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ABSTRACT

This paper describes our joint submission to the REVERB Chal-
lenge, which calls for automatic speech recognition systems which
are robust against varying room acoustics. Our approach uses deep
recurrent neural network (DRNN) based feature enhancement in the
log spectral domain as a single-channel front-end. The system is
generalized to multi-channel audio by performing single-channel fea-
ture enhancement on the output of a sum-and-delay beamformer with
direction of arrival estimation. On the back-end side, we employ
a state-of-the-art speech recognizer using feature transformations,
utterance based adaptation, and discriminative training. Results on
the REVERB data indicate that the proposed front-end provides ac-
ceptable results already with a simple clean trained recognizer while
being complementary to the improved back-end. The proposed ASR
system with eight-channel input and feature enhancement achieves
average word error rates (WERs) of 7.75 % and 20.09 % on the simu-
lated and real evaluation sets, which is a drastic improvement over the
Challenge baseline (25.26 and 49.16 %). Further improvements can
be obtained by system combination with a DRNN tandem recognizer,
reaching 7.02 % and 19.61 % WER.

Index Terms— De-reverberation, feature enhancement, recur-
rent neural networks, automatic speech recognition

1. INTRODUCTION

The REVERB Challenge [1] calls for automatic speech recognition
(ASR) systems that are robust against reverberant environments with
stationary noise. It is a notable trend that successful approaches for
robust ASR in realistic conditions typically modify multiple parts of
the basic ASR system, including multi-channel front-ends, feature
extraction, unsupervised model adaptation to unseen test conditions,
advanced acoustic modeling such as by deep neural networks (DNN),
multi-condition training (MCT) with noisy data, and improved lan-
guage modeling to take into account more context information. These
techniques are usually found to be complementary to each other, and
thus all have to be considered for optimal performance [2].

In line with previous successful systems for highly noise- and
reverberation-robust ASR [3, 4], our approach combines multiple
techniques for robustness. Apart from standard techniques including
multi-condition and discriminative training (DT), adaptation, and fea-
ture transformations, we employ an advanced front-end that combines
multi-channel processing, using direction of arrival estimation and
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subsequent beamforming, with single-channel spectral feature en-
hancement by a neural network. Deep and recurrent neural networks
(DRNN) using Long Short-Term Memory (LSTM) are used, moti-
vated by their recent success in ASR tasks in the past years – ranging
from front-end enhancement to language modeling [5–7]. We will
show that our front-end delivers drastic gains in ASR performance
with a simple clean trained recognizer while being complementary to
state-of-the-art back-end techniques. By investigating a late fusion
approach, we also show that DRNN based feature enhancement and
acoustic modeling deliver complementary performance gains. The
next section is devoted to describing the components of our system in
detail, before giving details of the experimental setup and outlining
the results.

2. SYSTEM DESCRIPTION

2.1. Overview

Figure 1 shows a schematic overview of the proposed ASR techniques.
Single- or multi-channel audio is transformed to the time-frequency
domain. In case that multiple channels are available, the direct sound
is enhanced by estimating the direction of arrival (cross-spectrum
phase analysis, CSP) and subsequent delay-and-sum (DS) beamform-
ing. The resulting complex spectrum is converted to a power spectrum
and passed through a Mel filterbank. The logarithmic filterbank (Log
FB) outputs are passed to a DRNN for enhancement. ASR features
can be generated directly from the enhanced Log FB features, by
applying feature transformations including DCT, unsupervised adap-
tation, etc. (cf. below). These ASR features are modeled by a GMM
acoustic model (AM), whose likelihoods are combined with the lan-
guage model (LM) for decoding. Alternatively, a DRNN AM can be
used on top of enhanced Log FB features. In this case, the GMM and
DRNN AMs are fused by a multi-stream HMM (Tandem approach).

2.2. Beamforming after DoA Estimation

To enhance the direct sound from the source, a frequency domain
delay-and-sum beamformer is applied [8]. Given K microphones,
the complex STFT spectra zt(m), m = 1, . . . ,K are summed to the
enhanced complex spectrum ẑt,

ẑt =
∑
m

zt(m)� exp(−ωτ1,m), (1)

where t is the index of the current frame, � is an element-wise
multiplication, and ω is a set of angular frequencies. The arrival
time delay of the m-th microphone from the first microphone τ1,m is
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Fig. 1: Flowchart of the proposed system, using GMM and/or DRNN
acoustic models (AM) after front-end enhancement.

