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ABSTRACT

The recently-proposed deep clustering algorithm represents a fun-
damental advance towards solving the cocktail party problem in the
single-channel case. When multiple microphones are available, spa-
tial information can be leveraged to differentiate signals from dif-
ferent directions. This study combines spectral and spatial features
in a deep clustering framework so that the complementary spectral
and spatial information can be simultaneously exploited to improve
speech separation. We find that simply encoding inter-microphone
phase patterns as additional input features during deep clustering
provides a significant improvement in separation performance, even
with random microphone array geometry. Experiments on a spatial-
ized version of the wsj0-2mix dataset show the strong potential of
the proposed algorithm for speech separation in reverberant environ-
ments.

Index Terms— deep clustering, spatial clustering, deep learn-
ing, cocktail party problem, speaker-independent speech separation

1. INTRODUCTION

Dramatic advances have been made in monaural speaker-independent
multi-speaker speech separation since the introduction of the deep
clustering algorithm [1, 2]. However, there has been little work
extending this framework to the multi-channel setting. Deep clus-
tering addresses the cocktail party problem by training a deep neural
network (DNN) to project each time-frequency (T-F) unit to a high-
dimensional embedding vector such that the embeddings for the T-F
unit pairs dominated by the same speaker are close, while those for
pairs dominated by different speakers are farther away from each
other. This way, the speaker assignment of each T-F unit can be
determined at run time by applying a simple clustering algorithm
to the embeddings. Deep clustering was the first modern approach
to perform speaker-independent separation, and demonstrated su-
perior performance over previous attempts at speech separation,
including graphical modeling approaches [3], spectral clustering
approaches [4], and computational auditory scene analysis based
methods [5].

When multiple microphones are available, the directional infor-
mation associated with each source can be exploited for separation,
as sound sources are often spatially separated in real-world environ-
ments. To utilize this information, conventional wisdom focuses on
clustering the individual T-F units into different sources according
to their spatial origins by assuming that each T-F unit is dominated
by only one source across all the microphone channels [6–9]. Inter-
channel time/phase differences (ITDs/IPDs), interchannel level dif-
ferences (ILDs), and directional statistics [8] are the most commonly
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used spatial cues for spatial clustering [5]. However, when the sound
sources are spatially close, when room reverberation is present, or
when the sound sources are moving, the ITDs, ILDs, and directional
statistics are typically not good enough to achieve sufficient source
separation. In such cases, spectral information can complement the
insufficient spatial information, as sound sources such as speech ex-
hibit characteristic spectral patterns that can be learned, as demon-
strated by single-channel deep clustering [1, 2].

Here we propose to improve deep clustering by incorporating
spatial information into the input features, along with the usual
spectral information, in order to provide a stronger set of separation
cues. Other recent studies have combined spatial information with
deep clustering in a different way. The systems by [10] and [11]
use the outputs of single-channel deep clustering to derive a beam-
former for each source. Their beamforming approaches follow the
success of T-F masking and deep learning based beamforming for
speech enhancement [12] in the recent CHiME-3 and CHiME-4
challenges [13], where the estimated single-channel masks are com-
bined to compute speech or noise covariance matrices. However, the
power of their algorithms is largely limited by beamforming, which
is only a linear spatial filter per frequency. Many factors can reduce
the effectiveness of such beamforming: room reverberation, moving
sources, diffuse noise, and conditions with more sources than mi-
crophones, all can significantly degrade the resulting separation. In
addition, when sound sources arrive from the same general direc-
tion, beamforming may fail to resolve them. In contrast, by jointly
training on spectral and spatial features, our approach can learn to
balance the two types of information. The estimated embeddings
and masks from the proposed algorithm may also serve as a better
initialization for the T-F masking based beamforming approaches.
However, in our experiments the joint deep clustering was often able
to outperform the mask-based beamforming approach even when
using the ideal oracle masks to obtain the beamforming parameters.

There are previous studies using spatial features for DNN train-
ing [14–17] for speech enhancement tasks (i.e., only one target
speaker with background noise) and they typically assume that the
target speaker is in a fixed direction, typically the front direction in
the binaural setup. However, in the more general setting we pursue,
the target speakers may be in any combination of positions. To the
best of our knowledge, this study is the first attempt at applying
spatial features to train deep networks for speaker separation. For
evaluation, we create a spatialized and reverberant version of the
wsj0-2mix dataset [1]. Our method is shown to give much better
separation performance in the stereo case in terms of signal-to-
distortion ratio (SDR) than the oracle multi-channel Wiener filter
(MCWF) [9], model-based EM source separation and localization
(MESSL) [18], and GCC-NMF [19] algorithms.



