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Abstract

Recurrent neural networks are powerful models for processing sequential data,
but they are generally plagued by vanishing and exploding gradient problems.
Unitary recurrent neural networks (uRNNs), which use unitary recurrence matri-
ces, have recently been proposed as a means to avoid these issues. However, in
previous experiments, the recurrence matrices were restricted to be a product of
parameterized unitary matrices, and an open question remains: when does such a
parameterization fail to represent all unitary matrices, and how does this restricted
representational capacity limit what can be learned? To address this question,
we propose full-capacity uRNNs that optimize their recurrence matrix over all
unitary matrices, leading to significantly improved performance over uRNNs that
use a restricted-capacity recurrence matrix. Our contribution consists of two main
components. First, we provide a theoretical argument to determine if a unitary
parameterization has restricted capacity. Using this argument, we show that a
recently proposed unitary parameterization has restricted capacity for hidden state
dimension greater than 7. Second,we show how a complete, full-capacity unitary
recurrence matrix can be optimized over the differentiable manifold of unitary
matrices. The resulting multiplicative gradient step is very simple and does not
require gradient clipping or learning rate adaptation. We confirm the utility of our
claims by empirically evaluating our new full-capacity uRNNs on both synthetic
and natural data, achieving superior performance compared to both LSTMs and
the original restricted-capacity uRNNs.

1 Introduction

Deep feed-forward and recurrent neural networks have been shown to be remarkably effective in a
wide variety of problems. A primary difficulty in training using gradient-based methods has been
the so-called vanishing or exploding gradient problem, in which the instability of the gradients over
multiple layers can impede learning [1, 2]. This problem is particularly keen for recurrent networks,
since the repeated use of the recurrent weight matrix can magnify any instability.

This problem has been addressed in the past by various means, including gradient clipping [3],
using orthogonal matrices for initialization of the recurrence matrix [4, 5], or by using pioneering
architectures such as long short-term memory (LSTM) recurrent networks [6] or gated recurrent
units [7]. Recently, several innovative architectures have been introduced to improve information
flow in a network: residual networks, which directly pass information from previous layers up in
a feed-forward network [8], and attention networks, which allow a recurrent network to access
past activations [9]. The idea of using a unitary recurrent weight matrix was introduced so that the
gradients are inherently stable and do not vanish or explode [10]. The resulting unitary recurrent
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neural network (uRNN) is complex-valued and uses a complex form of the rectified linear activation
function. However, this idea was investigated using, as we show, a potentially restricted form of
unitary matrices.

The two main components of our contribution can be summarized as follows:

1) We provide a theoretical argument to determine the smallest dimension N for which any parame-
terization of the unitary recurrence matrix does not cover the entire set of all unitary matrices. The
argument relies on counting real-valued parameters and using Sard’s theorem to show that the smooth
map from these parameters to the unitary manifold is not onto. Thus, we can show that a previously
proposed parameterization [10] cannot represent all unitary matrices larger than 7× 7. Thus, such a
parameterization results in what we refer to as a restricted-capacity unitary recurrence matrix.

2) To overcome the limitations of restricted-capacity parameterizations, we propose a new method for
stochastic gradient descent for training the unitary recurrence matrix, which constrains the gradient to
lie on the differentiable manifold of unitary matrices. This approach allows us to directly optimize a
complete, or full-capacity, unitary matrix. Neither restricted-capacity nor full-capacity unitary matrix
optimization require gradient clipping. Furthermore, full-capacity optimization still achieves good
results without adaptation of the learning rate during training.

To test the limitations of a restricted-capacity representation and to confirm that our full-capacity
uRNN does have practical implications, we test restricted-capacity and full-capacity uRNNs on
both synthetic and natural data tasks. These tasks include synthetic system identification, long-term
memorization, frame-to-frame prediction of speech spectra, and pixel-by-pixel classification of
handwritten digits. Our proposed full-capacity uRNNs generally achieve equivalent or superior
performance on synthetic and natural data compared to both LSTMs [6] and the original restricted-
capacity uRNNs [10].

In the next section, we give an overview of unitary recurrent neural networks. Section 3 presents
our first contribution: the theoretical argument to determine if any unitary parameterization has
restricted-capacity. Section 4 describes our second contribution, where we show how to optimize a
full-capacity unitary matrix. We confirm our results with simulated and natural data in Section 5 and
present our conclusions in Section 6.