related to the direction of arrival (DoA) and is estimated by the cross-
spectrum phase (CSP) analysis, which uses a cross-power spectrum
between two microphones [9] as

τ1,m = argmaxS−1

[
zt(1)� zt(m)∗

|zt(1)||zt(m)|

]
, (2)

where S is the STFT operation and * denotes the complex conjugate.
To improve the performance of the original CSP method, we used
a peak-hold process [10] and noise component suppression, which
sets the cross power spectrum to zero when the estimated SNR is
below 0 dB [11]. Using three or more microphones reduces noise
influence by synchronously adding pair-wise CSP coefficients [12].
For the purpose of further processing, the power spectrum x̂t = |ẑt|2
is computed.

2.3. Single-Channel Feature Enhancement

In this study we use our spectral enhancement method based on deep
neural networks introduced for de-reverberation in [13]. Enhance-
ment is applied in the log-Mel domain, which tends to give better per-
formance in deep neural network based ASR than the Mel-frequency
cepstral coefficient (MFCC) domain [14].

To model the context needed for compensating late reverberation,
we use bidirectional Long Short-Term Memory (LSTM) recurrent
neural networks (RNNs), which deliver state-of-the-art performance
in reverberation- and noise-robust ASR [15] and feature enhancement
[5]. In the LSTM approach, an estimate ỹt of the clean speech
features yt is computed from a sequence of observed speech features
x̃t ∈ RM , t = 1, . . . , T by a non-linear mapping which is defined
by the following iteration (forward pass) for levels n = 1, . . . , N :

h
(1,...,N)
0 :=0, c

(1,...,N)
0 := 0, (3)

h
(0)
t :=x̃t, (4)

f
(n)
t :=σ(Wf,(n)[h

(n−1)
t ;h

(n)
t−1; c

(n)
t−1; 1]), (5)

i
(n)
t :=σ(Wi,(n)[h

(n−1)
t ;h

(n)
t−1; c

(n)
t−1; 1]), (6)

c
(n)
t :=f

(n)
t ⊗ c

(n)
t−1

+ i
(n)
t ⊗ tanh

(
Wc,(n)[h

(n−1)
t ;h

(n)
t−1; 1]

)
, (7)

o
(n)
t :=σ(Wo,(n)[h

(n−1)
t ;h

(n)
t−1; c

(n)
t ; 1]), (8)

h
(n)
t :=o

(n)
t ⊗ tanh(c

(n)
t ), (9)

ỹt :=W(N+1)[h
(N)
t ; 1]. (10)

In the above, h(n)
t denotes the hidden feature representation of time

frame t in the level n units (n = 0: input layer). Analogously, c(n)t ,
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Fig. 2: Visualization of the k-th cell in the n-th layer of an LSTM-
RNN. Arrows denote data flow and 1 denotes a delay of one timestep.

f
(n)
t , i(n)t , and o

(n)
t denote the dynamic cell state, forget gate, input

gate, and output gate activations. W·,(n) denote the corresponding
weight matrices at level n (n = N + 1: output layer). σ(·) and
tanh(·) are the (element-wise) logistic and hyperbolic tangent func-
tions. For simplicity, we write [a;b] := (aT ,bT )T for row-wise
concatenation.

The cell state variables c
(n)
t serve to provide memory to the

recurrent neural network [16], which is controlled by input and forget
gates [17], denoted by f

(n)
t and i

(n)
t in Eqn. 7. The hidden layer

activations correspond to the state variables, ‘squashed’ by the tanh
activation function and scaled by the output gate activations (Eqn.
9). Figure 2 shows a visualization of a single LSTM cell (index k in
layer n), which calculates its hidden activation h(n,i)

t from h
(n−1)
t

and h
(n)
t−1. c(n,k)t , i(n,k)t , o(n,k)t , f (n,k)

t denote the state, input gate,
output gate, and forget activation of the cell k in layer n.

Note that in an LSTM-RNN, by applying Eqns. 5–9, the input
features are weighted by coefficients calculated at run-time, instead of
static coefficients as in a normal RNN. In turn, the matrices required
for computing the coefficients are learned from data. This is done by
minimizing the error E{

∑
t(ỹt − y∗t )

2} on the training set, where
y∗t is a clean speech feature vector. Hence, our approach is similar
to the de-noising auto-encoder (DAE) principle where hidden layers
are trained to generate various levels of feature representations by
mapping noisy input to clean output features [18]. Similar to previous
studies on DAE in ASR [5, 19, 20], we directly use the output of
the auto-encoder as features, not the hidden layer activations – this
allows usage in a ‘black-box’ scenario where only the ASR feature
extraction but not the ASR back-end is known.