Fig. 1. Network architecture of (a) single-channel deep clustering,
(b) multi-channel deep clustering.

2. SYSTEM DESCRIPTION

2.1. Single-Channel Deep Clustering

The key idea of deep clustering [1, 2] is to learn a high-dimensional
embedding for each T-F unit using a neural network such that the
embeddings for the T-F unit pairs dominated by the same speaker
are close while farther away otherwise. At test time, the speaker
assignment of each T-F unit can then be simply determined using a
clustering algorithm, such as k-means, on the learned embeddings.
More specifically, let yi ∈ R1×C be a one-hot label vector denot-
ing which of the C sources in a mixture dominates the i-th T-F unit.
The network learns to produce aD-dimensional unit-length vector vi
such that the affinity matrix computed from all the yi can be approx-
imated using the learned embeddings. Mathematically, the objective
function optimized in [1, 2] is as follows:

LDC(V, Y ) = ‖V V T − Y Y T‖2F (1)

where the embedding matrix V ∈ RTF×D and the label matrix
Y ∈ RTF×C are respectively obtained by vertically stacking all the
embedding vectors vi and all the one hot vectors yi in an utterance.
The network architecture is shown in Fig. 1(a). This framework has
produced remarkable improvements over conventional methods on
single-channel speech separation tasks [1, 2].

Our recent study [20] found that further improvements could be
obtained using an alternative cost function based on whitening the
embeddings in a k-means objective:

LDC,W(V, Y ) = ‖V (V TV )−
1
2 − Y (Y TY )−1Y TV (V TV )−

1
2 ‖2F

= D − tr
(
(V TV )−1V TY (Y TY )−1Y TV

)
. (2)

One caveat to the labels, Y , is that for quiet T-F regions, it be-
comes arbitrary which source dominates, and the resulting noisy la-
bels can provide an inconsistent training signal for deep clustering.
In addition, these T-F units do not carry directional phase informa-
tion regarding the underlying source directions. Following [1], we
filter out the T-F bins where none of the sources is significantly ac-
tive. In particular, a source is considered active in a T-F bin if its
magnitude is within some threshold from its largest magnitude in the
mixture: wi = maxk

[
10 log10(|sk,i|2/maxj |sk,j |2) > β

]
, where

[·] is the Iverson bracket, |sk,i| represents the magnitude of the i-th
T-F unit of the clean source k, and β is empirically set to −40 dB.

2.2. Two-Channel Deep Clustering

In the proposed method we encode not only spectral but also spatial
information into the embedding of each T-F unit by including spa-
tial features as additional inputs, as illustrated in Fig. 1(b). Since
spectral and spatial features can be complementary in terms of their
sources of uncertainty and failure modes, we expect their combina-
tion to show improved robustness relative to each type of feature
in isolation. We consider two types of additional features, each in-
spired by one of the two popular approaches for conventional spatial
clustering, the narrowband approach and the wideband approach.

The narrowband approach performs clustering within each fre-
quency band using spatial cues such as IPDs or ILDs. The DUET
algorithm [6, 7] assumes that the microphone pairs are placed suf-
ficiently close to each other so that phase-wrapping effects can be
neglected. It estimates the ITD of each T-F unit by directly divid-
ing the phase difference by the angular frequency, and then performs
clustering on the estimated ITDs and ILDs of all the T-F units. Un-
fortunately, with narrowly separated microphones, the ITDs could be
too small to be useful for separation. Moreover room reverberation
can substantially deteriorate the ITDs and ILDs. In contrast Sawada
et al. [8] handles phase wrapping by clustering based ultimately on
IPDs intead of ITDs. This results in an unknown permutation of
the clusters across frequencies, which is handled by further cluster-
ing across frequency. Using the STFT vectors for spatial clustering
has also been explored in acoustic beamforming [21–23]. However,
those approaches only perform clustering based on spatial cues and
there are no clear ways to combine them with spectral features. It
would be beneficial to perform clustering across all the frequencies
and over all the T-F units, as some frequency bands may be particu-
larly worse than others and most importantly, more T-F units would
form stronger cluster patterns that could elicit better clustering re-
sults.