2 Unitary recurrent neural networks

The uRNN proposed by Arjovsky et al. [10] consists of the following nonlinear dynamical system
that has real- or complex-valued inputs xt of dimension M , complex-valued hidden states ht of
dimension N , and real- or complex-valued outputs yt of dimension L:

ht =σb (Wht−1 +Vxt)

yt =Uht + c,
(1)

where yt = Re{Uht + c} if the outputs yt are real-valued. The element-wise nonlinearity σ is

[σb(z)]i =

{
(|zi|+ bi)

zi
|zi| , if |zi|+ bi > 0,

0, otherwise.
(2)

Note that this non-linearity consists in a soft-thresholding of the magnitude using the bias vector
b. Hard-thresholding would set the output of σ to zi if |zi|+ bi > 0. The parameters of the uRNN
are as follows: W ∈ U(N), unitary hidden state transition matrix; V ∈ CN×M , input-to-hidden
transformation; b ∈ RN , nonlinearity bias; U ∈ CL×N , hidden-to-output transformation; and
c ∈ CL, output bias.

Arjovsky et al. [10] propose the following parameterization of the unitary matrix W:

Wu(θu) = D3R2F−1D2PR1FD1, (3)

where D are diagonal unitary matrices, R are Householder reflection matrices [11], F is a discrete
Fourier transform (DFT) matrix, and P is a permutation matrix. The resulting matrix Wu is unitary
because all its component matrices are unitary. This decomposition is efficient because diagonal,
reflection, and permutation matrices are O(N) to compute, and DFTs can be computed efficiently in
O(N logN) time using the fast Fourier transform (FFT). The parameter vector θu consists of 7N
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real-valued parameters: N parameters for each of the 3 diagonal matrices where Di,i = ejθi and 2N
parameters for each of the 2 Householder reflection matrices, which are real and imaginary values of
the complex reflection vectors ui: Ri = I− 2

uiu
H
i

〈ui,ui〉 .

3 Estimating the representation capacity of structured unitary matrices

In this section, we state and prove a theorem that can be used to determine when any particular unitary
parameterization does not have capacity to represent all unitary matrices. As an application of this
theorem, we show that the parameterization (3) does not have the capacity to cover all N ×N unitary
matrices for N > 7. First, we establish an upper bound on the number of real-valued parameters
required to represent any N ×N unitary matrix. Then, we state and prove our theorem.

Lemma 3.1 The set of all unitary matrices is a manifold of dimension N2.

Proof: The set of all unitary matrices is the well-known unitary Lie group U(N) [12, §3.4]. A Lie
group identifies group elements with points on a differentiable manifold [12, §2.2]. The dimension
of the manifold is equal to the dimension of the Lie algebra u, which is a vector space that is the
tangent space at the identity element [12, §4.5]. For U(N), the Lie algebra consists of all skew-
Hermitian matrices A [12, §5.4]. A skew-Hermitian matrix is any A ∈ CN×N such that A = −AH ,
where (·)H is the conjugate transpose. To determine the dimension of U(N), we can determine the
dimension of u. Because of the skew-Hermitian constraint, the diagonal elements of A are purely
imaginary, which corresponds to N real-valued parameters. Also, since Ai,j = −A∗j,i, the upper and

lower triangular parts of A are parameterized by N(N−1)
2 complex numbers, which corresponds to

an additional N2 −N real parameters. Thus, U(N) is a manifold of dimension N2.

Theorem 3.2 If a family of N ×N unitary matrices is parameterized by P real-valued parameters
for P < N2, then it cannot contain all N ×N unitary matrices.

Proof: We consider a family of unitary matrices that is parameterized by P real-valued parameters
through a smooth map g : P(P )→ U(N2) from the space of parameters P(P ) to the space of all
unitary matrices U(N2). The space P(P ) of parameters is considered as a P -dimensional manifold,
while the space U(N2) of all unitary matrices is anN2-dimensional manifold according to lemma 3.1.
Then, if P < N2, Sard’s theorem [13] implies that the image g(P) of g is of measure zero in U(N2),
and in particular g is not onto. Since g is not onto, there must exist a unitary matrix W ∈ U(N2)
for which there is no corresponding input P ∈ P(P ) such that W = g(P). Thus, if P is such that
P < N2, the manifold P(P ) cannot represent all unitary matrices in U(N2).

