, it is natural to suppose that
the eigenfunction must be a simple symmetric, even polynomial in the velocities

vj . The simplest such thing,
∑N

j=1 v
2
j , is simply a constant on SN−1(

√
N), so one
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might try

ϕgap =

N∑

j=1

(v4
j − 〈v4

j , 1〉) .

(The constant being subtracted to ensure orthogonality to 1 can be easily com-
puted; see [8], and this is indeed a spherical harmonic.) Physical reasoning, based
on linearizing the Boltzmann-Kac equation to be discussed shortly, gives further
evidence that ϕgap should in fact be the gap eigenfunction. Using this as a trial
function, one readily computes what should be — and does turn out to be — the
value of ∆N :

∆N =
1

2

N + 2

N − 1
. (4)

However, while one can explicitly compute as many eigenvalues as one wants
to, there is no monotonicity argument to rule out the proposition that the gap
eigenvalue might come from a spherical harmonic of large degree.

Kac’s conjecture that lim infN→∞ ∆N > 0 was first proved by Janvresse [17]. Her
method did not yield the exact value for ∆N . The first proof that (4) is actually
correct was given in [8]; see also [22] for a different approach. For a treatment
of related problems, including physical three-dimensional momentum preserving
collisions, see [9] and [11]. Another interesting approach to these problems has
been developed recently by Caputo [5]. His method give the exact spectral gap
in one dimension very simply, and though it does not give the exact gap in three
dimensions, it does at least provide a uniform bound away from zero.

These results enable us to quantify (3) as follows:

‖FN
t − 1‖L2(SN−1(

√
N),dσN ) ≤ e−t/2‖FN

0 − 1‖L2(SN−1(
√

N),dσN )

for all N and t. While the exponent is uniform in N , the shortcoming of this result
will be familiar to many probabilists who have worked on rates of equilibration: For
natural sequences of initial data {FN

0 }N∈N, it will be the case that

‖FN
0 ‖L2(SN−1(

√
N),dσN ) ≥ CN

for some C > 1. Therefore, one still has to wait a time proportional to N before
the bound starts providing evidence of equilibration.

Even worse, the badly behaved sequences of initial data mentioned above are
exactly the ones of primary physical interest — the chaotic sequences, in which
for large N the coordinate functions vj are “nearly independent and identically

distributed” under the law µ(N) = FN
0 σN .

1.3. Kac’s notion of chaos. To state the precise definition, we first introduce
some notation that will be used throughout the paper: Given any probability mea-
sure µ(N) on SN−1(

√
N), and any positive integer k < N , let Pk(µ(N)) denote the

marginal measure of µ(N) for the first k velocities. In formulas: whenever A is a
Borel subset of R

k,

Pk(µ(N))[A] = µ(N)[{(v1, . . . , vk) ∈ A}].
In the sequel, we only consider symmetric measures, so there is nothing particular
in considering the first k velocities. Chaos means that Pkµ

(N) is well approximated
by µ⊗k, a distribution of k independent particles when N is large. Here is a more
precise definition:
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Definition 1 (chaos). Let µ be a given Borel probability measure on R. For each

positive integer N , let µ(N) be a probability measure on SN−1(
√
N). Then the

sequence of probability measures {µ(N)}N∈N is said to be µ-chaotic in case:

(i) Each µ(N) is symmetric under interchange of the variables v1, . . . , vN ;

(ii) For each fixed positive integer k, the marginal Pkµ
(N) of µ(N) (marginal on

the first k velocities) converges to the k-fold tensor product µ⊗k, as N → ∞, in
the sense of weak convergence against bounded continuous test functions. That is,
whenever χ(v1, . . . , vk) is a bounded continuous test function of k variables, then
∫
χ(v1, · · · , vK) dµ(N)(v1, · · · , vN ) −−−−→

N→∞

∫
χ(v1, · · · , vk) dµ(v1) · · · dµ(vK).

(5)

Property (ii) says that µ(N) is well approximated by (P1µ
(N))⊗N as N → ∞, in

the weak sense of convergence against test functions depending on a finite number
of variables.

Besides being archetypal, the following well-known example will play an impor-
tant role in this paper. It has quite an ancient history, going back —at least —to
Mehler [23] in 1866. For a more recent reference, see [24].

Example 2. Let

γ(v) =
e−v2/2

√
2π

. (6)

Then, {σN}N∈N is γ(v)dv chaotic. Indeed, this follows easily from the explicit
computation

Pkσ
N =

(
1 − s2

N

)N−k−2
2 |SN−k−1|

Nk/2|SN−1|Lk , where |SN−1| =
2πN/2

Γ(N
2 )

, (7)

and where Lk is the k-dimensional Lebesgue measure.

Now, let f be some probability density on R, and (with the same notation as in
the above example) suppose that {FNσN}N∈N is an f(v)dv chaotic family. For each
N , let FN (t, ·) denote the solution of (1) at time t, starting from the initial data FN .
The main result that Kac did prove in [18] is that for each t > 0, {FN (t, ·)σN}N∈N

is still a chaotic family; this property is referred to as propagation of chaos.
Indeed, {FN(t, ·)σN}N∈N is f(t, v)dv chaotic, where f(t, v) is the solution of the
following Cauchy problem:






f(0, ·) = f ;

∂f

∂t
(t, v) =

1

2π

∫ π

−π

∫

R

[
f(v′, t) f(v′∗, t) − f(v, t) f(v∗, t)

]
dv∗ dθ ,

(8)

and

v′ = (cos θ) v − (sin θ) v∗; v′∗ = (sin θ) v + (cos θ) v∗ .

This nonlinear equation is a model Boltzmann equation, which we shall call the
Boltzmann-Kac equation (as opposed to the Kac master equation). The qua-
dratic nonlinearity on the right is a reflection of the fact that QN models a bi-
nary collision process, and of Kac’s notion of chaos: Indeed, the time derivative of
P1(e

tLNFN ) may be expressed in terms of a linear operation on P2F
N , and then

this is well approximated by the tensor product f ⊗ f in the limit N → ∞.
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The program Kac set forth in [18] was to investigate the behavior of solutions
of (8) in terms of the behavior of solutions of the the Kac master equation (1). In
particular, concerning equilibration,

lim
t→∞

FN
t = 1 ⇒ lim

t→∞
P1(F

N
t σN ) =

|SN − 2|
N1/2|SN−1|

(
1 − v2

1

N

)(N−3)/2

≈ γ(v1)

for large N , and thus Kac’s theorem can be used to relate the rate of equilibration
in the Kac master equation to the rate of convergence in

lim
t→∞

f(v, t) = γ(v)

for solutions f(v, t) of (8). Once this would be carried out, one would then like
to do the same for the actual Boltzmann equation for three dimensional velocities
with conservation of both energy and momentum.

As we have indicated, an L2 analysis of the rate of equilibration for solutions of
the Kac master equation does not shed much light on the large time behavior of
solutions of (8). What would do this is very natural in the context of the Boltzmann
equation: an entropy production estimate.

1.4. Convergence to equilibrium and entropy inequalities. If µ and ν are
two probability measures on a measurable space X , their relative entropy is defined
by the formula

H(µ|ν) =

∫
h log h dν h =

dµ

dν
,

with the understanding that H(µ|ν) = +∞ if µ is not absolutely continuous with
respect to ν. In particular,

- if f is a probability density on R, then its relative entropy with respect to γ
(identified with a probability measure) is

H(f |γ) =

∫

R

f(v) log
f(v)

γ(v)
dv;

- if FN is a probability density on SN−1(
√
N), then its relative entropy with

respect to the uniform probability measure σN is

HN (FN ) := H(FNσN |σN ) =

∫

SN−1(
√

N)

FN (v) logFN (v) dσN (v).

The well-known Csiszar-Kullback-Leibler-Pinsker inequality states that

H(µ|ν) ≥ ‖µ− ν‖2
TV /2, (9)

where the subscript “TV ” stands for the total variation norm.
So the relative entropy measures a deviation from equilibrium, just like the L2

norm, and it is natural to try to quantify the rate of equilibration for the Kac master
equation by studying HN (FN

t ) for solutions: If FN
t is a solution,

d

dt
HN (FN

t ) =

∫

SN−1(
√

N)

log(FN
t )LNF

N
t dσN = 〈log(FN

t ), LNF
N
t 〉 .

In analogy with the definition of the spectral gap ∆N , define the entropy production
constant ΓN by

ΓN = inf
−〈log(FN ), LNF

N 〉
HN (FN )
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where the infimum is taken over all probability densities FN on SN−1(
√
N) with

HN (FN ) <∞.
The entropic analog of the Kac conjecture would be that there exists a c > 0

with ΓN ≥ c for all N . This would imply that

HN (FN
t ) ≤ e−ctHN (FN

0 ) , (10)

and hence that

‖FN
t σN − σN‖2

TV ≤ 2e−ctHN (FN
0 ) .

There is an absolutely crucial difference between this and the L2 estimate that we
obtained earlier, and it lies in the extensivity of the entropy. Suppose that {FN

0 }N∈N

is an f0(v)dv–chaotic family of densities on SN−1(
√
N). Then according to Kac’s

theorem, {FN
t }N∈N is an f(v, t)dv –chaotic family of densities on SN−1(

√
N), where

f(v, t) is the solution of the Boltzmann–Kac equation with initial data f0(v). Be-
cause of the near product structure of F t

N , one might expect that for each t, and
large N ,

HN (FN
t ) ≈ NH(f(t, ·)dv|γdv) . (11)

It is the proportionality to N that we refer to as extensivity. Since this factor of N
would appear on both sides of (10) if we substituted (11) in on both sides, we can
cancel off the N , and obtain, in the large N limit

H(f(t, ·)dv|γdv) ≤ e−ctH(f0dv|γdv) .
We could now apply (9) to this and conclude that for solutions f(v, t) of the
Boltzmann–Kac equation,

‖f(·, t)dv − γdv‖2
TV ≤ 2e−ctH(f0dv|γdv) .

Such a bound would be very desirable to have for the Boltzmann–Kac equation,
and this motivates the enquiry into the exact behavior of the entropy production
constant ΓN .

It turns out that estimating the entropy production constant ΓN is a much more
subtle problem than that of estimating the spectral gap ∆N . Unfortunately, the
best information that is known at present is

ΓN ≥ 2

N − 1
.

There are two different proofs of this result. The first, due to Villani, can be
found under Theorem 6.1 in [26]. (The bound 2/(N − 1) is what one gets from the
argument in [26] making some simplifications that are admissible in the special case
of the original Kac model considered here.) The second, due to Carlen and Loss, is
an entropic adaptation of the argument used in [8] to determine the spectral gap. It
can be found under Lemma 2.4 in [7] using Theorem 2.5 there. It was conjectured
in [26] that these bounds are essentially sharp; i.e., that

ΓN = O
(

1

N

)
.