In our approach, we use logarithmic filterbank features, i.e., x̃t =
logMxt, y∗t = logMyt where M is the matrix transforming power
to Mel spectra, xt is the power spectrum of the reference channel
and yt is the power spectrum of the clean speech. We also consider
input features computed from beamformed power spectra x̂t, i.e.,
x̃t = logMx̂t.

By the transformation to the logarithmic Mel domain, the rela-
tionship between clean speech yt and reverberated speech x̃t be-
comes non-linear. However, it is known that deep neural networks
can exploit such non-linear relationships in training [21]. We add
delta coefficients to the filterbank features to capture dynamics at the
feature level, which gives a slight performance gain.

For utterance-based processing in ASR, we can also exploit future



context within a sequence. This is done by adding a second set of
layers which process the input feature sequences backwards, from
t = T to t = 1. This concept leads to bidirectional LSTM (BLSTM)-
RNNs. In a deep BLSTM-RNN, activations from both directions
are collected in a single activation vector before passing them on as
inputs to the next layer [6].

2.4. GMM-HMM Back-End

With respect to the ASR baseline provided by the REVERB Chal-
lenge organizers, we add several state-of-the-art ASR techniques to
improve the performance. All of them are implemented in the Kaldi
toolkit [22] (cf. below). The REVERB baseline uses a simple GMM-
HMM system with multi-condition training and Constrained Maxi-
mum Likelihood Linear Regression (CMLLR) adaptation to each test
condition – the latter making it suitable only for batch processing.
Since CMLLR can be viewed as a feature-space transformation, we
will refer to it as fMLLR.

First, we use an advanced front-end considering context expan-
sion (‘frame stacking’) and subsequent transformation by Linear
Discriminant Analysis (LDA) and Semi-Tied Covariance (STC) ma-
trices [23].

Second, after conventional ML training of the GMM parameters,
we employ discriminative training by the boosted Maximum Mutual
Information (bMMI) criterion. The training objective fb for the
acoustic model parameters λ is to maximize the mutual information
between the correct transcription and the decoding lattice, given by

fb(λ) = log
∑
u

p(Xu|λ, hw
∗
u)αpL(w

∗
u)∑

wu
p(Xu|λ, hwu)αpL(wu)e−b%(wu,w∗u)

where the outer sum is taken over all training utterances u, Xu

denotes the acoustic features of utterance u, w∗u is the reference
transcription, wu is a word hypothesis, and hw denotes the HMM
state sequence corresponding to the hypothesis w. The set {wu}
in the denominator corresponds to the lattice of word hypotheses,
and α is the acoustic model weight while pL denotes the language
model likelihood. %(wu, w∗u) denotes the phoneme accuracy of wu
with respect to the reference w∗u. Thus, the term e−b%(wu,w

∗
u) with a

‘boosting factor’ b > 0 emphasizes the weight of wrong hypotheses
in the denominator calculation.

Third, we replace the full batch processing by the REVERB
baseline by considering basis fMLLR [24] for adaptation, which
performs well even on very small amounts of adaptation data [24].
In this approach, the acoustic features X of a speech utterance are
transformed by a matrix A,

X 7→ A[X; 1]

which itself is a linear combination of basis matrices:

A = A0 +

B∑
i=1

βiBi.

The matrices Bi are estimated by Princial Component Analysis
(PCA) on statistics derived from the fMLLR matrices obtained on the
training utterances. At test time, the number B of basis matrices is
varied depending on the utterance length. To this end, the topB eigen-
vectors bi (representing row-stacked matrices Bi) are used as basis.
It is shown in [24] that for any B ≤ M(M + 1) this is equivalent
to Maximum Likelihood estimation under reasonable assumptions.
B is chosen proportial to the amount of frames in the utterance to
be decoded, i.e., B = min{ηT,M(M + 1)}, 0 < η � 1 where

M is the acoustic feature dimension. The corresponding Maximum
Likelihood coefficients βi are estimated by Newton’s method. Thus,
if ηT is small compared to M(M + 1), the amount of adaptation pa-
rameters to be estimated is greatly reduced compared to conventional
fMLLR (which requires an M × (M + 1) matrix to be estimated).
This enables robust adaptation on single utterances as short as three
seconds [24].