We now apply Theorem 3.2 to the parameterization (3). Note that the parameterization (3) has
P = 7N real-valued parameters. If we solve for N in 7N < N2, we get N > 7. Thus, the
parameterization (3) cannot represent all unitary matrices for dimension N > 7.

4 Optimizing full-capacity unitary matrices on the Stiefel manifold

In this section, we show how to get around the limitations of restricted-capacity parameterizations
and directly optimize a full-capacity unitary matrix. We consider the Stiefel manifold of all N ×N
complex-valued matrices whose columns are N orthonormal vectors in CN [14]. Mathematically,
the Stiefel manifold is defined as

VN (CN ) =
{
W ∈ CN×N : WHW = IN×N

}
. (4)

For any W ∈ VN (CN ), any matrix Z in the tangent space TWVN (CN ) of the Stiefel manifold
satisfies ZHW −WHZ = 0 [14]. The Stiefel manifold becomes a Riemannian manifold when
its tangent space is equipped with an inner product. Tagare [14] suggests using the canonical inner
product, given by

〈Z1,Z2〉c = tr

(
ZH1 (I− 1

2
WWH)Z2

)
. (5)

Under this canonical inner product on the tangent space, the gradient in the Stiefel manifold of the loss
function f with respect to the matrix W is AW, where A = GHW −WHG is a skew-Hermitian

3



matrix and G with Gi,j = δf
δWi,j

is the usual gradient of the loss function f with respect to the matrix
W [14]. Using these facts, Tagare [14] suggests a descent curve along the Stiefel manifold at training
iteration k given by the matrix product of the Cayley transformation of A(k) with the current solution
W(k):

Y(k)(λ) =

(
I+

λ

2
A(k)

)−1(
I− λ

2
A(k)

)
W(k), (6)

where λ is a learning rate and A(k) = G(k)HW(k) −W(k)HG(k). Gradient descent proceeds by
performing updates W(k+1) = Y(k)(λ). Tagare [14] suggests an Armijo-Wolfe search along the
curve to adapt λ, but such a procedure would be expensive for neural network optimization since it
requires multiple evaluations of the forward model and gradients. We found that simply using a fixed
learning rate λ often works well. Also, RMSprop-style scaling of the gradient G(k) by a running
average of the previous gradients’ norms [15] before applying the multiplicative step (6) can improve
convergence. The only additional substantial computation required beyond the forward and backward
passes of the network is the N ×N matrix inverse in (6).

5 Experiments

All models are implemented in Theano [16], based on the implementation of restricted-capacity
uRNNs by [10], available from https://github.com/amarshah/complex_RNN. All code to
replicate our results is available from https://github.com/stwisdom/urnn. All models use
RMSprop [15] for optimization, except that full-capacity uRNNs optimize their recurrence matrices
with a fixed learning rate using the update step (6) and optional RMSprop-style gradient normalization.

5.1 Synthetic data

First, we compare the performance of full-capacity uRNNs to restricted-capacity uRNNs and LSTMs
on two tasks with synthetic data. The first task is synthetic system identification, where a uRNN must
learn the dynamics of a target uRNN given only samples of the target uRNN’s inputs and outputs.
The second task is the copy memory problem, in which the network must recall a sequence of data
after a long period of time.

5.1.1 System identification

For the task of system identification, we consider the problem of learning the dynamics of a nonlinear
dynamical system that has the form (1), given a dataset of inputs and outputs of the system. We will
draw a true system Wsys randomly from either a constrained setWu of restricted-capacity unitary
matrices using the parameterization Wu(θu) in (3) or from a wider setWg of restricted-capacity
unitary matrices that are guaranteed to lie outside Wu. We sample from Wg by taking a matrix
product of two unitary matrices drawn fromWu.

We use a sequence length of T = 150, and we set the input dimension M and output dimension L
both equal to the hidden state dimension N . The input-to-hidden transformation V and output-to-
hidden transformation U are both set to identity, the output bias c is set to 0, the initial state is set
to 0, and the hidden bias b is drawn from a uniform distribution in the range [−0.11,−0.09]. The
hidden bias has a mean of −0.1 to ensure stability of the system outputs. Inputs are generated by
sampling T -length i.i.d. sequences of zero-mean, diagonal and unit covariance circular complex-
valued Gaussians of dimension N . The outputs are created by running the system (1) forward on the
inputs.