However, this is not so clear at present. In fact, it had remained an open problem
whether there was even a sequence {FN} of densities for which

lim
N→∞

−〈log(FN ), LNF
N 〉

HN (FN )
= 0 (12)

with convergence at any rate at all. The following theorem settles this issue:
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Theorem 3. For each c > 0, there is a probability density f on R with
∫

R
vf(v)dv =

0 and
∫

R
v2f(v)dv = 1, and an fdv–chaotic family {FNσN}N∈N such that

lim sup
N→∞

−〈log(FN ), LNF
N 〉

HN (FN )
≤ c .

For each c, the density f is smooth and bounded, and has moments of all orders.

Once one has this, an easy diagonal argument produces a sequence {FN}N∈N

satisfying (12).
While this would seem to be bad news for Kac’s program, it only shows that one

cannot have a universal bound on the ratio defining ΓN , valid for all probability
densities FN on SN−1(

√
N). Theorem 3 does not rule out the possibility that there

is a conditional bound on this ratio, holding for all FN in an f–chaotic family with
some condition on f .

Indeed, we shall see that the densities f used to prove Theorem 3 have a fourth
moment that diverges as c tends to zero. As far as we now know, Theorem 3
might become false under the additional assumption of a fixed bound on the fourth
moment of f . This would be very interesting since bounds on the fourth moments
are well known to be preserved by solutions of the Boltzmann–Kac equation, so
such a condition on the initial data would propagate.

Moreover, it is known [12] that even for smooth initial data f with
∫

R
vf(v)dv = 0

and
∫

R
v2f(v)dv = 1, solutions f(v, t) of the Boltzmann–Kac equation can have

‖f(·, t) − γ‖L1(R) approach zero arbitrarily slowly – for example, like

1

1 + log(1 + log(1 + log(1 + t)))
,

or the same thing with as many logarithms as one might wish. This however can
happen only when the density f has very long tails so that

∫
R
v2f(v)dv just barely

converges. A bound on the fourth moment, which would ensure good behavior of
the tails is therefore a plausible condition to impose if one seeks a lower bound on
the rate of convergence.

Finally, if one modifies the Kac walk so that pairs of molecules i, j with high
values of v2

i + v2
j run much faster, then one can prove a uniform positive lower

bound on ΓN ; see [26, Section 6]. Thus, Theorem 3 displays the subtleties that
beset Kac’s program, but it does not by any means terminate it. In fact it raises
a very interesting question: What sort of conditional bound on ΓN might hold for
the Kac model? But we shall not come to that in this paper; there are more basic
issues to be settled first.

1.5. Conditioned tensor products. The proof of Theorem 3 naturally requires
the construction of chaotic data, and this raises the following question:

Question 1. Let f be a probability density on R with
∫

R

vf(v) dv = 0 ,

∫

R

v2f(v) dv = 1 , (13)

and finite entropy. Is it true that there is an f(v)dv–chaotic family of densities

{FN}N∈N on SN−1(
√
N)?

Question 1 may seem trivial at first sight, and actually was treated by Kac in a
rather cavalier fashion. Indeed, there is an obvious procedure for generating chaotic
initial data, which may be described as follows.
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Suppose that µ(dv) is a probability measure on R satisfying (13). Consider the

tensor product measure µ⊗N and condition (restrict) it to the sphere SN−1(
√
N).

By the law of large numbers,
∑N

j=1 v
2
j ≈ N for largeN , almost surely with respect to

µ⊗N , so this measure is roughly concentrated on SN−1(
√
N), and the conditioning

should not modify it too much.
An important instance where this is obviously true is the particular case when

µ = γ: Then FN is just the uniform measure σN , and the explicit formula (7)
certainly guarantees that FN is γ-chaotic in a very strong sense.

But for more general data, the extent to which µ⊗N is actually concentrated on
SN−1(

√
N) is not so obvious. Assume that µ has a density f , so f⊗N is the density

of µ⊗N ; then the restriction of f⊗N to SN−1(
√
N) (which is a set of zero measure)

might just not be well-defined under the conditions (13) alone. Whether or not this

is the case depends on the fluctuations of
∑N

j=1 v
2
j about N ; i.e., on how well µ⊗N

is concentrated on SN−1(
√
N), as measured by the variance of v2 with respect to

f(v)dv. Again, this will be governed by a fourth moment condition.
In what follows we shall use the following notation: For a probability density f(v)

on R, satisfying
∫
f(v)v2dv = 1, Let Σ2 denote the variance of v2 under f(v)dv:

Σ :=

√∫

R

(v2 − 1)2f(v)dv.

Also, define

ZN(f, r) :=

∫

SN−1(r)

f⊗N dσN
r ,

where SN−1(r) is the sphere of radius r in R
N , and σN

r is the uniform probability
measure on that sphere.

The technical core of our results lies in the following estimates, that can be seen
as a version of the local central limit theorem.

Theorem 4 (Estimates on a conditioned tensor product). With the above notation
and under assumptions (13) and

∫

R

v4f(v) dv < +∞
∫

R

fp < +∞ (14)

for some p > 1,

ZN (f, r) = γ(N)(r)

√
2

Σ

αN (N)

αN (r2)

(
e−

(r2−N)2

2NΣ2 + ε(N, f, r)
)
, (15)

where γ(N)(r) is the restriction of γ⊗N to SN−1(r),

αN (u) = u
N
2 −1e−

u
2 ,

and limN→∞ ε(N, f, r) = 0.

Remark 5. It is part of that Theorem that ZN (f, r) is well-defined, at least if N is
large enough (it remains unchanged under a modification of f on a zero Lebesgue
measure set).

Remark 6. We shall prove a more precise version of the theorem, with explicit
estimates on ε(N, f, r); they will be useful to extend the validity of our results to
probability densities which do not necessarily have finite moment of order 4, or
finite Lp norm. Otherwise, it is sufficient to know that ε(N, f, r) → 0 as N → ∞.
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The implications of Theorem 4 are best understood when recast in terms of the
relative density of f with respect to γ; so let

Z ′
N(f, r) :=

∫

SN−1(r)

(
f

γ

)⊗N

dσN
r . (16)

Then, as a consequence of Theorem 4,

Z ′
N (f,

√
N) =

√
2

Σ

(
1 + o(1)

)
.

• In other words, the integral of f⊗N on SN−1(
√
N) has a universal behavior –

depending on f only through Σ.

Thus, the fourth moment condition in Theorem 4 is just what is required, in the
way of moments, for the conditioning to work. What about the Lp condition?

This comes in as follows: As a function of r, ZN (f, r) can be expressed in terms

of the density for
∑N

j=1 V
2
j , where {Vj}j∈N is a sequence of independent random

variables with law f(v)dv; see Lemma 13 below. By Young’s convolution inequality,
the N–fold convolution power of a probability density g is continuous if g lies in
LN/(N−1). Hence the Lp condition in Theorem 4 is natural: It is a simple sufficient
condition to ensure that ZN (f, r) is a continuous function of r if N is large enough.
Interestingly enough, though p can be arbitrarily close to 1, a bound on the entropy
is not enough to ensure this. This point is discussed further in the appendix where
we prove the version of the local central limit theorem that we shall use here.

When the conditions of Theorem 4 are satisfied, we may condition the tensor
product µ⊗N , with µ = fdv, to obtain a probability measure on SN−1(

√
N):

Definition 7 (Conditioned product measures). Given a probability density f on R

satisfying the hypotheses of Theorem 4, and µ(dv) = f(v)dv, we define the corre-
sponding family of conditioned product measures, denoted { [µ⊗N ]SN−1(

√
N) }N∈N,

by

[µ⊗N ]SN−1(
√

N) :=

∏N
j=1 f(vj)

ZN (f,
√
N)

σN =

∏N
j=1(f(vj)/γ(vj))

Z ′
N (f,

√
N)

σN .

The point of this definition is that, as noted above, one might hope that the
family { [µ⊗N ]SN−1(

√
N) }N∈N would be µ–chaotic. This is indeed the case, and in

a very strong sense, as we shall explain in the next subsection.

1.6. Entropic chaos. The notion of chaos as originally defined by Kac is well
adapted to his original purpose, namely, establishing a rigorous connection between
the linear Kac master equation on the one hand, and the non linear Boltzmann–Kac
equation on the other. However, it is not quite strong enough to draw conclusions
about the entropic rate of convergence to equilibrium for the Boltzman–Kac equa-
tion from an analysis of the entropic rate of convergence for the Kac master equation.
As we have explained above, a rigorous deduction in this direction would depend on
having a precise version of the extensivity property (11) for chaotic families. Thus
we ask:

Question 2. Is there a reformulation of the chaos property in entropic terms that
is sufficiently strong that it can yield a bound on the entropic rate of convergence to
equilibrium for (8) when combined with a bound on the entropic rate of convergence
for (1)?
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As we shall see, the answer is positive:

Definition 8 (Entropic µ-chaos). Let µ be a probability measure on R, and, for each

positive integer N , let µ(N) be a probability measure on SN−1(
√
N). The sequence

{µ(N)}N∈N is said to be entropically µ-chaotic in case it satisfies conditions (i)−(ii)
in Definition 1, and in addition

(iii) lim
N→∞

H(µ(N)|σN )

N
= H(µ|γ).

As indicated above, from the physical point of view, condition (iii) can be thought
of as expressing asymptotic extensivity of the entropy for an entropically chaotic
family; it provides a bridge between the entropy of the N -particle system and the
entropy of the reduced system. This is reminiscent of a work by Kosygina on the
limit from microscopic to macroscopic entropy in the Ginzburg-Landau model [19].

Secondly, entropic chaos really is a stronger notion than plain chaos; it involves
all of variables, not only finite-dimensional marginals of fixed size. There is a good
analogy with a work by Ben Arous and Zeitouni [3] (also based on the extensivity
properties of entropy). Their work, just as ours, uses a version of the Central Limit
Theorem.

Finally, once Condition (ii) is enforced, Condition (iii) really means that µ(N)

is “strongly” close to µ⊗N . To understand this, think of the following well-known
theorem: If f (N) is a family of probability densities on R, converging weakly to
some probability density f as N → ∞, and J is a strictly convex functional, then
automatically J(f) ≤ lim inf J(f (N)); but if in addition J(f (N)) → J(f), then
the convergence of f (N) to f actually holds almost in the sense of L1 norm, not
just weakly. So one could define a notion of strong convergence by requiring the
weak convergence of f (N), plus the convergence of J(f (N)) to J(f). Such a step
has already been taken in the definition of the “entropic convergence” used in the
context of (deterministic) hydrodynamic limits of the Boltzmann equation by Golse
and collaborators, in an impressive series of papers, starting with [1] and leading
up to [16].

