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ABSTRACT

Deep unfolding has recently been proposed to derive novel deep net-
work architectures from model-based approaches. In this paper, we
consider its application to multichannel source separation. We un-
fold a multichannel Gaussian mixture model (MCGMM), resulting
in a deep MCGMM computational network that directly processes
complex-valued frequency-domain multichannel audio and has an
architecture defined explicitly by a generative model, thus combin-
ing the advantages of deep networks and model-based approaches.
We further extend the deep MCGMM by modeling the GMM states
using an MRF, whose unfolded mean-field inference updates add
dynamics across layers. Experiments on source separation for mul-
tichannel mixtures of two simultaneous speakers shows that the deep
MCGMM leads to improved performance with respect to the origi-
nal MCGMM model.

Index Terms— Deep unfolding, source separation, multichan-
nel GMM, Markov random field

1. INTRODUCTION AND RELATION TO PRIOR WORK

Exploiting multiple microphones can greatly improve speech en-
hancement and recognition performance in the presence of noise,
other speakers, and reverberation. Multiple microphones enable the
use of beamforming [1], multichannel filtering [2] and clustering of
spatial features [3,4]. Multichannel versions of single-channel algo-
rithms have also been proposed, such as multichannel extensions of
nonnegative matrix factorization (NMF) [5–7].

Speech acoustic models have previously been used to opti-
mize microphone array beamformers for example, by maximizing
likelihood [8]. Recently, however, deep neural network (DNN)
speech models have been very successful for single-channel speech
enhancement [9–12] and recognition [13, 14]. Their combination
with multi-channel methods is not as straight-forward due to the
absence of a likelihood function, but there have been a few steps
in this direction. Swietojanski et al. [15] proposed a convolutional
neural network (CNN) architecture for ASR using multichannel
audio, where different microphone channels were pooled together.
Hoshen et al. [16] used a CNN-DNN for acoustic modeling on raw
time-domain multichannel audio. Nugraha et al. [17] achieved im-
proved source separation for two-channel music recordings using
alternating ReLU layers and channel estimation. However, though
DNN-based methods can be effective, they require empirical explo-
ration to determine the best network architecture. Furthermore, it
is difficult to directly incorporate domain knowledge into generic
networks.
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Deep unfolding is a method that can incorporate advantages of
both neural networks and model-based methods [18]. The basic idea
is that any iterative inference algorithm for a generative model which
is run for K iterations can be “unfolded” into a K-layer compu-
tational network. The architecture and activation functions of the
intra- and inter-layer connections are completely defined by the orig-
inal generative model inference algorithm. Once the network is un-
folded, the parameters within layers can be discriminatively trained
using labeled data, just as the parameters of a DNN are discrimina-
tively trained. Deep unfolding has been shown to improve single-
channel source separation by unfolding iterative NMF multiplicative
updates [18, 19].

Other attempts have been made to combine deep networks with
generative models. Varani et al. [20] proposed a DNN where the
last layer is a GMM. The GMM parameters are discriminatively
trained jointly with the DNN parameters for ASR. Hoshen et al.’s ap-
proach [16] attempts to mimic the usual feature extraction pipeline in
ASR. However, all these methods suffer the same drawback: the op-
timal network architectures can only be discovered by heuristic ex-
perimentation, and it is difficult to directly incorporate insight from
domain knowledge.

In this paper, we consider deep unfolding for multichannel
source separation. We combine an existing model originally pro-
posed by Attias [21] with a Markov random field (MRF) and show
how unfolding inference in this model results in improved source
separation performance for multichannel mixtures of two simultane-
ous speakers. The resulting deep MCGMM computational network
directly processes complex-valued frequency-domain multichannel
audio and has an architecture defined explicitly by a generative
model, thus combining advantages of deep networks and model-
based approaches.

2. SOURCE SEPARATION USING MULTICHANNEL GMM

We assume that J acoustic sources xj are recorded by I micro-
phones. Let Yf,t ∈ CI be the complex-valued STFT coefficients of
the I microphones at frame t ∈ {1..T} and frequency f ∈ {1..F}.
The STFT window and FFT lengths are both taken to be Nw =
2(F − 1). The ith microphone signal is given by

Y i
f,t =

∑
j

Bi,j
f Xj

f,t + V i
f,t, (1)

whereXj
f,t is the STFT coefficient of the jth source, V i

f,t is additive,
zero-mean, circular, complex-valued Gaussian noise, and Bi,j

f is the
value at frequency f of the FFT of the channel bi,j1:Nc

from source j to
microphone i, where we assume a narrowband channel model: that
is, the channel impulse response bi,j1:Nc

is shorter than the analysis
window length: Nc ≤ Nw. By using a narrowband assumption, the
effect of the channel is a complex-valued gainBi,j

f in each frequency
bin f for each microphone-source pair (i, j).