Here, we use the following IPDs as additional features for model
training:

cosIPD(t, f, p, q) = cos(θt,f,p,q) (3)
sinIPD(t, f, p, q) = sin(θt,f,p,q) (4)

where θt,f,p,q = ∠xt,f,p − ∠xt,f,q is the phase difference be-
tween the STFT coefficients xt,f,p and xt,f,q at time t and fre-
quency f of the signals at microphones p and q. The rationale
is that for spatially-separated sources with different time delays,
xt,f,p
xt,f,q

=
|xt,f,p|
|xt,f,q|

eθt,f,p,q should naturally form clusters within each
frequency band due to the speech sparsity property [6]. As the gains
at different microphones are usually very similar under the far-field
assumption, our study only uses the phase term for deep clustering,
in the form of its real and imaginary parts. For a given source, the
cosIPD and sinIPD features at different frequency bands are very
different, so we combine them with spectral features that can help
resolve the ambiguity. Note that the loss function is always com-
puted from all the T-F units rather than independently within each
frequency band.

The wideband approach avoids the IPD ambiguity by enumer-
ating a set of potential time delays. The key insight [18] is that,
given a time delay, the phase differences at all the frequency bands
can be unambiguously determined in anechoic environments. The
MESSL [18] algorithm therefore performs spatial clustering accord-
ing to the time delays by checking whether the hypothesized time de-
lay matches the observed phase differences at different frequencies.
Motivated by [18] and the GCC-PHAT algorithm [24], we derive the



following spatial feature for model training:

GCC(t, f, p, q, τ) = cos
(
θt,f,p,q −

2πf

N
τ
)

(5)

where N is the frame length, θt,f,p,q is the observed phase differ-
ence, τ is the hypothesized time delay in samples, and 2πf

N
τ is the

hypothesized phase difference. The 2π-periodic cosine operation
here can deal with potential phase wrapping effects.

The rationale behind this feature is that each of the underlying
sources in a mixture could come from any direction. Our approach
avoids a separate sound localization module [19, 25] by enumerat-
ing a set of potential time delays. When a hypothesized time delay
matches the observed phase difference, it appears as a peak in the
derived spatial feature. The entire set of GCC coefficients encodes
all the direction information of each source and hence could be use-
ful for deep clustering. Although this feature exhibits strong spatial
aliasing effects in high-frequency bands, we hand it over to a neu-
ral network which may learn to deal with the spatial aliasing effects
automatically.

The GCC features have a much higher dimension than the spec-
tral features. If each dimension of these two features is normalized
to unit variance, more importance will be implicitly placed on the
GCC features. However, spectral features are also very important
for deep clustering. Our system places equal importance on them
by normalizing each dimension of the spatial features to have 1/K
variance, where K is the number of the time delays of interest, and
each dimension of the spectral features to have unit variance. This
simple strategy leads to faster convergence and better performance
compared with normalizing all the dimensions to unit variance in our
experiments.

2.3. Multi-Channel Deep Clustering

We propose a simple yet effective algorithm to extend our system
to arrays with more than two microphones. At run time, we first
choose a reference microphone, and for each pair constituting of a
reference microphone and a non-reference microphone, we get an
embedding for each T-F unit using the two-channel deep cluster-
ing model. Then we stack the embeddings of all the pairs of refer-
ence and non-reference microphones at each T-F unit, and perform
k-means clustering on the stacked embeddings. The resulting binary
mask is applied to the reference microphone signal for separation.
This way, our algorithm is readily applicable to microphone arrays
with diverse microphone geometries and with any number of micro-
phones.

3. EXPERIMENTAL SETUP

We use a room impulse response (RIR) generator1 to spatialize the
wsj0-2mix [1] dataset. This dataset has been widely used in many
single-channel speech separation studies [1, 2, 26–28] since the de-
but of deep clustering. The training and validation sets are generated
by mixing two randomly-selected utterances from two randomly-
selected speakers in the WSJ0 training set after re-scaling them by
randomly-selected coefficients such that the SNR of one source with
respect to the other in the mixture is uniformly distributed between
-5 dB and +5 dB. The test set is similarly generated using the speak-
ers in the development and evaluation sets of the WSJ0 corpus. Note
that the test speakers in wsj0-2mix are unseen in the training and
validation set. There are 20,000 (∼30h), 5,000 (∼10h), and 3,000

1Available online at https://github.com/ehabets/RIR-Generator.

(∼5h) utterances in the training, validation, and test set, respectively.
The RIR generator uses the image method [29] to generate simu-
lated room impulse responses.The general guideline is to make the
setup as random as possible within realistic constraints. For each
two-speaker mixture, we randomly generate a room with random
room characteristics, speaker locations and microphone geometry.
The aperture sizes are randomly sampled from 15 cm to 25 cm. The
T60s are randomly drawn from 0.2 s to 0.6 s, as this range of T60s
is most common in domestic environments [9]. All microphones are
omni-directional. The average distance between speaker and array
center is 1.3 m with 0.4 m standard deviation. The average direct-
to-reverberant energy ratio is 2.5 dB with 3.8 dB standard deviation.
The code to generate the data is available online2.