The following theorems provides an answer to both Questions 1 and 2:

Theorem 9. Let f be a probability density on R satisfying
∫
f(v)v2 dv = 1

∫
f(v)v4 dv < +∞, f ∈ L∞(R),

and let µ(dv) = f(v)dv. Then {[µ⊗N ]SN−1(
√

N)}N∈N is entropically µ–chaotic. In

fact, condition (ii) from the definition of chaos holds in the following much stronger
sense:

lim
N→∞

H
(
Pk([µ⊗N ]SN−1(

√
N))

∣∣ µ⊗k
)

= 0 . (17)

Furthermore, let {µ(N)}N∈N be any family of symmetric probability measures on

SN−1(
√
N) such that

(H)
1

N
H
(
µ(N)

∣∣ [µ⊗N ]SN−1(
√

N)

)
−−−−→
N→∞

0 . Then {µ(N)}N∈N is en-

tropically µ-chaotic.

Theorem 9 takes care of Question 1 for bounded densities f with a finite fourth
moment, but certainly we cannot directly employ the conditioned tensor product
construction when f does not have a fourth moment. However, using a diagonal
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argument, we shall be able to show that there does exist an entropically fdv–chaotic
family for all finite energy, finite entropy probability densities f on R:

Theorem 10. Let f be a probability density on R with
∫
f(v)v2dv = 1, H(f |γ) < +∞.

Then there exists an f(v)dv-entropically chaotic sequence.

Theorem 9 has the following shortcoming: One might hope that for any fdv–
entropically chaotic family {µ(N)}, and not only conditioned tensor products, one
would have

(ii′) For any k ∈ N, lim
N→∞

H(Pk(µ(N)|µ⊗k) = 0 .

We would then include condition (ii′) in the definition of entropic chaos. How-
ever, Theorem 9 asserts this only when {µ(N)} is a conditioned tensor product.
While the set of conditioned tensor product states is not propagated into itself by
the Kac master equation, probability densities satisfying condition (H) for some
{[µ⊗N ]SN−1(

√
N)}N∈N may well be. This leads to the following problem, for which

we have no solution:

Open Problem 11. Does Condition (H) in Theorem 9 also imply Condition (ii′)?
More generally, does (ii′) hold for a larger and easily recognized class of chaotic
sequences, larger than those constructed by means of conditioning tensor products?

Also, as indicated above, a natural next step in the development of Kac’s program
consists in studying the propagation of Conditions (iii) or (H) — or (ii′) — under
the Kac master equation.

1.7. Final remarks. As an intermediate step in the proof of Theorem 9, we shall
establish the following statement:

Theorem 12 (asymptotic upper semi-extensivity of the entropy). For each N , let

µ(N) be a probability density on SN−1(
√
N), such that µ(N) is µ-chaotic, in the

sense of Definition 1. Then

H(µ|γ) ≤ lim inf
N→∞

H(µ(N)|σN )

N
.

This result certainly has interest in its own right, and further explains the mean-
ing of Condition (H) in Theorem 9. By the way, Theorem 12 and Theorem 10
together provide a proof of Remark 2 following Theorem 6.1 in [26]. (The author
had at the time thought that this remark was obvious.) This combination of re-
sults also establishes a kind of Γ-convergence of the functionals H(·|σN )/N to the
functional H(·|γ).

We close our introductory discussion with some final remarks on Kac’s pro-
gram. Kac suggested that one could prove quantitative theorems on the non linear
Boltzmann-Kac equation by means of an investigation of the linear master equa-
tion. At the time Kac wrote his paper, the rigorous mathematical theory of the
Boltzmann equation had been in the doldrums since the landmark work of Carle-
man [6] in the thirties. The suggestion of Kac to recast the problem of investigating
nonlinear equations such as (8) from a probabilistic many particle point of view was
made in the hope that this might be a better path to progress.
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However, the history of the subject has not developed as Kac had hoped. The
lack of progress between the papers of Carleman and Kac turned out to be due
as much to lack of attention as to the intrinsic difficulties of nonlinear equations
such as (8). Once a new generation of mathematicians took up such equations as
an active field of research, a well developed and full–fledged theory emerged. And
so far, no relevant property of the nonlinear equation (8) has been proved via (1),
which cannot be proved by direct means. Indeed, once again in this paper, we shall
prove lack of a uniform entropy production inequality for the Kac master equation
(Theorem 3) through an analysis of the Boltzmann–Kac equation.

Still, Kac’s program is worth trying to push for various reasons. First, the
theory of spatially homogeneous Boltzmann equations has reached maturity, with
quite precise results, and specialists are now looking for very sharp statements;
it might be that Kac’s approach, thanks to its strong physical content, could be
adapted to such refinements. Just because so far no relevant property of (8) has
been first proved via (1) does not mean that this cannot be done, and certainly the
probabilistic ground is less worked–over.

Second, it can be seen as a baby model for the much more subtle problem of
propagation of chaos in the “true” spatially inhomogeneous Boltzmann equation.

Finally, one might be interested in it for just historical reasons, since Kac’s
paper is one of the founding works in modern kinetic theory — and just perhaps,
the renewed focus on Kac’s ideas will yield new progress of a fundamental sort.

1.8. Organization of the paper. In Section 2 below, we first study the asymp-
totics of the restricted tensor product, and prove Theorem 4. In Section 3, we
establish the asymptotic upper semi-extensivity of the entropy (Theorem 12). In
Section 4, we study the convergence of marginals, establishing in particular Condi-
tion (ii) of Definition 1 for the restricted tensor product. Asymptotic extensivity of
the restricted tensor product (or perturbations thereof) will be proven in Section 5.
Then, in Section 6 we prove Theorem 10. Finally, we shall investigate entropy pro-
duction and prove Theorem 3 in Section 7. The appendix contains the statement
and proof of a version of the local central limit theorem with precise quantitative
bounds that we require in Section 2, but it also has some independent interest.

We close this introduction by thanking Julien Michel for providing reference [15];
and Alessio Figalli for his careful reading of and comments on an earlier version of
the manuscript.

2. Asymptotics of the restricted tensor product. The goal of this section is
to analyze the asymptotic behavior of

ZN (f, r) :=

∫

SN−1(r)

f⊗N dσN
r

as N → ∞, where σN
r is the uniform probability measure on SN−1(r).

Lemma 13 (probabilistic interpretation of ZN ). Let f be a probability density on
R, and let {Vj}j∈N be a sequence of independent random variables with common

law f(v)dv. Then the random variable SN :=
∑N

j=1 V
2
j has density sN(u) du, where

sN (u) =
|SN−1|

2
u

N
2 −1ZN(f,

√
u) , (18)
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where |SN−1| =
2πN/2

Γ(N
2 )

stands for the (N−1)-dimensional volume of the unit sphere

SN−1 ⊂ R
N . As a particular case, the law of V 2

1 has density h(u) du, where

h(u) =
1

2
√
u

(
f(
√
u) + f(−

√
u)
)
. (19)

Proof of Lemma 13. We use the notation r =
√∑

v2
i and let E denote the expec-

tation with respect to the uniform probability measure on SN−1. Whenever ϕ is a
continuous test function supported in [0,+∞), a polar change of variables leads to

E ϕ




N∑

j=1

V 2
j



 =

∫

Rn

f⊗N (v)ϕ(r2) dv

= |SN−1|
∫

[0,+∞]×SN−1

f⊗Nϕ(r2)rN−1 dr dσ

= |SN−1|
∫ +∞

0

ϕ(u)

(
u

N−1
2

2
√
u

∫

SN−1

f(
√
u y1) . . . f(

√
u yN ) dσ(y)

)
du

=

∫ +∞

0

ϕ(u)

( |SN−1|
2

u
N
2 −1ZN (f,

√
u)

)
du.

Our next theorem, which is the main result of this section, is a slightly sharp-
ened version of Theorem 4. It provides more information on how the remainder
terms there depend on f . In describing this dependence, we shall use the following
notation:

Let f be a probability density on R with finite moment of order 4, and finite Lp

norm for some p ∈ (1,∞). Define the mean kinetic energy and its variance by

E =

∫
f(v)v2 dv; Σ =

√∫

R

(v2 − E)2f(v) dv.

(As in the introduction, we have chosen units in which the mass m is equal to 2.)
Let E, E, Σ, L be constants such that

0 < E ≤ E ≤ E < +∞; Σ ≥ Σ > 0; ‖f‖Lp ≤ L,

and let χ4 be any nonnegative function of r > 0, such that χ4(r) −→ 0 as r → 0
and ∫

|v|≥ 1
r

f(v)v4 dv ≤ χ4(r).

(For instance, we could define χ4 to be the left hand side, but in applications

another choice, such as r2
∫

R

f(v)v6dv may be more useful if, say, f possesses a 6th

moment.)

Theorem 14 (asymptotics for the conditioned tensor product). With the above
notation, define

ZN(f, r) :=

∫

SN−1(r)

f⊗N dσN
r ,
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where SN−1(r) is the sphere of radius r in R
N , and σN

r is the uniform probability
measure on that sphere. Then, as N → ∞,

ZN (f, r) =

√
2

Σ
γ(N)(r)

(
αN (N)

αN (r2)

)[
e−

(r2−NE)2

2NΣ2 + o(1)
]
,

where

γ(N)(r) =
e−r2/2

(2π)N/2

is the restriction of γ⊗N to SN−1(r),

αN (s) = s
N
2 −1e−

s
2 ,

and o(1) stands for an expression which is bounded by a function ω(N) → 0,
depending only on E, E, Σ, p, L and χ4.

In particular,

ZN (f,
√
N) =

√
2

Σ
γ(N)(

√
N)
(
e−

N(1−E)2

2Σ2 + o(1)
)
.

Proof of Theorem 14. Since (with the notation of Lemma 13) V 2
1 has density h, it

follows that SN has density h∗N (the N -fold convolution product of h with itself).
So sN = h∗N , which leads to the formula

ZN(f,
√
u) =

2h∗N(u)

u
N
2 −1|SN−1|

. (20)

We shall use the local central limit theorem to approximate h∗N . For that we need
some estimates on h. First note that

∫
h(u)u du = E and

∫
h(u)u2 du = E2 + Σ2

Also, ∫

u≥1/r

h(u)u2 du =

∫

|v|≥1/
√

r

f(v)v4 dv.

Next, let q > 1; by convexity of t 7→ tq, and the definition of h,
∫

R+

hq(u) du ≤ 1

2

∫

R+

u−q/2
(
f q(

√
u) + f q(−

√
u)
)
du

=

∫

R+

u−(q−1)/2 1

2
√
u

(
f q(

√
u) + f q(−

√
u)
)
du

=

∫

R

|v|1−qf q(v)dv ≤
∫

[−1,1]

f q(v)

|v|q−1
dv +

∫
f q(v)dv.

If q < (2p)/(p+ 1), then, by Hölder’s inequality,

∫

[−1,1]

f q(v)

|v|q−1
dv ≤

(∫
fp

) q
p

(∫

[−1,1]

dv

|v|
(q−1)p

p−q

)1− q
p

≤ C(p, q)‖f‖q
Lp .