Finally, instead of using the standard Maximum A-Posteriori
(MAP) approach to speech decoding, we use Minimum Bayes Risk
(MBR) decoding. In MBR decoding, we look for the hypothesis w̃
fulfilling

w̃ = argmin
w

∑
w′

P (w′|x)D(w,w′)

where D(w,w′) is the Levenshtein (edit) distance of w and w′. The
intuition is that it is ‘risky’ to choose a hypothesis that is far from
other hypotheses that are also likely given the model, and we want to
minimize that risk. It can be shown that under assumption of model
correctness, the above is equivalent to minimizing the expected word
error rate (WER), while MAP corresponds to minimizing expected
sentence error rate [25]. Thus, if we agree on WER as the ASR
performance measure, MBR decoding will improve the results over
standard MAP. As for MAP decoding, efficient approximations are
needed since calculating the above sum requires exponential time.
In [25], an efficient forward-backward algorithm operating on lattices
is described, which we use in our study.

2.5. Tandem DRNN-GMM-HMM Back-End

As an extension to the GMM-HMM back-end, we consider DRNN
acoustic modeling in a Tandem multi-stream HMM approach similar
to [3]. A DRNN is trained on a frame-wise phoneme classification
task, using an output layer with a softmax activation function. Thus,
the output activations ỹt of the DRNN correspond to pseudo posteri-
ors ỹt ∈ [0, 1]P where P is the number of phonemes. From this, a
frame-wise phoneme prediction bt ∈ {1, . . . , P} is derived as

bt = argmax
i

ỹt,i.

The phoneme prediction is decoded along with the MFCC feature
vector in a multi-stream HMM. We obtain the joint probability of
observing an MFCC feature vector and a DRNN phoneme prediction
in the HMM state st as

p(xt, bt|st) = p(xt|st)µp(bt|st)2−µ

where µ ∈ (0, 2) is the MFCC stream weight. The emission prob-
abilities p(xt|st) are modeled by conventional GMMs whereas the
probabilities p(bt|st) are determined from the row-normalized state-
phoneme confusion matrix on a held out part of the training data.

To integrate feature enhancement with phoneme recognition, in-
stead of simply cascading both as in our previous work [3], we exploit
the fact that feature enhancement is performed by a DRNN and stack
the enhancement layers with the recognition layers, which allows
backpropagation of the recognition error to the enhancement layers.
More precisely, given a feature enhancement DRNN with N hidden
layers, we first train the weight matrices W(N+2), . . . ,W(N+N′+2)

of a DRNN with N +N ′ + 1 hidden layers (the output layer of the
feature enhancement DRNN becomes the N + 1-th hidden layer of
the stacked DRNN). The error function is the cross-entropy between
phoneme posteriors and phoneme labels. After convergence, all
weight matrices W(1), . . . ,W(N+N′+2) are re-trained until conver-
gence, using the same error function. Thus, the feature enhancement



network is re-trained discriminatively so as to enable good phoneme
classification instead of optimizing the squared error in the enhanced
features. Our ‘stacking’ procedure also resembles pre-training of the
first N hidden layers in a de-noising auto-encoder scheme [18].

In our system, the GMM stream emission probabilities p(xt|st)
are always calculated using features before DRNN enhancement. In
particular, the GMM model parameters exactly correspond to those
obtained using multi-condition discriminative training (on beam-
formed data in the 8-channel case). This improved performance
over using enhancement in both streams, probably because it makes
both streams carry more complementary information.

3. EXPERIMENTAL SETUP

3.1. Evaluation Database

Our methods are evaluated on the official development and evalua-
tion sets of the 2014 REVERB Challenge1 [1]. Since the dataset is
described in detail by [1], let us just summarize the most important
figures. The task is to recognize read medium vocabulary (5 k) speech
in eight different acoustic conditions, of which six are simulated by
convolving the WSJCAM0 corpus [26] with three measured room
impulse responses at near and far microphone distance, and adding
stationary noise recordings from the same rooms at an SNR of 20 dB
(SIMDATA). The other two conditions (REALDATA) correspond to
real recordings of speakers in a reverberant meeting room at two
microphone distances with ambient, stationary noise (mostly from
the air conditioning), taken from the MC-WSJ-AV corpus [27]. The
reverberation times (T60) range from 0.25 to 0.7 s, but are assumed
to be unknown at test time. In all conditions, eight channels of a
circular microphone array are available, of which the first is used as a
reference channel and to train the GMM-HMM ASR back-end. We
also investigate an ASR system that only uses the reference channel
in signal enhancement. The SIMDATA set has 1 484 / 2 176 utterances
from 20 / 20 speakers in the development and evaluation data. The
REALDATA set has 179 / 372 utterances from five / ten speakers.
For multi-condition ASR training and DAE training, the Challenge
multi-condition training set is used, which also contains artificially
distorted data similar to the SIMDATA set. It is of the same size as
the clean WSJCAM0 training set, containing 7 861 utterances from
92 speakers. Impulse responses and noise types are chosen randomly,
with equal probability.

