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Abstract
The objective of single-channel source separation is to accurately
recover source signals from mixtures. Non-negative matrix fac-
torization (NMF) is a popular approach for this task, yet previous
NMF approaches have not optimized directly this objective, de-
spite some efforts in this direction. Our paper introduces discrim-
inative training of the NMF basis functions such that, given the
coefficients obtained on a mixture, a desired source is optimally
recovered. We approach this optimization by generalizing the
model to have separate analysis and reconstruction basis func-
tions. This generalization frees us to optimize reconstruction ob-
jectives that incorporate the filtering step and SNR performance
criteria. A novel multiplicative update algorithm is presented
for the optimization of the reconstruction basis functions accord-
ing to the proposed discriminative objective functions. Results
on the 2nd CHiME Speech Separation and Recognition Chal-
lenge task indicate significant gains in source-to-distortion ratio
with respect to sparse NMF, exemplar-based NMF, as well as a
previously proposed discriminative NMF criterion.

1. Background
Non-negative matrix factorization (NMF) is a popular algorithm
commonly used for challenging single-channel audio source sep-
aration tasks, such as speech enhancement in the presence of
non-stationary noises [1, 2]. In this context, the basic idea is to
represent the features of the sources via sets of basis functions
and their activation coefficients, one set per source. Mixtures of
signals are then analyzed using the concatenated sets of basis
functions, and each source is reconstructed using its correspond-
ing activations and basis set.

NMF operates on a matrix of F -dimensional non-negative
spectral features, usually the power or magnitude spectrogram
of the mixture, M = [m1 · · ·mT ], where T is the number of
frames and mt ∈ RF+, t = 1, . . . , T are obtained by short-time
Fourier analysis of the time-domain signal. For the general case
of separating S sources, a set of Rl non-negative basis vectors
wl

1, · · · ,wl
Rl

is assumed for each source l ∈ {1, . . . , S}, and
concatenated into matrices Wl = [wl

1 · · ·wl
Rl

]. From this, a
factorization

M ≈WH = [W1 · · ·WS ][H1; · · · ; HS ] (1)

is obtained1. An approach related to Wiener filtering is typically
used to reconstruct each source while ensuring that the source
estimates sum to the mixture:

Ŝl =
WlHl∑
l W

lHl
⊗M, (2)

where ⊗ denotes element-wise multiplication and the quotient
line element-wise division. In our study, all Wl are learnt in

1For simplicity, we use the notation [a;b] for [aᵀbᵀ]ᵀ.

advance from training data, and at run time only the activation
matrices Hl = [hl1 · · ·hlT ], where hlt ∈ RRl

+ , are estimated.
This is called supervised NMF [3]. In the supervised case, the
activations for each frame are independent from the other frames
(mt ≈

∑
l W

lhlt). Thus, source separation can be performed
on-line and with latency corresponding to the window length plus
the computation time to obtain the activations for one frame [1].

At test time, supervised NMF finds the optimal activations
Ĥ such that

Ĥ = [Ĥ1; · · · ; ĤS ] = argmin
H

D(M |WH) + µ|H|1, (3)

where D is a cost function that is minimized when M = WH.
Here we use the β-divergence, Dβ , which for β = 1 yields the
generalized Kullback-Liebler (KL) divergence, and for β = 2,
yields the Euclidean distance, both of which are considered in
this paper. An L1 sparsity constraint with weight µ is added to
favor solutions where few basis vectors are active at a time. A
convenient algorithm [4] for minimizing (3) that preserves non-
negativity of H by multiplicative updates is given by iterating

H(q+1) = H(q) ⊗ Wᵀ(M⊗ (Λ(q))β−2)

Wᵀ(Λ(q))β−1 + µ
, 0 ≤ q < Q

until convergence, with Λ(q) := WH(q), the superscripts (q)
and (q + 1) indicating iterates, and Q ≥ 1 giving the maximum
number of iterations. H0 is initialized randomly.