In this paper, we model each source as a zero-mean, circular,
complex-valued Gaussian, the variance of which is dependent on the
source state. Attias [21] originally proposed such a model, using
a multinomial distribution for the source states, leading to a GMM
for each source. The sources are mapped onto an array of micro-
phones via linear time-invariant channel models Bf . The model is
formulated as follows: for each time t, a source’s state is given by
zjt ∈ {1..Z}, which controls a pattern of variances across frequency,
given by 1/γj,z

f , where γj,z
f are state-dependent precisions. That is,(

Xj
f,t|z

j
t = z

)
∼ NC(0, 1/γj,z

f ). (2)

Each channel is assumed to have a small amount of additive, inde-
pendent, zero-mean, circular, complex-valued Gaussian noise. The
observations are thus distributed as(

Y i
f,t|X1:J

f,t

)
∼ NC

(∑
j

Bi,j
f Xj

f,t, 1/ψ
i
f

)
, (3)

where ψi
f is a precision for the additive sensor noise V i

f,t. The states
zj for source j have priors πj,z := p(zj = z), where z is a value in
{1..Z}. The channel model Bf is here considered a parameter.

Exact inference in this model is intractable because the E-step
requires summing over an exponential number of terms (O

(
ZJ
)
) in

the marginalization over states. However, an approximate variational
algorithm [22] can be derived, which was done by Attias [21]. The
approximate inference algorithm uses the variational approximation

q(X1:J
f,t , z

1:J
t ) =

[∏
f

∏
j

q(Xj
t,f |z

j
t )

][∏
j

q(zjt )

]
, (4)

where q(Xj
f,t|z

j
f,t = z) = NC

(
Xj

f,t; µ̄
j,z
f,t, 1/γ̄

j,z
f

)
, and q(zjf,t =

z) = π̄j,z
t . In this variational approximation, µ̄j,z

f,t is the state-
dependent variational posterior mean and γ̄j,z

f is the state-dependent
variational posterior precision of source j at time-frequency (t, f).
The variational updates are given in Attias [21, eq. (10)-(15)].

3. DEEP UNFOLDING OF GENERATIVE MODELS

Here we apply the deep unfolding framework in the context of
the MCGMM. A key difference with the application considered in
previous deep unfolding work [18, 19] is that several updates in
the complex-valued unfolded MCGMM involve non-holomorphic
functions of complex-valued variables. Because of these non-
holomorphic functions, the usual complex gradient is not sufficient
to perform gradient descent. Also, gradients in a real-imaginary
representation can be algebraically cumbersome. Fortunately, we
can overcome these issues by using a generalization of the complex
gradient defined using Wirtinger calculus [23].

3.1. Unfolding the multichannel GMM
In this section, we formulate a complex-valued computational net-
work inspired by the unfolded MCGMM variational algorithm. Al-
gorithm 1 describes the sequence of updates performed in each layer
of the network. A computational graph of the last two layers of the
network is shown in figure 1.

We make two simplifications to the variational updates of the
MCGMM in order to make them easier to take gradients through.
We desire to avoid matrix inversions and to make the updates syn-
chronous across all sources in each layer.

First, instead of solving a J × J linear system of equations to
estimate the variational source estimates, as in Attias [21, eq. (12)],

we elect to perform “synchronous” updates of the state-dependent
source means given by (8), which are an alternative variational up-
date. If these updates are performed on one source at a time, the
variational bound is maintained. But performing these updates syn-
chronously breaks the variational lower bound on the log-likelihood.
In practice, we have not observed degradation of the separation per-
formance, as long as the synchronous updates are preceded by at
least a few iterations of the original variational updates. Using the
synchronous updates, the output estimate of source j in layer k is the
variational posterior mean X̂j,(k)

f,t , given by (11).
Our second simplification concerns the cross-source covariance

matrix Σ̂X̂X̂
f,t . Attias [21] assumed a full covariance matrix, which

necessitates a matrix inversion in the M-step for the update of the
channel B (14). To avoid this matrix inversion, we make the rea-
sonable assumption that sources are uncorrelated, and constrain the
cross-source covariance matrix Σ̂X̂X̂

f,t in (13) to be diagonal.
In preliminary experiments, discriminatively training the state

priors π(k) and GMM variances γ(k) in each layer through these
updates using the cost function in (19) did not yield substantial im-
provements. As such, in the next section we consider extending the
generative model such that it has greater representational power. In
particular, we will focus on improving estimation of source states,
since these are essential for effective source separation.