Since the room impulse responses and noises in the training set,
SIMDATA, and REALDATA sets differ, the setup of the Challenge
provides a testbed to assess generalization of algorithms trained only
on artificial data to real-life conditions which are of similar nature,
but whose exact parameters are unknown.

3.2. ASR Back-End

The REVERB Challenge baseline is implemented in HTK [28]. Since
many state-of-the-art ASR techniques are not available in HTK, yet
we want to stick to an open-source ASR back-end for maximum
reproducibility, we re-implemented the REVERB Challenge baseline
in Kaldi [22], which delivers almost the same results as the official
baseline (cf. below).

The GMM-HMM ASR back-end uses an LDA-STC front-end
where nine consecutive frames of 13 MFCC features (coefficients 0–
12) are reduced to 40 components. STC transforms are estimated after
every other iteration of model training up to iteration 10. The standard
5 k WSJ bigram and trigram language models are used. In most of

1http://reverb2014.dereverberation.com/

our experiments, the language model weight is fixed at 1/α = 15.
For the Tandem back-end, the stream weight is set to µ = 1.2.

A clean triphone recognizer is trained on the WSJCAM0 training
set, while a multi-condition triphone recognizer is trained by repeating
the GMM-HMM training steps using the REVERB multi-condition
training set, including bMMI training of the GMMs. In case of
multi-condition training, LDA and STC matrices are estimated on
multi-condition training data while they are trained on clean data for
the clean recognizer. Similarly, the fMLLR bases Bi are estimated on
either the clean or multi-condition training set. To use multi-condition
training with front-end enhancement (beamforming and DRNN), the
multi-condition set is processed by the same enhancement steps.
Using the original multi-condition training set in combination with
enhancement delivered inferior results, sometimes even falling below
the clean training result.

3.3. Network Training

The weight matrices for DRNN feature enhancement are estimated
on the task to map the multi-condition set of the REVERB Challenge
to the clean WSJCAM0 training set, in a frame-by-frame manner.
To obtain the training inputs for the network in the eight-channel
case, the beamformer is applied on the multi-condition set. Log Mel
filterbank outputs with 23 Mel bands are used as input and output
features, and mean normalization is performed per utterance, so that
cepstral mean normalized (CMN) MFCCs can be obtained simply by
applying a discrete cosine transformation (DCT) to the DRNN output
ỹt. In practice, performing another CMN after DCT turned out to give
better performance, because the actual network outputs tend not to
have exact zero mean. Input and output features are globally variance
normalized on the training set. Thus, all feature transformations
at test time only need the current test utterance (‘utterance-based
processing’).

The network topology used in this study was determined based
on earlier feature enhancement experiments on the CHiME Challenge
data [5] and limited tuning on the REVERB development set. In the
case of beamformed input, networks have two hidden layers each
consisting of 128 LSTM units for each direction (N = 2). For single-
channel input, an additional hidden layer is used (N = 3), reflecting
the fact that the single-channel enhancement task is arguably more
complex. All weights are randomly initialized with Gaussian random
numbers (µ = 0, σ = 0.1).

We train the DRNNs through stochastic on-line gradient descent
with a learning rate of 10−6 and a momentum of 0.9. Weights are
updated after ‘mini-batches’ of 50 utterances (feature sequences).
Zero mean Gaussian noise (σ = 0.1) is added to the inputs in the
training phase. An early stopping strategy is used to minimize over-
fitting, by evaluating an error function on the development set for
each training epoch and selecting the best network accordingly. The
sum of squared errors, which is used in backpropagation, cannot be
evaluated on the development set by the Challenge guidelines, as
it would require using the clean development data. Thus, instead
the ASR performance in terms of WER is used directly. We train
the networks for a maximum of 50 epochs and measure the WER
with the clean trained LDA-STC recognizer and enhanced features
on the SIMDATA and REALDATA development for every training
epoch. The best network in terms of the sum of the SIMDATA and
REALDATA WERs is used as the final network. We found that the
optimal performance is obtained after only 6 epochs for the beam-
formed input, and after 17 epochs for the single-channel input. The
corresponding WER curves are shown in Figures 3a and 3b.