On the other hand,
∫
f qdv = ‖f‖q

Lq ≤ ‖f‖q
Lp as soon as q ≤ p, because f is a

probability measure. The conclusion is that there is a finite constant C(p, q) such
that

‖h‖Lq ≤ C(p, q)‖f‖Lp for all 1 < q < (2p)/(p+ 1) . (21)

Now let g be defined by g(v) = Σh(E + Σv) so that
∫
g(v) dv = 1

∫
g(v) v dv = 0

∫
g(v) v2 dv = 1 .

It follows immediately from (21) that g lies in Lq for some q > 1.
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Also, g inherits from h a sort of “concentration bound” that we require to apply
Theorem 27 in Appendix A:

∫

u≥ 1
r

g(u)u2 du =
1

Σ2

∫

s≥Σ/r+E

h(s) (s− E)2 ds

≤ 2

Σ2

∫

s≥Σ/r+E

h(s)(s2 + E2) ds

≤ 2

Σ2

∫

s≥Σ/r+E

h(s)s2 ds +
2

Σ2

E2 + Σ2

(Σ/r + E)2
.

Evidently, the quantity on the left goes to 0 as r → 0, with a rate which depends
on
∫
|v|≥1/

√
r
f(x)x4 dx.

As a conclusion, g satisfies all the assumptions of Theorem 27 in Appendix A,
so there is a function λ(N), only depending on the above-mentioned bounds, such
that

sup
u∈R

∣∣√Ng∗N (
√
Nu) − γ(u)

∣∣ ≤ λ(N) ,

and so,

sup
u∈R

∣∣∣g∗N (u) − 1√
N
γ

(
u√
N

)∣∣∣ ≤ λ(N)√
N
.

Then, since g∗N(u) = Σh∗N (NE + Σu), we deduce

sup
x∈R

∣∣∣∣h
∗N (x) − 1√

NΣ
γ

(
x−NE√

NΣ

)∣∣∣∣ ≤
λ(N)√
NΣ

.

Now let us insert this bound in (20) and apply Stirling’s formula, in the form

Γ

(
N

2

)
=

√
πN αN (N) 2−

N
2 +1

(
1 +O

(
1√
N

))
,

where αN (u) := u
N
2 −1e−u/2. This results in

ZN(f,
√
u) =

√
NαN (N) 2−

N
2 +1

(πu)
N
2 −1

√
NΣ

(
γ

(
u−NE√

NΣ

)
+ o(1)

)(
1 +O

(
1√
N

))
.

Now the desired expression follows easily.

Remark 15. Consider the case when E = 1; then

ZN (f,
√
N) ∼ γ(N)(

√
N)

√
2

Σ
.

Thus, after renormalization by the Gaussian density, ZN (f,
√
N) has a nontrivial

finite limit as N → ∞. This was derived in the above proof by using successively
the Local Central Limit Theorem and Stirling’s formula. Actually, the latter can
be eliminated: Since γ⊗N is constant on the sphere (by the way, the Gaussian is
the only tensor product function to satisfy this property), we can write, with the
notation (16),

Z ′
N(f, r) =

∫

SN−1(r)

f⊗N dσN
r

∫

SN−1(r)

γ⊗N dσN
r

=
ZN (f, r)

ZN (γ, r)
,
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and in view of Lemma 13 this simplifies into

Z ′
N (f, r) =

h∗N (f, r2)

h∗N (γ, r2)
,

the asymptotics of which can be computed by using only the Local Central Limit
Theorem, and not Stirling’s formula. Actually, this line of reasoning shows how to
deduce Stirling’s formula from the Local Central Limit Theorem. This observation
in itself is not new (it is made explicitly in the discussion of the Local Central Limit
theorem in [15]; see also [21, Problem 2]). However, it is interesting to see that here
it arises naturally as part of a physically relevant problem.

We conclude this section with a higher-dimensional generalization of Theorem 14,
beginning with the analogs of some definitions we made for densities on R. . Let f
be a probability density on R

k with finite moment of order 4, and finite Lp norm
for some p ∈ (1,∞). Define

E =

∫

Rk

f(v)|v|2 dv; Σ =

√∫

Rk

(|v|2 − E)2f(v) dv.

Let E, E, Σ, L be such that

0 < E ≤ E ≤ E < +∞; Σ ≥ Σ > 0; ‖f‖Lp ≤ L,

and let χ4 be a nonnegative function of r > 0, such that χ4(r) −→ 0 as r → 0 and
∫

|v|≥ 1
r

f(v)|v|4 dv ≤ χ4(r).

Again in the higher dimensional case, it is easy to see that if f ∈ Lp for some p > 1,
then the density h of v2 under f(v)dv is in Lq for some q > 1. Then we have the
following analogue of Theorem 14:

Theorem 16 (asymptotics for the conditioned tensor product). With the above
notation, define

Zm(f, r) :=

∫

Skm−1(r)

f⊗m dσkm
r ,

Then, as m→ ∞,

Zm(f, r) =

√
2

Σ

e−
r2

2

(2π)
km
2

(
αkm(km)

αkm(r2)

)[
e−

(r2−mE)2

2mΣ2 + o(1)
]
,

where o(1) stands for an expression which is bounded by a function ω(m) → 0,
depending only on k, E, E, Σ, p, L and χ4.

In particular,

Zm(f, r) =

√
2

Σ
γ(km)(r)

(
αkm(km)

αkm(r2)

)(
e−

(r2−mE)2

2Σ2 + o(1)
)
.

Sketch of a proof of Theorem 16. First, one can adapt the proof of Lemma 13 to
the present case; the conclusion should be changed as follows: Sm :=

∑m
j=1 |Vj |2

has density sm(u) du, where

sm(u) =
|Skm−1|

2
u

km
2 −1 Zm(f,

√
u).
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In particular, the law of |V1|2 is

h(u) =
|Skm−1|

2
u

km
2 −1

∫

Sk−1(
√

u)

f dσk√
u.

Then the proof of Theorem 14 adapts to the present case with hardly any change,
upon replacement of N by mk.

3. Asymptotic upper semi-extensivity of the entropy. To motivate this sec-
tion, let us recall an important property of the entropy functional. Consider a
sequence of probability measures µN on R, converging weakly to another proba-
bility distribution µ(dv) as N → ∞, and let ν be another probability measure.
Then

H(µ|ν) ≤ lim inf
N→∞

H(µN |ν).

In other words, the relative entropy is lower semi-continuous under weak conver-
gence.

In this section, we shall show that the same property is true when the dimension
goes to ∞, and weak convergence is replaced by the chaos property. The following
theorem is a generalization of Theorem 12.

Theorem 17. Let g be a probability density on R, such that
∫
g(x)x2 dx = 1,

∫
g(x)x4 dx < +∞, g ∈ Lp(R) (p > 1);

define ν(dv) = g(v) dv. For each positive integer N , let µ(N) be a symmetric

probability measure on SN−1(
√
N), such that

P1µ
(N) −−−−→

N→∞
µ,

in the sense of weak convergence against bounded continuous functions. Then

H(µ|ν) ≤ lim inf
N→∞

H(µ(N)|[ν⊗N ]SN−1(
√

N))

N
.

More generally, if, for some positive integer k,

Pkµ
(N) −−−−→

N→∞
µk,

then

H(µk|ν⊗k)

k
≤ lim inf

N→∞

H(µ(N)|[ν⊗N ]SN−1(
√

N))

N
.

The proof uses the results of Section 2, plus a duality formula for the entropy:

Lemma 18 (Legendre representation of the H functional). Let X be a locally com-
pact complete metric space equipped with a reference (Borel) probability measure
ν. Then, for any other probability measure µ on X ,

H(µ|ν) = sup

{∫
ϕdµ− log

(∫
eϕ dν

)
; ϕ ∈ Cb(X )

}
, (22)

where Cb(X ) stands for the space of bounded continuous functions on X .
Moreover, one can restrict the supremum in (22) to those functions ϕ such that∫
eϕ dν = 1.
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We skip the proof of Formula (22), which belongs to folklore (see e.g. [13], or [20,
Appendix B] for a complete proof in the case of a compact space X ). As for the
last part of Lemma 18, it follows from an easy homogeneity argument.

Proof of Theorem 17. Let ν(N) := [ν⊗N ]SN−1(
√

N). We first consider the case k = 1.

Let ε > 0 be given. By Lemma 18, we can find a bounded continuous function ϕ
such that ∫

eϕg = 1;

∫
ϕdµ ≥ H(µ|ν) − ε.

On SN−1(
√
N), consider the function

Φ(v1, . . . , vN ) = ϕ(v1) + . . .+ ϕ(vN ).

By Lemma 18 again,

H(µ(N)|ν(N))

N
≥ 1

N

∫

SN−1(
√

N)

Φ(v) dµ(N)(v) − 1

N
log

(∫
eΦ(v)dν(N)(v)

)
. (23)

The first term in the right-hand side of (23) is controlled by symmetry and
convergence of the first marginal:

1

N

∫

SN−1(
√

N)

Φ(v) dµ(N)(v) =

∫

R

ϕ(v) d(P1µ
(N))(v) −−−−→

N→∞

∫

R

ϕdµ. (24)

(Here we have used the continuity of ϕ.)
To estimate the second term in the right-hand side of (23), we note that

∫
eΦ(v)dν(N)(v) =

ZN(eϕg,
√
N)

ZN(g,
√
N)

=
Z ′

N (eϕg,
√
N)

Z ′
N(g,

√
N)

. (25)

Since ϕ is bounded above, we know that eϕg satisfies the same estimates as g, which
makes it possible to apply Theorem 14: with obvious notation,

Z ′
N(eϕg,

√
N) =

√
2

Σ(eϕg)

(
e
−N(1−E(eϕg))2

2Σ(eϕg)2 + o(1)
)

= O(1).

Hence

lim inf
N→∞

(
− 1

N
logZ ′

N (eϕg,
√
N)

)
≥ 0. (26)

Similarly,

Z ′
N(g,

√
N) =

√
2

Σ(g)

(
e
−N(1−E(g))2

2Σ(g)2 + o(1)
)

=

√
2

Σ(g)
(1 + o(1)),

so

lim
N→∞

(
1

N
logZ ′

N (g,
√
N)

)
= 0. (27)

(This is where the assumption
∫
g(x)x2 dx = 1 is used.)

The combination of (25), (26) and (27) implies

lim inf
N→∞

(
− 1

N
log

(∫
eΦ(v)dν(N)(v)

))
≥ 0.

Combining this with (24) and (23), we find

lim inf
N→∞

H(µ(N)|ν(N))

N
≥
∫

R

ϕdµ,

and by the choice of ϕ this is no less than H(µ|ν) − ε. Since ε is arbitrarily small,
the proof of Theorem 17 is complete in the case k = 1.
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Now the proof for general k goes along the same lines: pick up ϕ = ϕ(v1, . . . , vk)
such that ∫

Rk

eϕg⊗k = 1;

∫
ϕdµk ≥ H(µk|ν⊗k) − ε.