We only use the signals at the first channel for model training
and evaluation. During training, we extract the spectral feature from
the first-channel signals and compute Y from the clean reverberant
speech of each source captured at the first microphone. The spatial
feature is extracted using the first-channel signal together with one
of the other signals. For evaluation, we extract the spectral features
from the first-channel signal and use the clean reverberant speech of
each source at the first channel as the reference for SDR computa-
tion. The τ in Eq. (5) is enumerated from -6 to 6 samples3 in steps
of 0.25 samples. We found that this step size leads to a good enough
spatial resolution (340/8,000*0.25=0.01 m). The dimension of the
GCC feature at each T-F unit is therefore 49 (K=2*6/0.25+1). Al-
though the dimension may sound high, it is still acceptable as, in
deep clustering, the dimension D of the embeddings is typically set
to 20 per T-F unit [1, 2], which is of the same order of magnitude as
that of the GCC feature dimension.

Our BLSTM consists of four hidden layers, each with 600 units
in each direction. It is trained from scratch on 400-frame segments
for a maximum of 200 epochs using the Adam algorithm. The win-
dow size is 32 ms and the hop size is 8 ms. The sampling rate is
8 kHz. We perform 256-point FFT to get 129-dimensional log mag-
nitude features for each frame for BLSTM training. At run time,
k-means clustering is always performed on the entire utterance to
get a binary mask for separation.

4. EVALUATION RESULTS

To check the validity and correctness of using the proposed features
for deep clustering, we first evaluate them on the spatialized ane-
choic wsj0-2mix data. We emphasize that it is known that this ane-
choic setup using two microphones and two speakers is not challeng-
ing at all for beamforming algorithms, as they can achieve almost
perfect separation [9]. Evaluating on this basic setup however can
prove the correctness and show the potential of our algorithm. Note
that this spatialized anechoic wsj0-2mix data is almost the same as
the original wsj-2mix data. The only difference is that the signals
are delayed and decayed slightly due to sound propagation in the
air. The results are presented in Table 1. Using only the log magni-
tude features as input for deep clustering, we obtain 10.3 dB, which
matches the 10.3 dB SDR result obtained on the original wsj0-2mix
in [2], using a similar architecture. After further incorporating the
cosIPD, cosIPD+sinIPD, and GCC features for model training, we
achieve 12.5 dB, 12.9 dB, and 12.9 dB, respectively. Surprisingly,
these results are comparable to or even better than using the ideal
ratio mask (IRM), an oracle mask defined as the magnitude of each
source over the sum of all the magnitudes. It is also close to the

2http://www.merl.com/demos/deep-clustering
3The maximum time delay is 0.25/340*8,000=5.88 samples.



result obtained using the ideal binary mask (IBM) defined based on
which source dominates each T-F unit.

Next, we evaluate our algorithms on the spatialized reverberant
wsj0-2mix data. As shown in Table 2, reverberation substantially
deteriorates the performance of single-channel deep clustering to 6.9
dB SDR. This is likely because reverberation blurs the spectral fea-
tures and breaks the assumption of sparsity in the speech spectro-
gram, making mask-based separation more difficult. Using the GCC
feature for training improves the performance to 8.8 dB, indicating
its effectiveness for encoding spatial information. We can see that
using variance normalization to equalize the variance of the spectral
and spatial features leads to significant improvement, from 7.5 dB to
8.8 dB. Interestingly, replacing the GCC feature by the much sim-
pler cosIPD feature (which matches a single dimension of GCC:
cosIPD(t, f, p, q) = GCC(t, f, p, q, 0)) leads to almost the same
performance, at 8.6 dB. Further appending the sinIPD feature pushes
the performance to 8.9 dB. This is likely because the spectral feature
can help to resolve the IPD ambiguity, and the information in the
GCC feature is actually a set of linear combinations of the cosIPD
and sinIPD features: GCC(t, f, p, q, τ) can indeed be developed as
cos
(
2πf
N
τ
)
cosIPD(t, f, p, q)− sin

(
2πf
N
τ
)
sinIPD(t, f, p, q), so the

network may implicitly recreate some of this information as needed.