For DRNN acoustic modeling, we use three hidden layers (N ′ =

http://reverb2014.dereverberation.com/
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Fig. 3: DRNN feature enhancement training: WER curves on de-
velopment set, clean training, LDA-STC, no adaptation, tri-gram
LM

3) with 50 LSTM units for each direction on top of the enhancement
layers. A learning rate of 10−5 and input noise with standard de-
viation σ = 0.6 is used. Phoneme alignments are obtained by the
LDA-STC recognizer on the Challenge multi-condition training set.
Early stopping is done on the frame-wise phoneme error obtained
on a held out part of the multi-condition training data, consisting of
utterances from 10 speakers (it is not allowed to use the phoneme
error on the development data, as per Challenge regulations). Our
GPU enabled DRNN training software is publicly available2.

3.4. Search parameter optimization

For the final systems, we tune the language model weight on the (un-
weighted) average WER on the development SIMDATA and REAL-
DATA sets, by rescoring decoding lattices accordingly. The best
development set language model weight (without adaptation) is also
used for obtaining the first-pass hypothesis in fMLLR transformation
estimation. We also increase the width of the beam search both in

2https://sourceforge.net/p/currennt

Table 1: Results on the REVERB development set, on SIMDATA
and REALDATA. GMM-HMM recognizers, single-channel MFCC
front-end, without pre-processing. bg/tg: bi-gram/tri-gram language
modeling. 1 batch fMLLR per test condition. 2 basis fMLLR per
utterance.

LDA fMLLR MCT DT LM MBR WER [%]
-STC SIM REAL

REVERB Challenge baselines
7 7 7 7 bg 7 51.86 88.38
7 7 3 7 bg 7 28.94 52.29
7 31 3 7 bg 7 25.16 47.23

Our baselines
7 7 7 7 bg 7 51.23 88.81
7 7 3 7 bg 7 28.62 54.04
7 32 3 7 bg 7 23.60 47.14
3 7 7 7 bg 7 48.22 91.72
3 7 3 7 bg 7 23.41 47.80
3 32 3 7 bg 7 19.42 41.42
3 7 3 3 bg 7 17.34 46.48
3 32 3 3 bg 7 15.53 40.60
3 32 3 3 tg 7 12.28 31.05
3 32 3 3 tg 3 12.05 30.73

first-pass decoding and lattice generation to avoid search errors which
might cause performance drops.

3.5. System combination

For system combination, we use the Recognizer Output Voting Error
Reduction (ROVER) scheme implemented in NIST’s scoring toolkit3.
First, 1-best hypotheses with word level posteriors (‘confidences’) are
generated from the decoding lattices of each system. Then, alignment
of the hypotheses is performed by dynamic programming. Finally,
for each aligned segment a weighted majority vote is taken.

4. RESULTS AND DISCUSSION

4.1. Baseline ASR results

In a first step, we assess the performance gained by replacing the
Challenge recognizer by more up-to-date acoustic and language mod-
eling, as well as adaptation. The first three rows in Table 1 show the
results obtained by the Challenge recognizer, and the next three rows
those by the equivalent ‘Kaldi baselines’. These systems correspond
to clean training, multi-condition training, and multi-condition train-
ing plus fMLLR adaptation. The only difference is that the Kaldi
system using fMLLR does so on an utterance level by basis fMLLR,
which actually improves performance on the SIMDATA. As expected,
there is no significant difference in the other results.

The three subsequent rows show the same systems but with LDA-
STC feature transformation. It can be seen that in combination with
multi-condition training and/or adaptation, a significant performance
gain is obtained (roughly 5-6 % absolute). The result with clean
training and LDA-STC (48.22 % / 91.72 % WER) is given for com-
pleteness and as a clean recognizer baseline for evaluation of feature
enhancement.

Performing MCT with the bMMI criterion (discriminative train-
ing) gives another boost on SIMDATA (6 % absolute without adapta-

3ftp://jaguar.ncsl.nist.gov/pub/sctk-1.2c.tgz

https://sourceforge.net/p/currennt
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Table 2: WER obtained by single- and multi-channel front-ends with and without feature enhancement, on the REVERB development set.
ASR back-ends using with LDA-STC and basis fMLLR, tri-gram LM, MBR. # ch: number of channels; Enh: DRNN enhancement. Optimized:
tuning of LM weight and beam width in decoding. 1 bMMI training using clean data.