3.2. MRF extension of the MCGMM
We would like to improve the unfolded MCGMM network’s ability
to estimate the correct state for each source at the output. One way
to accomplish this is to add feedback to the network such that the
estimated posterior log-likelihoods Lj,z,(k)

t of the states in layer k
(9) use information about the estimated posterior state likelihoods
π
j,z,(k−1)
t (10) in the previous layer, k − 1.

Such a mechanism exists in a deep unfolded pairwise binary
Markov random field (MRF): unfolding mean-field inference in a bi-
nary MRF leads to a deep feed-forward sigmoid network [18]. Given
a MRF with M hidden binary random variables sm, log potentials
Ψss, and the log-likelihood of the observed data Lobs, the posterior
distribution can be written as

p(s|v) ∝ exp

(
1

2
sTAs+ sT c+ sTLobs

)
(5)

where s := s1:M , A ∈ RM×M , Am,m = 0 for all m, Am1,m2 =
Am2,m1 for m1 6= m2, c ∈ RM are derived from the log potentials
Ψss, and Lobs ∈ RM [18, Appendix A].

The variational posterior probability π̄(k) := {q(k)(sm)}m=1:M

in iteration k of the mean-field inference algorithm is then

π̄(k) = σ
(
Aπ̄(k−1) + c+ Lobs

)
, (6)

where σ is the element-wise sigmoid function. Notice that A and
c+ Lobs define an affine transformation, and if these parameters are
untied across layers, A(k) and c(k), then equation (6) is equivalent
to one layer of a deep feed-forward sigmoid network. Discrimina-
tively training theA(k) and c(k) in each layer is equivalent to finding
a different set of log potential functions for the MRF for each itera-
tion, such that the result of K iterations of inference minimizes the
discriminative cost function. The expression A(k)π̄(k−1) + c(k) is
essentially a prior on the state log-likelihoods that varies from iter-
ation to iteration, with feedback from the previously estimated state
likelihoods π̄(k−1).

To apply this in our model we can replace the multinomial state
zjt ∈ {1..Z} of a source with a MRF as in the above. To do this, let
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Fig. 1. Last two layers of the unfolded deep MCGMM. Boxes with double lines are the discriminatively-trained source parameters, and
shaded boxes represent the observed data.

Algorithm 1: Simplified variational EM algorithm for the MCGMM,
where 〈(·)t〉t := 1

T

∑T
t=1(·)t.

Data: Multichannel mixture STFT Y1:F,1:T , sensor precision ψf ,

source parameters γ1:J,1:Z1:F , π1:J,1:Z , initial channel estimate B(0)
1:F

Result: Estimated source STFTs X̂1:J,(K)
1:F,1:T and layer-wise

intermediate variables
for k = 1 : K do

Run E-step:

γ̄
j,z,(k)
f =

[
B

(k−1)
f

]H
:,j
ψf

[
B

(k−1)
f

]
:,j

+ γ
j,z,(k)
f (7)

µ̄
j,z,(k)
f,t =

[
B

(k−1)
f

]H
:,j
ψf

γ̄
j,z,(k)
f

(
Yf,t −

[
B

(k−1)
f

]
:,\jX̂

\j,(k−1)
f,t

)
(8)

L
j,z,(k)
t = log πj,z +

∑
f

log
γ
j,z,(k)
f

γ̄
j,z,(k)
f

...

...+
∑
f

γ̄
j,z,(k)
f

∣∣∣µ̄j,z,(k)f

∣∣∣2 (9)

π̄
j,z,(k)
t =softmax

(
L
j,1:Z,(k)
t

)
(10)

X̂
j,(k)
f,t =

∑
z

π̄
j,z,(k)
t µ̄

j,z,(k)
f,t (11)

Run M-step:

Σ̂Y X
f =

〈
Yf,t

(
X̂

(k)
f,t

)H〉
t

(12)[
Σ̂X̂X̂

f

]
j,j

=
〈∑

z

π̄
j,z,(k)
t

( 1

γ̄
j,z,(k)
f

+
∣∣∣µ̄j,z,(k)f,t

∣∣∣2 )〉
t

(13)

B
(k)
f =Σ̂Y X̂

f

(
Σ̂X̂X̂

f

)−1
(14)

end

each multinomial state zjt be mapped to Z binary random variables
sj,zt in a fully-connected MRF, where sj,1:Zt is constrained to be one-
hot. We use the variational approximation q(sj,1:Zt ) =

∏
z π̄

j,z
t

for the binary random variables sj,zt , with variational probabilities
π̄j,z
t := q(sj,zt = 1, sj,z