Since sources often have similar characteristics in the short-
term observations (such as unvoiced phonemes and broadband
noise, or voiced phonemes and music), it seems beneficial to use
information from multiple time frames. In our study, this is done
by stacking features: the observation m′t at time t corresponds
to the observations [mt−TL ; · · · ; mt; · · · ; mt+TR ] where TL

and TR are the left and right context sizes. Analogously, each
basis element w′

l
k will model a sequence of spectra, stacked into

a column vector. For readability, we subsequently drop the ′.
The main contribution of this paper is a new objective func-

tion and optimization methods for training the model. Our
method trains an NMF model discriminatively to minimize the
error in estimating Ŝl by (2) based on the activations obtained by
(3). To our knowledge, this is the first method that optimizes the
model to minimize reconstruction error based on the inference
algorithm that will be used at test time.

2. Obtaining NMF Bases
A common approach [5, 6] to obtaining bases Wl is to fit an
NMF model WlHl to the spectrograms of source signals, Sl, by
separately minimizing the objective Dβ(Sl |WlHl) for each
source. Sparse regularization is useful for many problems, so
here we consider sparse NMF (SNMF), which has the objective,

W
l
,H

l
= argmin

Wl,Hl

Dβ(Sl | W̃lHl) + µ|Hl|1, (4)



for each source, l, where W̃l =
[

wl
1

‖wl
1‖
· · ·

wl
Rl

‖wl
Rl
‖

]
is the

column-wise normalized version of Wl. Since the L1 spar-
sity constraint on H is not scale-invariant, it can be trivially
minimized by scaling of the factors; by including the normaliza-
tion in the cost function, the scale indeterminacy can be avoided.
Note that for the reasons pointed out by [7], this is not the same
as performing standard NMF optimization and scaling one of
the factors to unit norm after each iteration, which is often the
way sparsity is implemented in NMF and which we shall denote
by NMF+S. A multiplicative update algorithm to optimize (4)
for arbitrary β ≥ 0 is given by [6].

To avoid the peculiarities of sparse NMF training, in prac-
tice, exemplar-based approaches, where every basis function
corresponds to an observation of the source l in the training
data, have become popular for large-scale factorizations of audio
signals [2, 8]. We will consider both sparse basis learning and
exemplar bases as baselines for comparison with our proposed
approach, which we present in the next section.

2.1. Discriminative approach to NMF

The model underlying the above source separation process can
be called a factorial one, where separately trained source models
are concatenated to yield a model of the mixture.This comes
with the benefit of modularity: models of different sources can
be substituted for one another without having to train the whole
system. However, this type of model also has a fundamental
flaw: the objectives (3) and (4) used at test and training time
are considerably different. The test-time inference objective (3)
operates on a mixture while the training objective (4) operates
on separated sources.

It is easy to see that if there is spectral overlap in the bases
of the different sources – which cannot be avoided in the general
case, such as for speech/noise separation – the activations ob-
tained using (3) will be different than those obtained using (4).
It is clear that (4) cannot be used at test time, since Sl is un-
known. Hence, our discriminative approach is based on taking
into account the objective function from (3) at training time.

This involves having mixtures M along with their ground
truth separated sources Sl available for training (parallel train-
ing). However, supervised NMF also assumes the availability
of separated training signals for all sources, and assumes simple
linear mixing of the sources at test time. Generating the mix-
tures from the training signals for parallel training requires no
additional assumptions.

We propose the following optimization problem for training
bases, termed discriminative NMF (DNMF):

Ŵ = argmin
W

∑
l

γlDβ
(
Sl |WlĤl(M,W)

)
, (5)

where Ĥ(M,W) = argmin
H

Dβ(M | W̃H) + µ|H|1, (6)

and γl are weights accounting for the application-dependent
importance of the source l; for example, in speech de-noising,
we focus on reconstructing the speech signal. The first part (5)
minimizes the reconstruction error given Ĥ. The second part
ensures that Ĥ are the activations that arise from the test-time
inference objective. Note that, in (5), W does not need nor-
malization. Given the bases W, the activations Ĥ(M,W) are
uniquely determined, due to the convexity of (6). Nonetheless,
the above remains a difficult bi-level optimization problem [9],
since the bases W occur in both levels2.