We compare a restricted-capacity uRNN using the parameterization from (3) and a full-capacity
uRNN using Stiefel manifold optimization with no gradient normalization as described in section 4.
We choose hidden state dimensions N to test critical points predicted by our arguments in section 3
of Wu(θu) in (3): N ∈ {4, 6, 7, 8, 16}. These dimensions are chosen to test below, at, and above the
critical dimension of 7.

For all experiments, the number of training, validation, and test sequences are 20000, 1000, and
1000, respectively. Mean-squared error (MSE) is used as the loss function. The learning rate is 0.001
with a batch size of 50 for all experiments. Both models use the same matrix drawn fromWu as
initialization. To isolate the effect of unitary recurrence matrix capacity, we only optimize W, setting
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all other parameters to true oracle values. For each method, we report the best test loss over 100
epochs and over 6 random initializations for the optimization.

The results are shown in Table 1. “Wsys init.” refers to the initialization of the true system unitary
matrix Wsys, which is sampled from either the restricted-capacity setWu or the wider setWg .

Table 1: Results for system identification in terms of best normalized MSE. Wu is the set of
restricted-capacity unitary matrices from (3), andWg is a wider set of unitary matrices.

Wsys init. Capacity N = 4 N = 6 N = 7 N = 8 N = 16

Wu Restricted 4.81e−1 6.75e−3 3.53e−1 3.51e−1 7.30e−1
Wu Full 1.28e−1 3.03e−1 2.16e−1 5.04e−2 1.28e−1
Wg Restricted 3.21e−4 3.36e−1 3.36e−1 2.69e−1 7.60e−1
Wg Full 8.72e−2 3.86e−1 2.62e−1 7.22e−2 1.00e−6

Notice that for N < 7, the restricted-capacity uRNN achieves comparable or better performance than
the full-capacity uRNN. At N = 7, the restricted-capacity and full-capacity uRNNs achieve relatively
comparable performance, with the full-capacity uRNN achieving slightly lower error. For N > 7, the
full-capacity uRNN always achieves better performance versus the restricted-capacity uRNN. This
result confirms our theoretical arguments that the restricted-capacity parameterization in (3) lacks the
capacity to model all matrices in the unitary group for N > 7 and indicates the advantage of using a
full-capacity unitary recurrence matrix.

5.1.2 Copy memory problem

The experimental setup follows the copy memory problem from [10], which itself was based on
the experiment from [6]. We consider alternative hidden state dimensions and extend the sequence
lengths to T = 1000 and T = 2000, which are longer than the maximum length of T = 750
considered in previous literature.

In this task, the data is a vector of length T + 20 and consists of elements from 10 categories. The
vector begins with a sequence of 10 symbols sampled uniformly from categories 1 to 8. The next
T − 1 elements of the vector are the ninth ’blank’ category, followed by an element from the tenth
category, the ‘delimiter’. The remaining ten elements are ‘blank’. The task is to output T + 10 blank
characters followed by the sequence from the beginning of the vector. We use average cross entropy
as the training loss function. The baseline solution outputs the blank category for T + 10 time steps
and then guesses a random symbol uniformly from the first eight categories. This baseline has an
expected average cross entropy of 10 log(8)

T+20 .

Figure 1: Results of the copy memory problem with sequence lengths of 1000 (left) and 2000 (right).
The full-capacity uRNN converges quickly to a perfect solution, while the LSTM and restricted-
capacity uRNN with approximately the same number of parameters are unable to improve past the
baseline naive solution.

The full-capacity uRNN uses a hidden state size of N = 128 with no gradient normalization. To
match the number of parameters (≈ 22k), we use N = 470 for the restricted-capacity uRNN, and
N = 68 for the LSTM. The training set size is 100000 and the test set size is 10000. The results
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of the T = 1000 experiment can be found on the left half of Figure 1. The full-capacity uRNN
converges to a solution with zero average cross entropy after about 2000 training iterations, whereas
the restricted-capacity uRNN settles to the baseline solution of 0.020. The results of the T = 2000
experiment can be found on the right half of Figure 1. The full-capacity uRNN hovers around the
baseline solution for about 5000 training iterations, after which it drops down to zero average cross
entropy. The restricted-capacity again settles down to the baseline solution of 0.010. These results
demonstrate that the full-capacity uRNN is very effective for problems requiring very long memory.