′

t = 0, ∀z′ 6= z). Rather than perform-
ing unconstrained mean-field updates, here for continuity with our
GMM model, we constrain the variational posterior to behave like
multinomial mixture states. As such π̄j,z

f is the variational probabil-
ity that the zth element of sj,1:Zt is set to 1, and the other elements
are set to 0. Then, if we unfold mean field inference for the hidden
binary states sj,zt , we replace the multinomial prior log πj,z in the

update (9) with

L
j,z,(k)
prior,t = A(k)π̄

j,z,(k−1)
t + c(k), (15)

where the parameters A(k) ∈ RZ×Z and c(k) ∈ RZ can be layer-
dependent. When A(k) = 0 and c(k) = log πj,z for all k, the
new update (16) simplifies to the original variational update (9).
Although the synchronous mean-field updates break the variational
bound, we expect discriminative training to compensate such ap-
proximations.

The new update for Lj,z,(k)
t that replaces (9) is thus

L
j,z,(k)
t =L

j,z,(k)
prior,t + αL

j,z,(k)
acoustic,t, (16)

with

L
j,z,(k)
acoustic,t =

∑
f

log
γ
j,z,(k)
f

γ̄
j,z,(k)
f

+
∑
f

γ̄
j,z,(k)
f

∣∣∣µ̄j,z,(k)
f

∣∣∣2 . (17)

Equation (17) is the part of the log-likelihood corresponding to
acoustic information and α is an “acoustic weight” that expresses
the importance of the acoustic evidence over the prior. We refer to
the resulting network as a deep MCGMM (DMCGMM).

4. EXPERIMENTS AND DISCUSSION

We use a modified version1 of the SimData and multicondition train-
ing (mcTrain) data components of the REVERB challenge dataset
[24]. Each file consists of a single-channel speech utterance from
the WSJCAM0 dataset [25] reverberated using measured 8-channel
reverberation impulse responses (RIRs) in different rooms. SimData
uses RIRs from three different rooms, and mcTrain uses RIRs from
6 different rooms. Stationary noise that was recorded in each partic-
ular room is added at 20 dB SNR. To create a dataset of overlapping
speech, a second speech signal is reverberated using a RIR from a
different position in the same room and added to the original file.
No normalization of the power of the reverberated speech sources is
performed, in order to simulate realistic conditions. The power ratio
between the spatial images of speaker 1 and speaker 2 ranges from
about −15 dB to +15 dB. All mixes are between 6 and 10 seconds
long. The training set contains 15763 mixes, the development set
contains 965 mixes, and the evaluation set contains 1435 mixes.

The initial source precisions γj,z,(0)
f were trained on a gender-

specific split of the WSJCAM0 training set. That is, two separate
256-component GMMs were trained for male and female speakers.
Each GMM was first trained on the log-magnitude STFTs. Then, us-
ing the frame labels ` from the result, the GMM precisions γz

f were
set to be 1/

∑
t:`(t)=z |Xf,t|2. Then these gender-specific GMMs

1Thanks to Michael Mandel for building this dataset during JSALT 2015.



Table 1. Source separation results on the evaluation set for the MCGMM and the deep MCGMM (DMCGMM). Units are in dB, given as
SDRs of the source image (SDRim) and of the source (SDR). Results are given for various desired input SDRim.

MCGMM var. DMCGMM Desired input SDRim in dB
EM layers layers −9 −6 −3 0 3 6 9 All

Mean output SDRim in dB
No proc. — -9.61 -5.87 -3.00 -0.01 2.97 5.84 9.51 -0.06

10 — -0.55 3.17 5.42 6.75 7.51 7.68 7.12 5.88
15 — -0.60 3.18 5.48 6.83 7.60 7.75 7.14 5.94
10 1 -0.70 3.16 5.59 6.97 7.70 7.86 7.21 6.02
10 2 -0.20 3.54 5.86 7.14 7.81 7.94 7.17 6.23
10 3 0.78 4.28 6.17 7.18 7.61 7.53 6.57 6.32
10 4 -0.17 3.73 5.96 7.29 7.96 8.16 7.40 6.37

Mean output SDR in dB
No proc.2 — -27.32 -23.07 -22.03 -19.74 -18.43 -17.80 -18.39 -20.50

10 — -0.43 1.77 3.52 4.48 5.44 6.17 6.86 4.19
15 — -0.40 1.80 3.48 4.36 5.25 5.92 6.51 4.07
10 1 0.34 2.46 4.10 4.93 5.76 6.34 6.88 4.63
10 2 0.82 2.89 4.49 5.27 6.07 6.59 7.07 4.97
10 3 1.11 3.01 4.43 5.08 5.74 6.18 6.47 4.80
10 4 0.88 2.88 4.36 5.13 5.89 6.45 6.96 4.85

were concatenated into a 512-component GMM. The MRF parame-
ters are initialized as A(0) = 0 and c(0) = log πz . Both sources use
the same source model.