2After this paper was submitted, an objective function similar to (5)

Note that the bases W used for analysis in (6) are the same
as the ones used for reconstruction in (5). However, there is
no clear benefit to such a contraint, and we can generalize the
problem by separating the reconstruction and analysis bases:

Ŵ = argmin
W

∑
l

γlDβ
(
Sl |WlĤl(M,W

))
, (7)

where W are the analysis bases. This generalized DNMF prob-
lem, in its full generality, is still bi-level, but it gives us the option
of holding W constant to alleviate the difficulty, as W can then
be obtained using the classical NMF updates. Optimizing both
W and W jointly using (7) is interesting but challenging, and
it is unclear how much benefit it would bring. We thus pro-
cede with W trained separately on each source using (4), and
introduce the shorthand notation Ĥ = Ĥ

(
M,W

)
.

2.2. Optimizing bases for Wiener filtering and SNR

As an additional benefit, the proposed framework allows us to
easily extend the optimization to the Wiener-filter reconstruction
(2), yielding the optimization of a new training objective:

Ŵ = argmin
W

∑
l

γlDβ

(
Sl
∣∣∣WlĤl

WĤ
⊗M

)
. (8)

At test time, the source estimates Ŝ for a mixture M are recon-
structed using (2) with Ŵ and the activations Ĥ

(
M,W

)
.

The framework also allows us to optimize the bases to im-
prove signal-to-noise ratio (SNR) in the case where features
are magnitude spectra. Indeed, minimizing the Euclidean dis-
tance Dl

2 := D2(Sl|Ŝl) between the magnitude spectrum of
the source l, Sl, and that of its reconstruction, Ŝl, directly cor-
responds to maximizing the SNR, neglecting the difference be-
tween noisy and oracle phases (we thus optimize for an upper-
bound of the actual SNR). Thus, training W using (8) with
β = 2 amounts to optimizing the bases for maximum SNR.
Note that this does not mean that the activations Ĥ

(
M,W

)
used in (8) necessarily have to be found with the same setting
β = 2 in (6), as long as the same β is used at training time and
test time. In fact, we found that best results were obtained by
using β = 1 in (6) and β = 2 in (8). This might be due to the
KL divergence being better suited to decomposing mixtures, as
was shown in previous evaluations [11, 12].

2.3. Relation to Prior Work

Various prior methods incorporating some notion of discrimina-
tive training have previously been proposed. However none of
them satisfies our criterion of training-time optimization of the
reconstruction using the test-time inference method applied to
mixed signals. A discriminatively trained classifier on H is used
in [13] to improve pitch detection by NMF, but does not consider
basis learning or reconstruction. A heuristic method to train
bases is proposed in [14] to minimize spectral overlap; however,
it is not clear what the effect of this is on test-time reconstruction,
since test-time reconstruction is not directly taken into account.
In a similar vein, [15] proposes to take into account an objective
function based on a discriminatively trained classifier in optimiz-
ing the NMF bases for multiple pitch estimation. A new training
objective is proposed in [16] that additively combines the sparse
NMF training-time and test-time objective functions, i.e., the

and (6) was independently proposed in [10], which tackles the bi-level
optimization but without generalizing the model as in (7).



right hand sides of (3) and (4). This gives rise in our setting to a
cost function of the form3∑

l

Dβ(Sl | W̃lHl) +Dβ(M |
∑
l

W̃lHl) + 2µ|H|1. (9)

The above objective is described as a discriminative NMF; how-
ever, it suffers from the same fundamental flaw as plain NMF:
the training-time optimization differs from the test-time infer-
ence and reconstruction procedure, so the objective is not truly
discriminative. Moreover, our experimental results (shown in
Table 1) indicate that it performs no better than sparse NMF.