Define m as the integer part of N/k. On SN−1(
√
N), consider the function

Φ(v1, . . . , vN ) = ϕ(v1, . . . , vk) + ϕ(vk+1, . . . , v2k) + . . .+ ϕ(v(m−1)k+1, . . . , vmk).

Then (23) is unchanged, and (24) transforms into

1

N

∫

SN−1(
√

N)

Φ(v) dµ(N)(v) =
(m
N

)∫

Rk

ϕ(v) d(Pkµ
(N))(v) −−−−→

N→∞

1

k

∫

Rk

ϕdµk.

(28)
Also equation (27) is unchanged; but there is a subtlety with equation (26),

which cannot be directly interpreted in terms of constrained tensor product. So
write N = km+ q (0 ≤ q ≤ k − 1), and

x = (y, z), y = (x1, . . . , xkm), z = (xkm+1, . . . , xN ).

By using polar changes of variables (successively for x and y) and a test function
argument, we see that
∫

SN−1(
√

N)

F (y, z) dσN
r (y, z)

=

∫

Rq

r√
r2 − |z|2

(∫

Skm−1(
√

r2−|z|2)
F (y, z)

|Skm−1(
√
r2 − |z|2)|

|SN−1(r)| dσkm√
r2−|z|2

)
dz,

where the integral is restricted to the region |z| ≤ r. Then we recognize that
∫

Skm−1(
√

r2−|z|2)
eΦ(y)

(
g

γ

)⊗km

(y) dσkm−1√
r2−|z|2

(y) = Z ′
m

(
eϕg⊗m,

√
r2 − |z|2

)
.

So in the end
∫

SN−1(
√

N)

eΦ g⊗N dσN

=

∫

Rq

√
N

N − |z|2
|Skm−1(

√
N − |z|2)

|SN−1(
√
N)|

(
g

γ

)⊗q

(z) Z ′
m

(
eϕg,

√
N − |z|2

)
dz,

(29)

where the integral is restricted to the region |z| ≤
√
N . To conclude along the

lines of the case k = 1, it is sufficient to show that the expression (29) is uniformly
bounded as N → ∞ (ϕ and g being fixed). Since there are a finite number of
possible values for q, we might also assume that q is fixed.

Now use the formulas

Z ′
m

(
eϕg,

√
N − |z|2

)
=

(
αkm(km)

αkm(N)

)
×O(1),

|SN−1(r)| =
(2π)N/2rN−1

√
πNαN (N)

(1 + o(1))

to estimate (29): after some computations, one finds

∫

SN−1(
√

N)

eΦ g⊗N dσN ≤ O(1)

(2π)q/2

∫

Rq

(
1 − |z|2

N

) km
2 −1

+

(
g

γ

)⊗q

dz. (30)
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Next, if |z| ≤
√
N , then (

1 − |z|2
N

)N

≤ e−|z|2 ,

so (
1 − |z|2

N

) km
2 −1

+

≤ e−
|z|2

2 ( km−2
N )1|z|≤

√
N = e−

|z|2

2 (1− 2+q
N )1|z|≤

√
N .

Plug this in (30) to obtain
∫

SN−1(
√

N)

eΦ g⊗N dσN ≤ O(1)

∫

|z|≤
√

N

e
|z|2

N ( 2+q
N ) g⊗q(z) dz

≤ O(1)e1+
q
2

∫

Rq

g⊗q(z) dz = O(1).

With this estimate in hand, there is no difficulty to conclude the proof of Theo-
rem 17.

4. Convergence of marginals. This section is devoted to the convergence of
finite-dimensional marginals under various entropy assumptions. In the first subsec-
tion, we show that (with loose notation) the natural conditionH(µ(N)|µ⊗N ) = o(N)
implies that µ(N) is µ-chaotic. In the second subsection, we show that at least in
the case when µ(N) is the constrained tensor product, then the convergence of the
finite-dimensional marginals holds in a stronger sense, namely in relative entropy
(and as a consequence in total variation).

4.1. From entropy estimates to chaos.

Theorem 19 (Entropic closeness to the constrained tensor product implies chaos).
Let ν(dv) = g(v) dv be a probability measure on R, such that

∫
g(v) v2 dv = 1,

∫
g(v) v4 dv < +∞, g ∈ Lp(R) (p > 1),

and let ν(N) = [ν⊗N ]SN−1(
√

N) be the constrained tensor product of ν on SN−1(
√
N).

Let further µ(N) be a symmetric probability measure on SN−1(
√
N), such that

H(µ(N)|ν(N))

N
−−−−→
N→∞

0.

Then, µ(N) is ν-chaotic. More precisely, for each k, the marginal Pkµ
(N) converges

weakly (against bounded continuous test functions) to ν⊗k.

Proof. We first claim that, for given k, the sequence Pkµ
(N) is tight. Indeed, let m

be the integer part of N/k, then

N =

∫
|x|2 dµ(N)(x) ≥

∫
(x2

1 + . . .+ x2
k) dµ(N)(x) + . . .+

∫
(x2

(m−1)k+1 + . . .+ x2
mk) dµ(N)(x), (31)

and by symmetry the latter expression is

m

∫

Rk

|x|2 d(Pkµ
(N))(x).

It follows that ∫

Rk

|x|2 d(Pkµ
(N))(x) ≤ N

m
,
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which converges to k as N → ∞.
By Prokhorov’s theorem, Pkµ

(N) converges, possibly up to extraction of a sub-
sequence, to some probability measure µk on R

k. From Theorem 17,

H(µk|ν⊗k)

k
≤ lim inf

N→∞

H(µ(N)|[ν⊗N ]SN−1(
√

N))

N
= 0.

It follows that µk = ν⊗k, so the whole sequence Pkµ
(N) does converge to ν⊗k, and

(µ(N)) is indeed ν-chaotic.

4.2. Marginals of the constrained tensor product. As an obvious consequence
of Theorems 17 and 19, the constrained tensor product µ(N) of µ is itself µ-chaotic.
We shall show in this section a stronger result: Pkµ

(N) converges to µ⊗k in total
variation, and even in relative entropy.

Theorem 20 (Property (ii′) for the constrained tensor product). Let µ(dv) =
f(v) dv be a probability measure on R, such that f ∈ Lp(R) for some p > 1,
and

∫
R
v4f(v)dv < ∞. Let µ(N) = [µ⊗N ]SN−1(

√
N) be the restricted N -fold tensor

product of µ. Then for all positive integers k,

lim
N→∞

H
(
Pkµ

(N)|µ⊗k
)

= 0 .

Proof. Let [f⊗N ]SN−1(
√

N) stand for the density of the constrained tensor product,

with respect to the uniform probability measure σN . Fix any integer k. Then for
all N sufficiently large,

[f⊗N ]SN−1(
√

N) =




k∏

j=1

(f(vj)/γ(vj))




∏N

j=k+1(f(vj)/γ(vj))

Z ′
N (f,

√
N)

With the notation s2 =
∑k

j=1 v
2
j , this expression can be rewritten as

[f⊗N ]SN−1(
√

N) =




k∏

j=1

(f(vj)/γ(vj))



 Z ′
N−k(f,

√
N − s2)

Z ′
N (f,

√
N)

∏N
j=k+1(f(vj)/γ(vj))

Z ′
N−k(f,

√
N − s2)

.

So

Pk

(
µ(N)

)
=




k∏

j=1

(f(vj)/γ(vj))



 Z ′
N−k(f,

√
N − s2)

Z ′
N(f,

√
N)

Pk(σN ) . (32)

As a consequence, with Lk standing for the k-dimensional Lebesgue measure,

H(Pkµ
(N)|µ⊗k) =

∫

Rk

(
log

dPk(µ(N))

dLk
− log f⊗k

)
d(Pkµ

(N))

=

∫

Rk

log

(
Z ′

N−k(f,
√
N − s2)

Z ′
N−k(f,

√
N)

)
d(Pkµ

(N))

+

∫

Rk

log
d(Pkσ

N )

dγ⊗k
d(Pkµ

(N))

From Theorem 14 and some computation,

Z ′
N−k(f,

√
N − s2)

Z ′
N−k(f,

√
N)

=
(
e−s4/(2Σ2N)

)
(1 + o(1))
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and so

H(Pkµ
(N)|µ⊗k) =

∫

Rk

log
d(Pkσ

N )

dγ⊗k
d(Pkµ

(N)) + o(1).

In other words,

H(Pkµ
(N)|µ⊗k) =

∫
ΨN(y) f⊗k(y) dy + o(1), (33)

where

ΨN (y) :=

(
Pk(σN )

γ⊗k

)
log

(
Pk(σN )

γ⊗k

)(
Z ′

N−k(f,
√
N − |y|2)

Z ′
N−k(f,

√
N)

)
. (34)

Now let us derive some estimates on ΨN . By direct computation,

(Pkσ
N )(dy) =

|SN−k−1|
Nk/2|SN−1|

(
1 − |y|2

N

)(N−k−2)/2

dy.

By an application of Stirling’s formula, and some computation again,

d(Pkσ
N )

dγ⊗k
(y) ≤ (1 + o(1))e

(k+1)|y|2

N 1|y|≤
√

N ≤ (1 + o(1))ek+1 = O(1). (35)

On the other hand, Theorem 14 implies that the ratio of the Z ′ terms in (34) is
uniformly bounded. We conclude that ΨN(y) itself is bounded above, uniformly in
N and y. This makes it possible to apply the dominated convergence theorem, in
the form

lim sup
N→∞

∫
ΨN(y) f⊗k(y) dy ≤

∫ (
lim sup
N→∞

ΨN (y)

)
f⊗k(y) dy.

It follows from (35) and Theorem 14 that for any y ∈ R
k,






dPkσ
N

dγ⊗k
(y) −→ 1

Z ′
N−k(f,

√
N − |y|2)

Z ′
N−k(f,

√
N)

−→ 1

asN → ∞. So limΨN (y) = 0, and as a consequence lim sup
N→∞

∫
ΨN(y) f⊗k(y) dy ≤ 0,

so by (33), lim sup
N→∞

H(Pkµ
(N)|µ⊗k) ≤ 0. This concludes the proof of Theorem 20.

5. From microscopic to macroscopic entropy. Now comes one of the main
results of this paper.

Theorem 21. Let f be a probability density on R, such that
∫
f(v) v2 dv = 1

∫
f(v) v4 dv < +∞ f ∈ L∞(R).

Let ν(dv) = f(v) dv, and let ν(N) = [ν⊗N ]SN−1(
√

N) be the constrained N -fold

tensor product of ν. For each N , let further µ(N) be a probability measure on
SN−1(

√
N) such that

H(µ(N)|ν(N))

N
−−−−→
N→∞

0.
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Then
H(µ(N)|σN )

N
−−−−→
N→∞

H(ν|γ).

Remark 22. During the proof, we shall show that the convergence of the marginals
Pkµ

(N) actually holds true in the sense of weak convergence against bounded mea-
surable functions (as opposed to bounded continuous functions). We do not know
whether it holds true in the sense of, say, total variation.