The systems by [10] and [11] derive a beamformer for each
source based on single-channel deep clustering to obtain the final
separation results. Their systems rely heavily on the performance of
beamforming, as only slight reverberation is considered and a large
number of microphones are simulated in their study (eight micro-
phones in [10] and six in [11]). It is well-known that beamforming
methods [30–32] perform well in anechoic environments. However,
they are less effective when room reverberation is present, when the
sources are close to each other, and when the number of microphones
is limited. To compare our approach with theirs, and following the
recent development of T-F masking based beamforming [32,33], we
use the IRM of each source directly to compute the oracle spatial
covariance matrices and report oracle multi-channel Wiener filter re-
sults in Table 2. We also performed oracle minimum variance dis-
tortionless response (MVDR) beamforming as in [12,34], but results
were significantly worse than the MCWF. The MCWF is computed
in the following way:

w(f) = Φ−1
x (f)Φs(f)u (6)

Φs(f) =
1∑

tM
(s)
t,f

∑
t

M
(s)
t,f xt,fx

H
t,f (7)

where Φs and Φx represent the spatial covariance matrices of the
target and mixture speech, M (s)

t,f is the median IRM of source s
across all the microphone channels [32], and u is a one-hot vec-
tor denoting the reference microphone. In our experiments, the first
element of u is set to one and the rest is set to zero, as we always
perform separation on the first channel signal and consider the re-
verberant speech of each source at the first channel as the reference
to compute the SDR. The oracle MCWF performance for two mi-
crophones in this setting is only 4.9 dB SDR, while increasing the
number of microphones leads to consistent improvements. Nonethe-
less, it is interesting to see that our algorithm, only using two mi-
crophones, is able to compete with the oracle MCWF beamforming
using up to five microphones. We also emphasize that the proposed
algorithm may benefit the systems in [10, 11], because the use of
spatial information in our approach leads to better estimated masks
and more discriminative embeddings, which is likely to in turn lead
to better beamforming performance.

Table 1. SDR (dB) results on spatialized anechoic wsj0-2mix data

Approaches Features SDR
1ch Deep Clustering Log mag. 10.3
2ch Deep Clustering Log mag. + cosIPD 12.5
2ch Deep Clustering Log mag. + cosIPD + sinIPD 12.9
2ch Deep Clustering Log mag. + GCC 12.9

IRM/IBM - 12.7/13.5

Table 2. SDR (dB) results on spatialized reverberant wsj0-2mix data

Approaches Features SDR
1ch Deep Clustering Log mag. 6.9
2ch Deep Clustering Log mag., GCC 7.5

+ variance normalization 8.8
2ch Deep Clustering Log mag., cosIPD 8.6

Log mag., cosIPD, sinIPD 8.9
3ch Deep Clustering Log mag., cosIPD, sinIPD 9.3
4ch Deep Clustering Log mag., cosIPD, sinIPD 9.4
Oracle MCWF (2ch) - 4.9
Oracle MCWF (3ch) - 7.0
Oracle MCWF (4ch) - 8.3
Oracle MCWF (5ch) - 9.2
Oracle MCWF (6ch) - 9.9
Oracle MCWF (7ch) - 10.5
Oracle MCWF (8ch) - 10.9
MESSL [18] see [18] 3.3
GCC-NMF [19] see [19] 2.7
IRM/IBM - 11.9/12.7

We also compare our algorithm with the MESSL4 algorithm [18]
proposed for two-microphone arrays. We use for MESSL the same
set of potential time delays as in the GCC feature. Performance
was 3.3 dB SDR. The GCC-NMF5 [19] is a recently proposed blind
source separation algorithm for two-microphone arrays, which com-
bines non-negative matrix factorization (NMF) based unsupervised
dictionary learning with GCC based spatial localization to estimate
a binary mask for each source for separation. Performance was 2.7
dB SDR in our experiments.

Applying the two-channel deep clustering model directly to ar-
rays with three and four microphones by concatenating the embed-
dings improves the performance slightly from 8.9 dB to 9.3 dB and
9.4 dB, respectively. These results outperform the oracle MCWF
results using up to five microphones.

5. CONCLUSION

This paper proposed a novel approach to combine deep clustering
with spatial clustering for blind source separation. By including
phase difference features in the input to a deep clustering network,
we can encode both spatial and spectral information in the embed-
dings it creates, leading to better estimated time-frequency masks.
While we considered here the case of two-speaker separation, our al-
gorithm can be readily extended to address under-determined cases
where more than two speakers are presented, simply by modifying
the number of clusters in the final k-means clustering step. Future
work will consider combining the proposed approach with beam-
forming algorithms.

4Available online at https://github.com/mim/messl.
5Available online at https://github.com/seanwood/GCC-nmf.
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