3. Multiplicative Update Algorithms for
Discriminative NMF with Wiener filtering

We now derive a multiplicative update algorithm to minimize
the objective in (8) with respect to W for fixed H, where our
goal is to reconstruct a single source l ∈ {1, . . . , S}. We set
γl = 1, γl′:l′ 6=l = 0, and define Λ =

∑
l W

lHl, Λl = WlHl

for l ∈ {1, . . . , S}, Λl = Λ−Λl, and Ŝl = Λl/Λ⊗M.
KL objective with Wiener filtering (DNMF-W-KL): For the
case where β = 1 (KL), the objective function in (8) becomes

Dl
1 := D1(Sl | Ŝl) =

∑
i,j

Sli,j log
Sli,j

Mi,j
Λl
i,j

Λi,j

+Mi,j
Λli,j
Λi,j
−Sli,j .

The partial derivative of Dl
1 with respect to the i-th element of

the k-th basis function of the desired source, wli,k, is

∂Dl
1

∂wli,k
=
∑
j

Sli,j

(
hlk,j
Λi,j

−
hlk,j
Λli,j

)
+Mi,j

hlk,jΛi,j − Λli,jh
l
k,j

Λ2
i,j

=
∑
j

−
Sli,jΛ

l
i,j

Λi,jΛli,j
hlk,j +

Mi,jΛ
l
i,j

Λ2
i,j

hlk,j , (10)

where we use in the second equality that, by definition, Λi,j −
Λli,j = Λli,j . Similarly, we obtain

∂Dl
1

∂wl
′
i,k

=
∑
j

Sli,j
Λi,j

hl
′
k,j −

Mi,jΛ
l
i,j

Λ2
i,j

hl
′
k,j (11)

for any l′ 6= l. Since all matrix elements are non-negative, we
can derive multiplicative update rules by splitting (10) and (11)
into positive and negative parts, as done in [4]:

Wl ←Wl ⊗
Sl⊗Λl

Λ⊗Λl Hlᵀ

M⊗Λl

Λ2 Hlᵀ

Wl ←Wl ⊗
M⊗Λl

Λ2 Hl
ᵀ

Sl

Λ
Hl

ᵀ

where Wl := [W1 · · ·Wl−1Wl+1 · · ·WS ], i.e., the bases of
all sources except l, and Hl is defined accordingly. The general
case of γl ≥ 0 for all l is an easy extension due to the linearity
of the gradient.
LS objective with Wiener filtering (DNMF-W-LS): For the
case where β = 2 (LS: least-squares), the gradient of Dl

2 leads
to:

Wl ←Wl ⊗
M⊗Sl⊗Λl

Λ2 Hlᵀ

M2⊗Λl⊗Λl

Λ3 Hlᵀ

3In [16], all combinations of isolated training signals are included as
training data, but this is infeasible for the size of speech corpus we used.

Wl ←Wl ⊗
M2⊗(Λl)2

Λ3 Hl
ᵀ

M⊗Sl⊗Λl

Λ2 Hl
ᵀ

The extension to general γl is again straightforward.

4. Experiments and Results
Our methods are evaluated on the corpus of the 2nd CHiME
Speech Separation and Recognition Challenge, which is pub-
licly available4. The task is to separate speech from noisy and
reverberated mixtures (S = 2, l = 1: speech, l = 2: noise).
The noise was recorded in a home environment with mostly
non-stationary noise sources such as children, household appli-
ances, television, radio, etc. Training, development, and test
sets of noisy mixtures along with noise-free reference signals
are created from the Wall Street Journal (WSJ-0) corpus of read
speech and a corpus of training noise recordings. The dry speech
recordings are convolved with room impulse responses from
the same environment where the noise corpus is recorded. The
training set consists of 7 138 utterances at six SNRs from -6 to
9 dB, in steps of 3 dB. The development and test sets consist of
410 and 330 utterances at each of these SNRs, for a total of 2 460
/ 1 980 utterances. Our evaluation measure for speech separation
is source-to-distortion ratio (SDR) [17]. By construction of the
WSJ-0 corpus, our evaluation is speaker-independent. Further-
more, the background noise in the development and test set is
disjoint from the training noise, and a different room impulse
response is used to convolve the dry utterances.