5.2 Speech data

We now apply restricted-capacity and full-capacity uRNNs to real-world speech data and compare
their performance to LSTMs. The main task we consider is predicting the log-magnitude of future
frames of a short-time Fourier transform (STFT). The STFT is a commonly used feature domain
for speech enhancement, and is defined as the Fourier transform of short windowed frames of the
time series. In the STFT domain, a real-valued audio signal is represented as a complex-valued
F × T matrix composed of T frames that are each composed of F = Nwin/2 + 1 frequency bins,
where Nwin is the duration of the time-domain frame. Most speech processing algorithms use the
log-magnitude of the complex STFT values and reconstruct the processed audio signal using the
phase of the original observations.

The frame prediction task is as follows: given all the log-magnitudes of STFT frames up to time t,
predict the log-magnitude of the STFT frame at time t+1.We use the TIMIT dataset [17]. According
to common practice [18], we use a training set with 3690 utterances from 462 speakers, a validation
set of 400 utterances, an evaluation set of 192 utterances. Training, validation, and evaluation sets
have distinct speakers. Results are reported on the evaluation set using the network parameters
that perform best on the validation set in terms of the loss function over three training trials. All
TIMIT audio is resampled to 8kHz. The STFT uses a Hann analysis window of 256 samples (32
milliseconds) and a window hop of 128 samples (16 milliseconds).

The LSTM requires gradient clipping during optimization, while the restricted-capacity and full-
capacity uRNNs do not. The hidden state dimensions N of the LSTM are chosen to match the
number of parameters of the full-capacity uRNN. For the restricted-capacity uRNN, we run models
that match either N or number of parameters. For the LSTM and restricted-capacity uRNNs, we
use RMSprop [15] with a learning rate of 0.001, momentum 0.9, and averaging parameter 0.1. For
the full-capacity uRNN, we also use RMSprop to optimize all network parameters, except for the
recurrence matrix, for which we use stochastic gradient descent along the Stiefel manifold using the
update (6) with a fixed learning rate of 0.001 and no gradient normalization.

Table 2: Log-magnitude STFT prediction results on speech data, evaluated using objective and
perceptual metrics (see text for description).

Model N # parameters Valid.
MSE

Eval.
MSE

SegSNR
(dB)

STOI PESQ

LSTM 84 ≈83k 18.02 18.32 1.95 0.77 1.99
Restricted-capacity uRNN 128 ≈67k 15.03 15.78 3.30 0.83 2.36
Restricted-capacity uRNN 158 ≈83k 15.06 14.87 3.32 0.83 2.33
Full-capacity uRNN 128 ≈83k 14.78 15.24 3.57 0.84 2.40
LSTM 120 ≈135k 16.59 16.98 2.32 0.79 2.14
Restricted-capacity uRNN 192 ≈101k 15.20 15.17 3.31 0.83 2.35
Restricted-capacity uRNN 256 ≈135k 15.27 15.63 3.31 0.83 2.36
Full-capacity uRNN 192 ≈135k 14.56 14.66 3.76 0.84 2.42
LSTM 158 ≈200k 15.49 15.80 2.92 0.81 2.24
Restricted-capacity uRNN 378 ≈200k 15.78 16.14 3.16 0.83 2.35
Full-capacity uRNN 256 ≈200k 14.41 14.45 3.75 0.84 2.38

Results are shown in table 2, and figure 5.2 shows example predictions of the three types of networks.
Results in table 2 are given in terms of the mean-squared error (MSE) loss function and several metrics
computed on the time-domain signals, which are reconstructed from the predicted log-magnitude
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Figure 2: Ground truth and one-frame-ahead predictions of a spectrogram for an example utterance.
For each model, hidden state dimension N is chosen for the best validation MSE. Notice the full-
capacity uRNN achieves the best detail in its predictions.

and the original phase of the STFT. These time-domain metrics are segmental signal-to-noise ratio
(SegSNR), short-time objective intelligibility (STOI), and perceptual evaluation of speech quality
(PESQ). SegSNR, computed using [19], uses a voice activity detector to avoid measuring SNR in
silent frames. STOI is designed to correlate well with human intelligibility of speech, and takes on
values between 0 and 1, with a higher score indicating higher intelligibility [20]. PESQ is the ITU-T
standard for telephone voice quality testing [21, 22], and is a popular perceptual quality metric for
speech enhancement [23]. PESQ ranges from 1 (bad quality) to 4.5 (no distortion).