Proof of Theorem 21. First we write

H(µ(N)|σN ) =

∫
log

dµ(N)

dσN
dµ(N)

=

∫
log

dµ(N)

dν(N)
dµ(N) +

∫
log

dν(N)

dσN
dµ(N)

= H(µ(N)|ν(N)) +

∫
log

(
f

γ

)⊗N

dµ(N) − log(Z ′
N (f,

√
N))

= o(N) +N

∫
log f(v1) dµ(N)(v) −

∫
log γ⊗N dµ(N) − logZ ′

N (f,
√
N)

= o(N) +N

∫
log f(v1) dµ(N)(v) +N

(
1 + log(2π)

2

)
.

In the next to last step, we have used Theorem 14, which implies that logZ ′
N(f,

√
N)

converges to a positive limit as N → ∞, and so may be absorbed into the o(N)
term. Also, in the last step we have replaced γ⊗N by its explicit expression on
SN−1(

√
N).

Then, after division by N , we find

H(µ(N)|σN )

N
=

∫
log f(v1) dµ(N)(v) +

(
1 + log(2π)

2

)
+ o(1)

=

∫

R

log f(v1) d(P1µ
(N))(v1) +

(
1 + log(2π)

2

)
+ o(1).

For any δ > 0, we have therefore

H(µ(N)|σN )

N
≤
∫

log(f(v1) + δ) d(P1µ
(N))(v1) +

(
1 + log(2π)

2

)
+ o(1). (36)

Assume for the moment that f is continuous. Then log(f + δ) is a bounded
continuous function, so we can pass to the limit, using the weak convergence of
P1µ

(N) to ν(dv) = f(v) dv (Theorem 19), and deduce

lim sup
N→∞

H(µ(N)|σN )

N
≤
∫
f(v1) log(f(v1) + δ) dv1 +

(
1 + log(2π)

2

)
. (37)

By dominated convergence, we can now let δ → 0, and recover

lim sup
N→∞

H(µ(N)|σN )

N
≤
∫
f(v1) log f(v1) dv1 +

(
1 + log(2π)

2

)
.

Since
∫
f(v)v2 dv = 1, it is easy to check that the latter expression coincides with

H(ν|γ). The conclusion is that

lim sup
N→∞

H(µ(N)|σN )

N
≤ H(ν|γ). (38)
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On the other hand, by Theorem 17, applied with g = γ,

H(µ|γ) ≤ lim inf
N→∞

H(µ(N)|σN )

N
. (39)

The combination of (38) and (39) concludes the proof of Theorem 21.

Now, let us prove the more general statement alluded to in Remark 22. We start
again from (36), and deduce that

H(µ(N)|σN )

N
≤ log ‖f‖L∞ +

(
1 + log(2π)

2

)
+ o(1),

which is bounded as N → ∞. This bound can be combined with the exact (not
asymptotic) inequality

H(Pkµ
(N)|Pkσ

N )

k
≤ 2

H(µ(N)|σN )

N
, (40)

to obtain

H(Pkµ
(N)|Pkσ

N ) = O(1).

The inequality (40) is a generalization of the subadditivity inequality on SN from
[10], which gives the k = 1 case. The generalization to higher k can be found in [2],
in Example 1 under Corollary 5 there.

Next, by the same kind of computation as in the beginning of the proof,

H(Pkµ
(N)|γ⊗k) = H(Pkµ

(N)|Pkσ
N ) +

∫
log

d(Pkσ
N )

dγ⊗k
d(Pkµ

(N)).

It follows by (35) that

H(Pkµ
(N)|γ⊗k) ≤ H(Pkµ

(N)|Pkσ
N ) + C,

where C is some constant depending only on k. In particular, H(Pkµ
(N)|γ⊗k) is

bounded as N → ∞. The conclusion is that the marginals Pkµ
(N) have bounded

relative entropy with respect to γ⊗k, uniformly in N . It follows by the Dunford-

Pettis compactness criterion that the densities f
(N)
k of Pkµ

(N) constitute a compact

set in L1(Rk), equipped with the weak topology. Since this family converges weakly
to f⊗k as N → ∞, actually the limit

∫

Rk

ψ(v)f
(N)
k (v) dv −−−−→

N→∞

∫

Rk

ψ(v)f⊗k(v) dv

holds true for all bounded measurable functions ψ, not necessarily continuous. The
conclusion follows by the same arguments as before.

6. Generalization to unbounded densities. In this section we use a density
argument to derive Theorem 10 from Theorem 21.

Proof of Theorem 10. If f is bounded and has a finite fourth moment, we can simply
use the tensor product construction. Otherwise, we define approximations to f as
follows: If f has a finite fourth moment but is unbounded, and δ > 0, define fδ

to be eδ∆f , rescaled so that fδ has unit variance. Otherwise, if f does not have a
finite fourth moment, let

gδ = eδ∆
(
f1[−1/δ,1/δ]

)
.
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Then renormalize gδ so that it is a probability density, and finally, make an affine
change of variable to obtain a density that has zero mean and unit variance. Call
this fδ.

It is easy to see that for any positive integer j, we can choose a value δj > 0 so
that

∣∣H(fδj
|γ) −H(f |γ)

∣∣ < 1

2j
. (41)

Apply the tensor product construction with each fδj
to produce the chaotic sequence

µ
(N)
δj

. By Theorem 21,

1

N
H(µ

(N)
δj

|σN ) −−−−→
N→∞

H(fδj
|γ) .

Therefore, we may inductively define an increasing sequence of integers {Nj} by
choosing Nj > Nj−1 large enough that

∣∣∣
1

N
H(µ

(N)
δj

|σN ) −H(fδj
|γ)
∣∣∣ <

1

2j
(42)

for all N > Nj .
Combining (41) and (42)), we obtain

∣∣∣
1

N
H(µ

(N)
δj

|σN ) −H(f |γ)
∣∣∣ <

1

j
. (43)

Further increasing the Nj if required, we may assume, on account of Theorem 20,
that for each j,

N ≥ Nj =⇒ sup
1≤ℓ≤j

H(Pℓµ
(N)
δj

|f⊗ℓ
δj

) <
1

2 j2
. (44)

We are now ready to define our sequence, which we shall show to be f(v)dv–
chaotic in the entropic sense: For each N , define

µ(N) = µ
(Nk)
δk

for k = sup{ℓ : Nℓ < N} .

First, property (i) holds for obvious reasons. Next, to see that property (ii)
holds, let φ be any continuous bounded function on R

k. Then, by the well–known
Csiszar–Kullback–Leibler–Pinsker inequality and (44),

‖Pkµ
(N) − f⊗k

δk
‖L1(Rk) ≤

√
2H(Pkµ

(N)
δk

|f⊗k
δk

) <
1

k

for all N > Nk. Therefore, for all N > Nk,
∣∣∣∣
∫

Rk

φdPkµ
(N) −

∫

Rk

φf⊗k
δk

dv

∣∣∣∣ <
‖φ‖∞
k

,

while trivial estimates show that

lim
δ→0

∣∣∣∣
∫

Rk

φf⊗k
δk

dv −
∫

Rk

φf⊗kdv

∣∣∣∣ = 0 .

Finally, the fact that (iii) holds follows easily from (43).
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7. Entropy production bounds. In this section, we prove Theorem 3. We first
construct initial data f for the Boltzmann–Kac equation that has low entropy pro-
duction. We then show that this implies that the fdv–chaotic family of initial data
for the Kac master equation also has low entropy production.

Given two probability densities f and g on the line R, define

(f ◦ g)(v) =
1

2π

∫

R

∫ 2π

0

f(cos(θ)v − sin(θ)v∗) g(sin(θ)v + cos(θ)v∗)dθdv∗ .

The density f ◦ g is called the Wild convolution of f and g, and using it we may
write the Boltzmann–Kac equation in the compact form

∂

∂t
f = f ◦ f − f . (45)

Any rescaling of γ(v) is an equilibrium solution of this equation: For any a > 0,
define

Ma = (2πa)−1/2 exp(−v2/2a) = a−1/2γ(a−1/2v) .

There are the so–called Maxwellian densities, and one easily sees that for all a > 0,
Ma ◦Ma = Ma, so that these are stationary solutions of (45).

For any zero mean, unit variance solution f of (45), the relative entropy with
respect to γ satisfies

− d

dt
H(f |γ) =

∫

R

(− log f)[f ◦ f − f ]dv . (46)

The analog of the Boltzmann H–Theorem for the Boltzmann–Kac equation asserts
that this quantity is strictly positive unless f is one of the Maxwellians, in which
case it is zero.

Our first goal in this section is to construct, for each c > 0, zero mean, unit
variance initial data f for which

∫

R

(− log f)[f ◦ f − f ]dv < c H(f |γ) .

There is a very natural construction that has been exploited by Bobylev and
Cercignani [4] in the case of the actual Boltzmann equation: Use a superposition
of two very different Maxwellians. This is natural since each Ma is an equilibrium
solution. (In the case of the actual Boltzmann equation there is an even larger class
of equilibrium densities to work with since momentum is also conserved. Here, only
centered Maxwellians are equilibrium solutions.)

Pick a small positive number δ, and define

f = (1 − δ)Ma + δMb (47)

where

b = 1/(2δ) and a = 1/(2(1 − δ)) . (48)

Then since

∫

R

Madv = 1 and

∫

R

v2Madv = a,

∫

R

v2(1 − δ)Madv =

∫

R

v2δMbdv =
1

2
,

so that each Maxwellian component contributes half of the energy, though for small
δ, most of the mass is contained in the Ma component.
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Proposition 23. For any c > 0 there is a probability distribution f on R such that∫
v2f(v)dv = 1 and

D(f)

H(f |γ) ≤ c,

where D(f) =
∫

R
(− log f) [f ◦f−f ]dv is the entropy production for the Boltzmann–

Kac equation. Moreover, f can be chosen smooth with finite moments of all orders,
in fact a linear combination of Gaussian functions.

Proof of Proposition 23. Define f = (1− δ)Ma + δMb as above. We first show that
H(f |γ) is bounded away from 0 uniformly for all δ sufficiently small. In fact,

lim inf
δ→0

H(f |γ) ≥ 1

4
. (49)

To prove (49), we use the definition of f and the monotonicity of the logarithm:
∫

R

f log

(
f

γ

)
dv = (1 − δ)

∫

R

Ma log

(
f

γ

)
dv + δ

∫

R

Mb log

(
f

γ

)
dv

≥ (1 − δ)

∫

R

Ma log

(
(1 − δ)Ma

γ

)
dv + δ

∫

R

Mb log

(
δMb

γ

)
dv

= (1 − δ) log(1 − δ) + (1 − δ)H(Ma|γ) + δ log δ + δH(Mb|γ) .

Now use H(Mc|γ) =
1

2
(c− 1) − 1

2
log c, and (49) at once.

It remains to estimate the entropy production associated with f . First,

f ◦ f = (1 − δ)2Ma + δ2Mb + 2δ(1 − δ)Ma ◦Mb .