4.1. Feature extraction

Each feature vector (in the mixture, source, and reconstructed
source spectrograms as well as the basis vectors) covers nine
consecutive frames (TL = 8, TR = 0) obtained as short-time
Fourier spectral magnitudes, using 25 ms window size, 10 ms
window shift, and the square root of the Hann window. Since no
information from the future is used (TR = 0), the observation
features (mt) can be extracted on-line. In analogy to the features
in M, each column of Ŝl corresponds to a sliding window of con-
secutive reconstructed frames. To fulfill the on-line constraint,
only the last frame in each sliding window is reconstructed.

4.2. Baselines: Exemplar-based and sparse NMF

We use the same number R of basis vectors for speech and
noise (R1 = R2 = R). We run an experiment for R = 100
and R = 1000. The maximum number of iterations at test
time is set to Q = 25 based on the trade-off between SDR
and complexity – running NMF until convergence increased
SDR only by about .1 dB SDR. At training time, we use up to
Q = 100 iterations. As a first baseline, we consider exemplar-
based NMF (ENMF), where the analysis basis W corresponds
to R1 +R2 = 2R randomly selected spectral patches of speech
and noise, each spanning TL + 1 = 9 frames, from the iso-
lated CHiME speech and background noise training sets. Next,
we perform NMF basis training by SNMF according to (4),
setting S1 and S2 to the spectrograms of the concatenated noise-
free CHiME training set and the corresponding background
noise in the multi-condition training set. This yields SNMF
bases W

l
, l = 1, 2. Due to space complexity, we use only

10 % of the training utterances. As initial solution for W, we
use the exemplar bases. The sparsity weight µ is chosen from

4http://spandh.dcs.shef.ac.uk/chime challenge/ – as of Feb. 2014



0 0.1 0.2 0.5 1 2 5 10 20 50 100
5

6

7

8

9

10

11

µ

S
D

R
 [

d
B

]

 

 ENMF

NMF+S

SNMF

DNMF−W−KL

DNMF−W−LS

(a) Results for R = 100

0 0.1 0.2 0.5 1 2 5 10 20 50 100
5

6

7

8

9

10

11

µ

S
D

R
 [

d
B

]

 

 ENMF

NMF+S

SNMF

DNMF−W−KL

DNMF−W−LS

(b) Results for R = 1000

Figure 1: Average SDR obtained for various sparsity weights µ
on the CHiME Challenge (WSJ-0) development set.

{0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100}. We found that using
the exemplar bases as initialization provided fast convergence of
the objective especially for large values of µ. Finally, we also
consider NMF+S, an NMF where renormalization of the bases is
done between iterations, as mentioned in Section 2. Surprisingly,
to our knowledge, no comparisons between NMF+S and SNMF
exist in the literature.

In the ENMF, NMF+S and SNMF experiments, the matrix
W is used both for determining Ĥ according to (3) and for
reconstruction using (2).

4.3. Discriminative NMF

In the discriminative NMF experiments, a discriminatively
trained basis set Ŵ is obtained using the DNMF-W-KL or
DNMF-W-LS algorithm (l = 1, cf. Section 3), which is used for
reconstruction using (2). M is set to the concatenated spectro-
gram of 10 % of the CHiME training set, so that we train DNMF
and SNMF on the same data. The SNMF basis W = [W

1
W

2
]

is used as initialization for Ŵ, as well as to get the activations
Ĥ using (3), again using Q = 25 iterations.