Note that full-capacity uRNNs generally perform better than restricted-capacity uRNNs with the
same number of parameters, and both types of uRNN significantly outperform LSTMs.

5.3 Pixel-by-pixel MNIST

As another challenging long-term memory task with natural data, we test the performance of LSTMs
and uRNNs on pixel-by-pixel MNIST and permuted pixel-by-pixel MNIST, first proposed by [5]
and used by [10] to test restricted-capacity uRNNs. For permuted pixel-by-pixel MNIST, the pixels
are shuffled, thereby creating some non-local dependencies between pixels in an image. Since the
MNIST images are 28× 28 pixels, resulting pixel-by-pixel sequences are T = 784 elements long.
We use 5000 of the 60000 training examples as a validation set to perform early stopping with a
patience of 5. The loss function is cross-entropy. Weights with the best validation loss are used to
process the evaluation set. The full-capacity uRNN uses RMSprop-style gradient normalization.

Learning curves are shown in figure 5.3, and a summary of classification accuracies is shown in
table 3. For the unpermuted task, the LSTM with N = 256 achieves the best evaluation accuracy of
98.2%. For the permuted task, the full-capacity uRNN with N = 512 achieves the best evaluation
accuracy of 94.1%, which is state-of-the-art on this task. Both uRNNs outperform LSTMs on the
permuted case, achieving their best performance after fewer traing epochs and using an equal or lesser
number of trainable parameters. This performance difference suggests that LSTMs are only able
to model local dependencies, while uRNNs have superior long-term memory capabilities. Despite
not representing all unitary matrices, the restricted-capacity uRNN with N = 512 still achieves
impressive test accuracy of 93.3% with only 1/16 of the trainable parameters, outperforming the
full-capacity uRNN with N = 116 that matches number of parameters. This result suggests that
hidden state dimension N is more important than capacity for this particular task.

6 Conclusion

Unitary recurrent matrices prove to be an effective means of addressing the vanishing and exploding
gradient problems. We provided a theoretical argument to quantify the capacity of constrained unitary
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Table 3: Results for unpermuted and permuted pixel-by-pixel MNIST. Classification accuracies are
reported for trained model weights that achieve the best validation loss.

Model N # parameters Validation accurary Evaluation accuracy
U

np
er

m
ut

ed LSTM 128 ≈ 68k 98.1 97.8
LSTM 256 ≈270k 98.5 98.2
Restricted-capacity uRNN 512 ≈ 16k 97.9 97.5
Full-capacity uRNN 116 ≈ 16k 92.7 92.8
Full-capacity uRNN 512 ≈270k 97.5 96.9

Pe
rm

ut
ed

LSTM 128 ≈ 68k 91.7 91.3
LSTM 256 ≈270k 92.1 91.7
Restricted-capacity uRNN 512 ≈ 16k 94.2 93.3
Full-capacity uRNN 116 ≈ 16k 92.2 92.1
Full-capacity uRNN 512 ≈270k 94.7 94.1

Figure 3: Learning curves for unpermuted pixel-by-pixel MNIST (top panel) and permuted pixel-by-
pixel MNIST (bottom panel).

matrices In future work, we plan to develop a second argument based on decomposing the matrix
into a product of Givens operators, the finest-grain elementary building blocks of the unitary group.
Givens operators have compelling properties of quantifying structure through their support pairs
and constant computation time, which we also intend to exploit in future work. We also described a
method for directly optimizing a full-capacity unitary matrix by constraining the gradient to lie in
the differentiable manifold of unitary matrices. The effect of restricting the capacity of the unitary
weight matrix was tested on system identification and memory tasks, in which full-capacity unitary
recurrent neural networks (uRNNs) outperformed restricted-capacity uRNNs from [10] and LSTMs.
Full-capacity uRNNs also outperform restricted-capacity uRNNs on log-magnitude STFT prediction
of natural speech signals and classification of permuted pixel-by-pixel images of handwritten digits,
and both uRNNs significantly outperform LSTMs.
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