Therefore,
∫

R

(− log f)[f ◦ f − f ]dv

=

∫

R

(− log f)[(δ2 − δ)Ma + (δ2 − δ)Mb + 2δ(1 − δ)Ma ◦Mb]dv

= (δ − δ2)

∫

R

(− log f)[2Ma ◦Mb − (Ma +Mb)]dv .

Next, use the fact that for all δ < 1, (− log f) ≥ 0. Hence, we can simplify the
above to ∫

R

(− log f)[f ◦ f − f ]dv ≤ 2δ

∫

R

(− log f)Ma ◦Mbdv .

By monotonicity of the logarithm, log f ≥ log(δMb) so that

(− log f) ≤ −1

2
(3 log δ − log π) + δv2 .

Hence we have
∫

R

(− log f)[f ◦ f − f ]dv ≤ 2δ

(
−1

2
(3 log δ − log π)

)
+ 2δ2 .

Evidently, the leading term is −3δ log δ. So

lim
δ→0

∫

R

(− log f)[f ◦ f − f ]dv = 0 . (50)

The combination of (49) and (50) implies Proposition 23 at once.
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Remark 24. The densities f constructed above do not, in their dependence on δ,
have uniformly bounded fourth moments. In fact, the ratio of

∫
v4fdv to

∫
v4M1dv

tends to infinity like 1/δ.

Now we shall deduce Theorem 3 from Proposition 23:

Proof of Theorem 3. Let c > 0, and let f be defined by Proposition 23. Let further

FN = [f⊗N ]SN−1(
√

N) .

Theorem 9 guarantees that

H(FN |σN )

N
−→ H(f |γ) .

So it suffices to establish

lim
N→∞

1

N
〈log(FN ), LN(FN )〉L2(SN−1(

√
N)) = 2

∫

R

log f [f ◦ f − f ]dv . (51)

To prove (51), we first write

logFN = − logZN(f,
√
N) +

N∑

k=1

log f(vk)

and hence 〈LN(FN ), log(FN )〉L2(SN−1(
√

N)) is given by

∫

SN−1(
√

N)

[
− log(ZN (f,

√
N) +

N∑

k=1

log f(vk)

]
N
(
QFN − FN

)
dσN

=

∫

SN−1(
√

N)

[
N∑

k=1

log f(vk)

]
N
(
QFN − FN

)
dσN

=

N∑

k=1

N∑

i<j

∫

SN−1(
√

N)

log f(vk)
2

N − 1

×
(

1

2π

∫ 2π

0

(
f⊗N(Ri,j,θV ) − f⊗N(V )

)
dθ

)
1

ZN (f,
√
N)

dσN .

(52)

By the invariance of σN under rotations, the integral over SN−1(
√
N) vanished

unless k = i or k = j. By the permutation symmetry, we may set k = 1, and
account for the sum over k by multiplying by N . There are N − 1 pairs of which
1 is a member. We may set i, j = 1, 2, and account for the sum over pairs by
multiplying by N − 1. We are then left with

2N

∫

SN−1(
√

N)

log f(v1)

(
1

2π

∫ 2π

0

(f(v′1)f(v′2) − f(v1)f(v2)) dθ

)
×

1

ZN (f,
√
N)

N∏

j=3

f(vj)dσ
N (53)

where

v′1 = cos(θ)v1 + sin(θ)v2 and v′2 = − sin(θ)v1 + cos(θ)v2 .
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Since f is a linear combination of Maxwellian densities, there is a constant C
such that | log f(v)| ≤ C(1 + v2). Then again since f is a linear combination of
Maxwellian densities,

∣∣∣log f(v) (f(v′1)f(v′2) − f(v1)f(v2))
∣∣∣

is bounded, and in fact has Gaussian decay.
The proof will be completed by showing that

lim
N→∞

P2



 1

ZN(f,
√
N)

N∏

j=3

f(vj)dσ
N



 = dv1dv2 .

Since, with s2 = v2
1 + v2

2 ,

P2



 1

ZN (f,
√
N)

N∏

j=3

f(vj)dσ
N



 =
ZN−2(f,

√
N − s2)

ZN (f,
√
N)

P2(dσN ) ,

it remains only to show that

lim
N→∞

ZN−2(f,
√
N − s2)

ZN (f,
√
N)

= 2πe(v
2
1+v2

2)/2 (54)

since it is well known, and easily follows from (7), that

lim
N→∞

P2(dσ
N ) =

1

2π
e−(v2

1+v2
2)/2dv1dv2 .

However, (54) easily follows from Theorem 4 and Stirling’s formula.

Remark 25. We have taken advantage of Maxwellian bounds on f to shorten the
proof, but a similar result could be obtained in the same way for more general
densities f by arguing as in the proof of Theorem 20. A more challenging problem
would be to prove an analog of (51) for a more general class of chaotic data than
conditioned tensor products.

Appendix A. An entropic Local Central Limit Theorem. The terminology
“Local Central Limit Theorem” is used to designate a version of the Central Limit
Theorem in which the conclusion is strengthened from weak convergence of the law
to locally uniform pointwise convergence of the densities [14].

As recalled in the introduction, such a theorem can only hold if the common law
of the independent random variables has a density f that satisfies certain regularity
hypotheses — in particular, f is usually required to belong to Lp for some p > 1.

Of course the rate of pointwise convergence depends on the regularity of f . In
this paper, we require precise, quantitative information on the rate, and the version
of the Local Central Limit Theorem that we prove here provides this.

There is a remarkable feature that emerges: When an Lp bound is imposed on f ,
then the asymptotic rate of (pointwise) convergence of the densities

√
Nf∗N (

√
Nx)

to the Gaussian distribution can be estimated in terms of only the relative entropy
H(f |γ), even if the assumption H(f |γ) < ∞ alone is not sufficient to ensure the
convergence! Of course, the Lp bound on f enters the estimates of convergence,
but only in determining how large N must be before the universal rate estimates
governed by H(f |γ) become valid. For this reason, we refer to the result obtained
here as an Entropic Local Central Limit Theorem.
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In addition to the Lp bound on f , one requires a certain measure of localization
of f(v)v2dv, which is usually taken care of in the assumptions by assuming that

∫

R

f(v)v2+ǫdv <∞ (55)

for some ǫ > 0.
So that we may include all finite energy initial data in our conclusions, we wish

to avoid such an assumption. For this reason, we introduce the function

χ(r) =

∫

|x|≥ 1
r

|x|2f(x) dx .

This is a continuous function vanishing at r = 0, and the rate at which it vanishes
as r → 0 gives the sort of control that would be provided by (55). Indeed, under
the assumption (55),

χ(r) = O(rǫ) .

Before beginning the proof, we note that in this Appendix the state space is R
k,

where k is some positive integer. All the constants in our results may depend on k,
but this dependence will not be explicitly recalled.

We start by some properties of the Fourier transform of probability densities. In
the sequel, we use the following convention for the Fourier transform in R

k:

f̂(ξ) =

∫

Rk

e−2iπxξf(x) dx.

Proposition 26. Let g be a probability density on R
k, such that

∫

Rk

xg(x) dx = 0,

∫

Rk

(x⊗ x) g(x) dx = Ik,

∫

Rk

g log gdx ≤ H < +∞,

where Ik is the k × k identity matrix. Let further χ be such that
∫

|x|≥ 1
r

|x|2g(x) dx ≤ χ(r),

where χ(r) goes to 0 as r → 0. Then

(i) Given η > 0 there is α = α(H, η) > 0 such that

|ξ| ≥ η =⇒ |ĝ(ξ)| ≤ 1 − α.

(ii) There is a function ε(δ) = ε(H,χ, δ), going to 0 as δ → 0, such that

|ξ| ≤ δ =⇒
∣∣∣ĝ(ξ) −

(
1 − 2π2|ξ|2

)∣∣∣ ≤ ε(δ)|ξ|2.

(iii) There is α0 = α0(H,χ) such that

∀ξ ∈ R
k |ĝ(ξ)| ≤ max

(
1 − π2|ξ|2, 1 − α0

)
.

Proof. First, it is clear that (iii) follows from (i) and (ii). For simplicity, we shall
prove (i) and (ii) only in the case k = 1; the generalization to higher dimension
does not bring in any major complication.
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Let us prove (i). Let ξ be such that |ξ| ≥ η, and let z be such that ĝ(ξ)e−2iπzξ =
|ĝ(ξ)|. Then, with ℜ standing for real part,

|ĝ(ξ)| = ℜ
[
ĝ(ξ)e−2iπzξ

]

= ℜ
(∫

g(x)e−2iπ(x+z)ξ dx

)

=

∫
g(x) cos

[
2π(x+ z)ξ

]
dx.

Let R > 1, to be chosen later. Write

|ĝ(ξ)| =

∫
g(x)dx −

∫
g(x)

(
1 − cos

[
2π(x+ z)ξ]

)
dx

= 1 −
∫
g(x)

(
1 − cos

[
2π(x+ z)ξ]

)
dx

≤ 1 −
∫

[−R,R]

g(x)
(
1 − cos

[
2π(x+ z)ξ]

)
dx.

So it is sufficient to show that∫

[−R,R]

g(x)
(
1 − cos

[
2π(x+ z)ξ]

)
dx ≥ α > 0.

Let β ∈ (0, 1/2), to be chosen later; define

B :=
{
x ∈ [−R,R]; 1 − cos

[
2π(x+ z)ξ] ≤ β

}
.

The point is to show that
∫

B g is small when β is small too. For this we shall show
that B has small Lebesgue measure and use the entropy bound on g.

If x lies in B, then |x| ≤ R, and there exists n ∈ Z such that
∣∣∣∣x− n

ξ

∣∣∣∣ ≤
cos−1(1 − β)

2π|ξ| .

So B consists of at most 2R|ξ|+ 3 intervals, with width cos−1(1− β)/(π|ξ|), which
can be bounded by

√
2β/(π|ξ|). So the Lebesgue measure |B| of B can be estimated

as follows:

|B| ≤
(

2R|ξ| + 3

π|ξ|

)√
2β ≤ 2R

π

(
1 +

1

|ξ|

)√
2β

≤ 2R

π

(
1 +

1

η

)√
2β. (56)

Now define

µ(dx) =
g(x)1[−R,R](x) dx∫

[−R,R] g
ν(dx) =

1[−R,R](x) dx

2R
.

By direct computation,

H(µ|ν) =

(∫

[−R,R]

g

)−1 ∫

[−R,R]

g log g − log

(∫

[−R,R]

g

)
+ log(2R)

≤
∫
g| log g| + log(2R) − log

(
1 − 1

R2

)
,

where we have used Chebyshev’s inequality to get the bound on the last term:∫
|x|>R g ≤ (1/R2)

∫
gx2dx ≤ 1/R2. It is classical that

∫
g| log g| can be controlled by
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∫
g log g and

∫
gx2dx = 1: indeed, if γ stands for the standard gaussian distribution,

then ∫

g≤1

(
g log

g

γ
− g + γ

)
≥ 0,

so ∫

g≤1

g log g ≥
∫

g≤1

g log γ +

∫

g≤1

g −
∫

g≤1

γ;

replacing log γ by its explicit expression, we obtain
∫

g≤1

g log g ≥ −
∫

g≤1

x2

2
g(x) dx +

(
1 − log(2π)

2

)∫

g≤1

g −
∫

g≤1

γ

≥ −
(

1 +
log(2π)

2

)
.