WER [%] Back-End
Front-End Clean trained MCT + bMMI Optimized
# ch Enh SIM REAL SIM REAL SIM REAL SIM REAL

1 7 33.21 77.76 14.92 35.20 12.05 30.73 11.22 30.77
1 3 13.99 35.03 13.51 32.69 10.77 28.30 10.44 26.30
8 7 16.42 54.49 9.77 26.34 7.94 23.82 7.49 23.91
8 3 9.72 26.49 9.94 24.25 7.91 22.04 7.67 21.39
Oracle 5.96 10.12 – – 5.011 10.121 5.061 9.911

tion, 4 % absolute with adaptation), but only a slight gain (≈ 1 %) on
REALDATA, probably because of the mismatched condition.

Next, choosing a tri-gram language model instead of a bi-gram
drastically improves performance by about 21/24 % relative on SIM-
DATA / REALDATA. This shows the importance of adding domain
knowledge to achieve increased robustness. Finally, using MBR
decoding slightly improves WER both on SIMDATA and REALDATA.

All in all, the performance gain just by improving the ASR back-
end are quite impressive, resulting in 52 % / 35 % relative reduction in
WER compared to the multi-condition / fMLLR REVERB baseline.
This improved ASR back-end (‘Kaldi baseline’) is made publicly
available under the Apache 2.0 open-source license 4.

4.2. Results with beamforming and/or spectral enhancement

Table 2 shows the results with single- and multi-channel enhancement.
We first use a clean recognizer (with fMLLR adaptation) to show
how well the front-end performs in a recognizer that has never seen
noisy data in training (recall that for the clean recognizer, the fMLLR
basis is computed on clean data as well). It can be seen that DRNN
enhancement on the single-channel input gives reasonable results
with the clean recognizer, significantly outperforming beamforming
on its own. However, combination of both in a straightforward cas-
cade gives by far the best result, improving by 71 % / 66 % relative
on SIMDATA and REALDATA over the baseline without front-end
processing.

When the back-end is trained with multi-condition data, DRNN
enhancement improves for all cases except the 8-channel SIMDATA.
Furthermore, if we optimize the search parameters, the performance
difference between features with and without DRNN enhancement
becomes larger on REALDATA (both for 1-channel and 8-channel).
This probably shows that for DRNN enhanced features, there are
some search errors in the baseline ASR due to a different dynamic
range of acoustic model likelihoods. Furthermore, we found that they
gave generally higher acoustic likelihoods, which requires adjusting
the LM weight.

All in all, while the performance gains by enhancement are no-
table, they are still far from the performance obtained in clean con-
ditions, especially on REALDATA. It has to be noted, though, that
the ASR task of REALDATA itself seems much harder than the SIM-
DATA task, when eliminating reverberation and noise as confounding
factors – the WER in clean conditions is about twice as high. This
could be due to a mismatch in accent and/or speaking style, since
the MC-WSJ-AV corpus was recorded in a different site and dialect
region than the WSJCAM0 corpus, and a different recording protocol

4http://www.mmk.ei.tum.de/˜wen/REVERB_2014/
kaldi_baseline.tar.gz

was used (speakers standing in a meeting room, rather than sitting in
a sound-proof booth).

4.3. Test set evaluation and system combination

Table 3 shows the detailed results on the evaluation set obtained
by the 1-channel and 8-channel systems, with and without DRNN
enhancement. In the 1-channel case, our best result (submitted to the
Challenge) is 10.21 / 26.73 % WER on the evaluation set. Comparing
the results obtained at the ‘near’ microphone distance with the 8-
channel front-end on SIMDATA with the oracle results, we observe
that the performance is already quite close (to be fair, one has to
look at the GMM-HMM results). However, at the ‘far’ distance a
significant difference remains. The results on REALDATA are less
encouraging, due to the aforementioned mismatch in training and test
data.

To investigate whether DRNN enhancement and acoustic model-
ing are complementary, let us first outline the results with the Tandem
DRNN+GMM-HMM recognizer. It obtains 6.48 / 7.28 % WER on
SIMDATA (development / evaluation set), which is our best single sys-
tem result for SIMDATA. However, the performance on REALDATA
is lower than the one of the DRNN enhancement GMM-HMM sys-
tem. This is arguably due to the discriminative training of the DRNN
acoustic model, which leads to a better modeling of the SIMDATA
which is close to the training data while worsening the results on the
mismatched REALDATA – recall that we made similar observations
for ML vs. bMMI GMM training, cf. Table 1.