Since our main interest here is to observe the performance im-
provement of the DMCGMM over the conventional MCGMM, we
used an oracle least-squares initialization for the channel model for
each file:

B
(0)
f = Σ̂Y X

f

(
Σ̂XX

f

)−1

, (18)

where Σ̂Y X
f is the frequency-domain cross-covariance between the

microphone observations Yf,t and reference sourcesXf,t, and Σ̂XX
f

is the covariance between the reference sources Xf,t. The sensor
precision ψf is set to 5 times the sample precision of the data Yf,1:T .

For each file, 10 iterations of variational EM updates, as de-
scribed in Section 2, are run. The output of these iterations is fed to
a network of K DMCGMM layers, as described in Section 3.1. The
parameters Θ(k) = {A(k), c(k), γ

j,z,(k)
f } are untied between layers

and discriminatively trained. We use an “error-to-source” (ESR) cost
function given by

DESR(X̂
(K)
f,t , Xf,t) =

∑
j

∑
f,t

∣∣∣X̂j,(K)
f,t −Xj

f,t

∣∣∣2∑
f,t

∣∣∣Xj
f,t

∣∣∣2 , (19)

where X̂(K)
f,t are the estimated source STFT coefficients from the last

(Kth) layer and Xf,t are the clean single-channel references. By
minimizing (19), the signal-to-noise ratio of both sources is maxi-
mized. Refer to the supplementary materials [26] for a detailed de-
scription and derivation of the gradients.

Performance is measured using signal-to-distortion ratios of the
first channel of the source image estimates (SDRim) and the source
estimates (SDR). SDRim is computed using bss eval images
from the BSS Eval toolbox [27], and SDR is computed as the signal-
to-noise ratio when the reference signal is allowed an arbitrary gain
estimated using least-squares. The SDRs for “no processing” in table
1 are very low because the noisy mixtures contain a large amount of
reverberation2. We incrementally train DMCGMMs layerwise, us-

2Note that only the gain is adapted because a more flexible adaptation be-
tween the reference and signal would constitute an oracle microphone array
method, and our aim here is to show the SNR without processing.

ing the parameters with the best validation mean SDRim for each
successive layer. To ensure the GMM source precisions γj,z,(k)

f re-

main nonnegative, we optimize λj,z,(k)
f := log γ

j,z,(k)
f , and replace

all instances of γj,z,(k)
f in the updates with expλ

j,z,(k)
f . The A(k)

variables are unconstrained. Stochastic gradient descent is used for
backpropagation with a batch size of 2 files (about 500 STFT frames
on average). An initial learning rate of 20 gave the best results. Mo-
mentum of 0.9 is used. A validation set, with 65 randomly selected
files from the development set, is scored every 300 gradient steps and
used for early stopping. Stochastic gradient descent is performed for
30 epochs, with files randomly shuffled in each epoch.

The Bespoke Network Toolbox (BeNToBox)3 was used for
implementation in Matlab.. All computations are performed on a
Nvidia GPU using the Matlab Parallel Processing Toolbox. For a 10
second mixture, this implementation takes about 2 seconds to per-
form the MCGMM variational algorithm and about 500 milliseconds
to perform a DMCGMM forward pass and gradient computation for
backpropagation. Code to replicate our experiments is available in
the supplementary materials [26].

Table 1 shows the results on the evaluation set, which are given
in SDRim and SDR. Scores are averaged over in categories based on
input SDR. Notice that both SDRim and SDR generally increase as
the number of discriminatively-trained DMCGMM layers increases.

5. CONCLUSION AND FUTURE WORK

In this paper, we have unfolded an existing model-based variational
inference algorithm for separating multimicrophone mixtures into a
novel computational network. The resulting network was augmented
with deep sigmoid network-like components that estimate source
states to create the DMCGMM. The DMCGMM directly processes
complex-valued frequency-domain inputs, and by discriminatively
training DMCGMM source model parameters achieves superior per-
formance over the model-based variational inference algorithm.

In the future, we will explore other enhancements and general-
izations of this network, including incorporation of recurrence, more
sophisticated extensions of the model, other types of cost functions
such as cross-entropy on the source states, and combination with au-
tomatic speech recognition systems.

3Available from github.com/stwisdom/bentobox.
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