The desired bound follows, since
∫
g| log g| =

∫
g log g − 2

∫

g≤1

g log g.

To summarize: there is an explicit bound

H(µ|ν) ≤ h(H,R). (57)

On the other hand, it follows from (56) that

ν[B] ≤ 1

π

(
1 +

1

η

)√
2β.

Combining this with (57) and a general entropy inequality, we find

µ[B] ≤ 2H(µ|ν)
log
(
1 + H(µ|ν)

ν[B]

) ≤ 2h

log

(
1 + πh

(1+ 1
η )

√
2β

) .

So if H and η are given, there is a function m(β), going to 0 as β → 0 and depending
only on H and η, such that µ[B] ≤ m(β).

The desired conclusion follows easily:
∫

[−R,R]

g(x)
(
1 − cos

[
2π(x+ z)ξ]

)
dx ≥ β

∫

[−R,R]

g(x) dx

≥ β

(∫

[−R,R]

g

)
µ
[
R \ [−R,R]

]

= β

(
1 −

∫

|x|>R

g

)
(
1 − µ[[−R,R]]

)

≥ β

(
1 − 1

R2

)

1 − 2h

log

(
1 + πh

(1+ 1
η )

√
2β

)


 .

This establishes (i) with

α := sup
β,R

β

(
1 − 1

R2

)

1 − 2h

log

(
1 + πh

(1+ 1
η )

√
2β

)


 .
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To get a lower bound on α, one may choose for instance

R = 2, β = e−8h

(
(πh)2

2(1 + η−1)2

)
,

then one finds

α ≥ 3

8
e−8h

(
(πh)2

2(1 + η−1)2

)
.

Now let us prove (ii). Assume for instance that ξ > 0. By Taylor formula,

e−2iπxξ = 1 − 2iπxξ − 4π2x2

∫ ξ

0

(ξ − ζ) e−2iπxξ dζ

= 1 − 2iπxξ − 4π2x2

(
ξ2

2

)
+ 4π2x2

∫ ξ

0

(ξ − ζ)
(
1 − e−2iπxζ

)
dζ.

So for |ξ| ≤ η, one has ∣∣∣ĝ(ξ) −
(
1 − 2π2ξ2

)∣∣∣ ≤ εξ2,

with

ε =
4π2

ξ2

∣∣∣∣∣

∫ ξ

0

(ξ − ζ)
(
[1 − e−2iπxζ ]x2g(x) dx

)
dζ

∣∣∣∣∣

≤ 4π2

ξ2

(∫ ξ

0

(ξ − ζ) dζ

)(
sup
|ξ|≤η

∫
|1 − e−2iπxζ |x2g(x) dx

)

= 4π2 sup
|ζ|≤η

∫
| sin(πζx)|x2g(x) dx.

For |x| ≤ 1/r and |ζ| ≤ η, one has | sin(2πζx)| ≤ |2πζx| ≤ 2πη/r; on the other
hand, for |x| ≥ 1/r, we can use the trivial bound | sin(πζx)| ≤ 1. So

∫
| sin(πζx)|x2g(x) dx ≤ 2πη

r
+

∫

|x|≥1/r

x2g(x) dx ≤ 2πη

r
+ χ(r).

In conclusion, ε ≤ inf
r>0

[
2πη

r
+ χ(r)

]
, and the right-hand side goes to 0 as η → 0.

This proves (ii).

Now we can proceed with the main result of this Appendix.

Theorem 27 (Local Central Limit Theorem). Let g be a probability distribution
on R

k, satisfying
∫

Rk

g(x)xdx = 0,

∫

Rk

g(x)(x⊗ x) dx = Ik,

∫
g log gdx ≤ H,

where Ik is the k × k identity matrix. Let χ be such that χ(r) → 0 as r → 0,

and

∫

|x|≥ 1
r

g(x) dx ≤ χ(r). Let further gN(x) =
√
N

k
g∗N (

√
Nx), for any positive

integer N . Then:

(i) If g ∈ Lp(Rk), 1 < p <∞, then gN is continuous for N ≥ p′ = p/(p− 1); and
for any δ > 0 there is α = α(χ,H, δ) > 0 and ε = ε(χ,H, δ) > 0 such that, given k,
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χ and H , ε(δ) −−−→
δ→0

0 and, for N ≥ p′,

sup
x∈Rk

|gN(x) − γ(x)| ≤
√
N(1 − α)N−p′‖g‖p′

Lp + k
e−2π2Nδ2

√
Nδ

+ ε(δ),

where γ stands for the standard Gaussian distribution. In particular, sup |gN − γ|
goes to 0 as N → ∞, and there is an upper bound on the rate of convergence which
only depends on k, p, ‖g‖Lp, χ and H .

(ii) Given χ and H there is a function λ(N), going to 0 as N → ∞, such that if
g lies in Lp for some p ∈ (1,∞), then there is N0 = N0(χ,H, p, ‖g‖Lp) with

N ≥ N0 =⇒ sup
x∈Rk

|gN − γ| ≤ λ(N).

Proof of Theorem 27. First, it follows from Young’s convolution inequality that
g∗(N−1) lies in Lp′

(Rk); then its convolution product with g is continuous.
By properties of the Fourier transform,

ĝN(ξ) = ĝ

(
ξ√
N

)N

.

Without loss of generality, assume p ≤ 2; then ĝ(·/
√
N) lies in Lp′ ∩ L∞ by the

Hausdorff-Young inequality, so ĝN lies in L1 for N ≥ p′. Then the Fourier inversion
formula applies:

gN(x) =

∫

Rk

ĝN (ξ)e2iπx·ξ dξ.

In particular, for any x ∈ R,

|gN(x) − γ(x)| =

∣∣∣∣
∫

Rk

(
ĝN (ξ) − γ̂(ξ)

)
e2iπx·ξ dξ

∣∣∣∣ ≤
∫

|ĝN − γ̂|.

We separate between low and high frequencies, according to some threshold δ
√
N ,

to choose later:

sup
x∈Rk

|gN (x) − γ(x)| ≤
∫

|ξ|>δ
√

N

|ĝN | +

∫

|ξ|>δ
√

N

|γ̂| +

∫

|ξ|≤δ
√

N

|ĝN − γ̂|. (58)

To estimate the first term in the right-hand side of (58), we use Proposition 26 (i):
there is α = α(δ, χ,H) > 0 such that |ξ| ≥ η =⇒ |ĝ(ξ)| ≤ 1 − α; so

∫

|ξ|>δ
√

N

|ĝN | =

∫

|ξ|>δ
√

N

∣∣∣∣ĝ
(

ξ√
N

)∣∣∣∣
N

dξ =
√
N

k
∫

|ξ|>δ

|ĝ|N dξ

≤
√
N

k
(1 − α)N−p′

∫
|ĝ|p′

.

Combining this with the Hausdorff-Young inequality, we find
∫

|ξ|>δ
√

N

|ĝN | ≤
√
N

k
(1 − α)N−p′‖g‖p′

Lp. (59)

The second term in the right-hand side of (58) can be bounded by an explicit
estimate: ∫

|ξ|>δ
√

N

|γ̂| ≤ k
e−2π2Nδ2

δ
√
N

.
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The third term in the right-hand side of (58) is a bit more subtle. On one hand,
by a telescopic sum argument, since |ĝ| ≤ 1 and |γ̂| ≤ 1, we have

|ĝN (ξ) − γ̂(ξ)| =

∣∣∣∣∣ĝ
(

ξ√
N

)N

− γ̂

(
ξ√
N

)N
∣∣∣∣∣ ≤ N

∣∣∣∣ĝ
(

ξ√
N

)
− γ̂

(
ξ√
N

)∣∣∣∣ .

Now we can apply Proposition 26 (ii), with ξ replaced by ξ/
√
N and ε = max(εg, εγ)

where εg is the function appearing in the Proposition:

N

∣∣∣∣ĝ
(

ξ√
N

)
− γ̂

(
ξ√
N

)∣∣∣∣ ≤ N

∣∣∣∣ĝ
(

ξ√
N

)
−
(

1 − 2π2|ξ|2
N

)∣∣∣∣+

N

∣∣∣∣γ̂
(

ξ√
N

)
−
(

1 − 2π2|ξ|2
N

)∣∣∣∣ ≤ 2Nε(δ)

(
ξ√
N

)2

= 2 ε(δ) ξ2. (60)

Here ε is a function depending only on H and χ.
On the other hand, by Proposition 26 (iii),

|ĝN (ξ) − γ̂(ξ)| ≤
∣∣∣∣ĝ
(

ξ√
N

)∣∣∣∣
N

+ γ̂(ξ) ≤ max

(
1 − π2|ξ|2

N
, 1 − α0

)N

+ γ̂(ξ).

Thanks to the inequality (1 − u/N)N ≤ e−u, we conclude that

|ĝN(ξ) − γ̂(ξ)| ≤ max
(
e−π2|ξ|2 , (1 − α0)

N
)

+ γ̂(ξ)

≤ 2 max
(
e−π2|ξ|2 , (1 − α0)

N
)
. (61)

By taking the geometric mean of (60) and (61), we obtain

|ĝ(ξ) − γ̂(ξ)| ≤ 2
√
ε |ξ|max

(
e−

π2|ξ|2

2 , (1 − α0)
N
2

)
.

Then

∫

|ξ|≤δ
√

N

|ĝ(ξ) − γ̂(ξ)| ≤
√

2ε

(∫

|ξ|≤δ
√

N

|ξ| e−
π2|ξ|2

2 dξ + (1 − α0)
N
2

∫

|ξ|≤δ
√

N

|ξ| dξ
)

≤
√

2ε

(∫
|ξ| e−

π2|ξ|2

2 dξ + (1 − α0)
N
2 |Sk−1| (δ

√
N)k+1

k + 1

)

≤
√

2ε

(∫
|ξ| e−

π2|ξ|2

2 dξ + C(k, α0)

)
=: ε(δ, χ,H)

(where C(k, α0) is a constant which does not depend on N). This concludes the
proof of (i).

To prove (ii), we let p vary with N in such a way that p′ remains of the order of
N ; for instance, p′ = N/2 (for N large enough). Then, as N goes to infinity,

log ‖g‖p′

Lp =
1

p− 1
log

∫
gp −−−→

p→1

∫
g log g.

So, when N is large enough, the first term in the right-hand side of (i) can be
bounded by (1−α)N/2eH , which does not depend on the Lp norm of g. (But “large
enough” here may depend on this norm!!)
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