4.4. Evaluation on CHiME development and test sets

Figure 1 compares the average SDR obtained on the CHiME
development set by using ENMF, NMF+S and SNMF, as well
as DNMF-W-KL and DNMF-W-LS based on SNMF bases, for
various sparsity parameters as well as basis sizes R. For a
given R, all models have the same architecture and test time

SDR [dB] Input SNR [dB]
-6 -3 0 3 6 9 Avg.

Noisy -2.27 -0.58 1.66 3.40 5.20 6.60 2.34
ENMF 3.01 5.58 7.60 9.58 11.79 13.67 8.54
NMF+S 3.60 5.98 7.58 9.19 10.95 12.16 8.24
SNMF 5.48 7.53 9.19 10.88 12.89 14.61 10.10
d.NMF [16] 5.47 7.52 9.19 10.89 12.91 14.63 10.10
DNMF-W-KL 6.46 8.29 9.80 11.32 13.27 14.93 10.68
DNMF-W-LS 6.61 8.40 9.97 11.47 13.51 15.17 10.86

Table 1: Source separation performance on CHiME Challenge
(WSJ-0) test set using µ = 5 and R = 1000.

complexity. It can be seen that SNMF outperforms ENMF for
higher sparsity values (µ ≥ 0.5). It is also interesting to see
that SNMF consistently and significantly outperforms its ad hoc
counterpart NMF+S. Furthermore, for R = 100, there is only
a slight improvement by DNMF-W-KL over the best SNMF
setting (µ = 5, SDR=9.14 vs. 9.01 dB). However, DNMF-W-
LS improves to 9.43 dB. For R = 1000, the improvement by
DNMF is much more pronounced, while the SNMF performance
increases only slightly (up to 10.1 dB for DNMF, 9.20 dB for
SNMF). This could be attributed to the algorithm being able to
exploit the increased set of trainable parameters more effectively
than SNMF. It is also notable that the results by DNMF seem
to be much less influenced by the choice of µ. This suggests
that discriminative training can recover from the errors caused
by using sub-optimal bases for analysis (such as those trained
with sub-optimal µ).

Table 1 shows the results on the CHiME test set by ENMF,
NMF+S, SNMF, DNMF-W-KL, and DNMF-W-LS using µ = 5
as tuned on the development set, for R = 1000. The results
mirror those obtained on the development set. DNMF-W-LS
improves over the ENMF baseline by 2.3 dB and over SNMF
by .76 dB. There is a larger gain at low SNRs (DNMF-W-LS
vs. SNMF: +1.1 dB SDR at -6 dB input SNR). The improve-
ment by DNMF-W-LS over SNMF at each SNR is significant
according to a Wilcoxon signed rank test [18]. The attempt at
discriminative NMF from [16] does not improve over SNMF in
our experiments. When optimizing (9) starting from an optimal
SNMF solution, i.e., with µ = 5, only the sparsity cost in the ob-
jective function (9) decreased, not the reconstruction terms. This
is consistent with the slight SNR improvements reported in [16]
because they did not consider µ > 0.1 although performance
increased monotonously for µ ∈ [0, 0.1].

5. Conclusions
We have presented an effective discriminative approach for train-
ing NMF reconstruction bases that provide the best reconstruc-
tion of the source given the activations obtained in conventional
supervised NMF, yielding significant performance gains in the
CHiME speech/noise separation task. While it does require paral-
lel training data, it does not increase complexity at test time with
respect to conventional NMF. The method is able to yield good
performance even on top of sub-optimal analysis bases, such as
bases trained with very low or very high sparsity. This suggests
that our method could also improve in cases where sparse NMF
is not an appropriate model due to the lack of sparseness, such as
polyphonic sources in music. A caveat is that it is unclear how
such a method may be used in the context of semi-supervised
NMF. Finally, a remaining challenge is to perform joint discrim-
inative training of both analysis and reconstruction bases.
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