We now investigate the combination of two or three of the 8-
channel systems. As it seems, the best combination on the develop-
ment set is the DRNN acoustic model with the DRNN enhancement
system. This combination achieves the best development set WER on
SIMDATA and REALDATA, indicating that both are complementary
approaches although they use similar modeling techniques (involving
a DRNN and a GMM). This combination also achieves the best aver-
age WER on the evaluation set, reaching down to 7.02 and 19.61 %
WER on SIMDATA and REALDATA.

5. CONCLUSIONS AND OUTLOOK

We presented the MERL/MELCO/TUM system for the REVERB
Challenge using a combination of beamforming, single-channel fea-
ture enhancement and acoustic modeling, the latter two by DRNNs.
The system architecture allows both multi-channel and single-channel
processing. In particular, the proposed integration of (physical) model
based multi-channel and data based single-channel processing has the
advantage that the models do not have to be re-trained for different
microphone array setups (as would be the case if we just concatenated
the input features from the eight channels for DRNN enhancement).

http://www.mmk.ei.tum.de/~wen/REVERB_2014/kaldi_baseline.tar.gz
http://www.mmk.ei.tum.de/~wen/REVERB_2014/kaldi_baseline.tar.gz


Table 3: REVERB development and evaluation set results for selected 1-channel and 8-channel systems, as well as system combination.
Evaluation set results are given per room and microphone distance (near / far). All with MCT, LDA-STC, basis fMLLR, bMMI, tri-gram LM,
MBR, optimized search parameters. BF: beamforming. Enh: DRNN enhancement.

WER [%] Dev. set avg. Evaluation set
SIM REAL SIMDATA REALDATA

Room 1 Room 2 Room 3 Avg Room 1 Avg
near far near far near far near far

1-channel systems
REVERB baseline 25.16 47.23 16.23 18.71 20.50 32.47 24.76 38.88 25.26 50.74 47.57 49.16
GMM-HMM 11.22 30.77 6.37 7.67 8.76 16.22 10.66 20.20 11.65 31.84 30.93 31.39
GMM-HMM (Enh) 10.44 26.30 6.39 7.52 8.41 14.15 9.47 15.30 10.21 25.39 28.06 26.73

8-channel systems (BF)
GMM-HMM (I) 7.49 23.91 5.39 5.93 6.38 9.71 6.87 12.47 7.79 20.25 23.16 21.71
DRNN+GMM-HMM (II) 6.48 22.07 5.32 5.76 6.19 9.00 6.65 10.78 7.28 19.74 23.63 21.69
GMM-HMM (Enh) (III) 7.67 21.39 5.49 6.12 6.80 9.69 7.13 11.28 7.75 17.66 22.52 20.09

8-channel systems (BF) – System combination
ROVER I+II 6.58 22.60 5.00 5.44 6.04 8.95 6.70 11.04 7.20 19.26 22.01 20.64
ROVER II+III 6.44 20.24 5.08 5.66 5.95 8.58 6.72 10.10 7.02 16.96 22.25 19.61
ROVER I+III 7.15 21.20 5.29 5.98 6.24 9.34 6.98 11.19 7.50 17.57 21.10 19.34
ROVER I+II+III 6.75 21.62 5.30 5.88 6.06 9.00 6.89 11.07 7.37 17.76 22.62 20.19

Oracle enhancement
GMM-HMM 5.06 9.91 5.34 5.55 6.07 5.65 8.47

Our system has been designed to allow utterance based process-
ing, but needs multiple recognition passes at this stage. It is thus
suitable, e.g., for server-based ASR systems. Most of the system
components could be used in an on-line ASR system as-is or with
small modifications. The CSP+DS front-end is fully on-line capa-
ble. Low-latency enhancement could be done by using unidirectional
DRNNs (possibly with a small window of future context); it remains
to evaluate the performance of this setup.

From our results, it is evident that there is a fundamental limita-
tion to the performance of training-based approaches in a mismatched
condition setup, such as the REALDATA scenario. In a practical ap-
plication one could perform semi-supervised training of the DRNN
enhancement and acoustic model on ‘field data’ (in the Challenge
scenario, this would be other data from the MC-WSJ-AV corpus,
which was not allowed to be used). This, along with other methods to
improve generalization, such as weight noise for DRNNs [29], will
be a promising direction for future research.
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