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ABSTRACT

Distant-microphone automatic speech recognition (ASR) re-

mains a challenging goal in everyday environments involving

multiple background sources and reverberation. This paper

reports on the results of the 2nd ‘CHiME’ Challenge, an ini-

tiative designed to analyse and evaluate the performance of

ASR systems in a real-world domestic environment. We dis-

cuss the rationale for the challenge and provide a summary of

the datasets, tasks and baseline systems. The paper overviews

the systems that were entered for the two challenge tracks:

small-vocabulary with moving talker and medium-vocabulary

with stationary talker. We present a summary of the chal-

lenge findings including novel results produced by challenge

system combination. Possible directions for future challenges

are discussed.

Index Terms— Noise-robust ASR, ‘CHiME’ Challenge

1. INTRODUCTION

The distant microphone scenario remains one of the major

unsolved challenges of automatic speech recognition (ASR)

research. There are two main components to this problem:

first, target speech signals are subject to the effect of room

acoustics so that recorded signals correspond to the original

speech signals convolved with the room impulse responses.

This effect, widely known as reverberation, cannot be easily

predicted because there is no control over the talker-receiver

geometry or room characteristics. Second, the target speech is

mixed with other sound sources in the environment creating a

potentially complex acoustic noise background. Separate re-

search communities have worked on different aspects of these

problems and fresh approaches are rapidly emerging [1, 2, 3].

In 2011 the 1st CHiME challenge [4] was held with the

aim of progressing distant microphone ASR by bringing

together researchers from the signal processing, speech pro-

cessing and machine learning communities. The challenge

involved recognition of utterances that were reverberantly

mixed into stereo (binaural) backgrounds recorded in the liv-

ing room of a family home involving noise sources such as

concurrent speakers, TV, game console, footsteps, and distant

noise from outside or from the kitchen. The 1st challenge

deliberately concentrated on a small-vocabulary recognition

task and was designed in such a way as to be easily acces-

sible beyond the traditional ASR community. The challenge

attracted 13 systems which employed a wide range of signal

enhancement and robust acoustic modelling strategies. The

challenge was a success in as much as the best performing

system arose from a large multidisciplinary team with the

expertise to co-optimise the front-end signal processing and

the statistical ‘back end’ [5]. Extended versions of many of

the 1st CHiME challenge systems are presented in a recent

Special Issue of Computer Speech and Language [6].

Following the success of the 1st challenge, and with the

support of the IEEE AASP, MLSP and SL Technical Com-

mittees, a second CHiME challenge was designed that would

build on the first by stepping closer toward the demands of

a realistic application. Two separate limitations of the 1st

challenge were considered: first, the 1st challenge used a

small vocabulary recognition task which lowered the bar for

participation but which presented the danger of promoting

techniques that fail to generalise to less constrained larger-

vocabulary tasks. Second, the target talker had been mixed

into the backgrounds using a fixed room impulse response,

i.e., failing to model the variability caused by talker move-

ment – one of the key design problems for distant micro-

phone ASR. The new challenge was carefully designed to

balance the need to address these issues with the desire to

grow complexity in small steps and provide some ‘backward-

compatibility’ with the previous challenge edition.

The 2nd CHiME challenge attracted entrants from 13

groups. These groups presented their work at a dedicated

workshop1 that was held in conjunction with ICASSP 2013

and details of the individual systems can be found in the

workshop proceedings [7–19]. The purpose of this paper is

to provide an overview to this body of work, to compare the

performances of the CHiME systems, to provide some novel

results on CHiME system combination and to draw conclu-

sions for the future of distant microphone ASR and for the

1The workshop was made possible by financial support from our indus-

trial sponsors: Conexant Systems, Adobe, Audience, Google and MERL.



design of future evaluations.

The structure of the rest of the paper is as follows. In

Section 2, we summarise the design of the datasets and de-

fine the tasks that the challenge addresses and in Section 3

we briefly describe the baseline recognisers and report their

performance. (For a detailed account of the challenge set-

up readers are referred to [20]). Section 4 will provide an

overview of the systems that were submitted. Section 5 pro-

vides a summary of the system performances and challenge

outcomes. Section 6 concludes with a discussion of direc-

tions for future challenges.

2. CHALLENGE DESIGN

The challenge considers a single target talker speaking in a

noisy domestic environment recorded using binaural micro-

phones. The data are generated by convolving clean target

speech signals with binaural room impulse responses (BRIRs)

and mixing the result with the noise backgrounds. The BRIRs

and noise backgrounds were recorded in the same domestic

living room using a B&K head and torso simulator (HATS).

In the 1st CHiME challenge [4] the target speech was taken

from a small vocabulary and was added into the backgrounds

using a fixed and constant BRIR. The 2nd challenge increased

the difficulty along two alternative directions: Track 1 inves-

tigated the effect of introducing small speaker movements;

Track 2 employed a more demanding medium vocabulary tar-

get speech corpus. For each task, competitors were provided

with separate training, development and test sets and a set of

instructions to constrain fair use of the data.

2.1. Second challenge, Track 1: small vocabulary

The small vocabulary track followed the design of the 1st

CHiME challenge and employed the Grid speech corpus

[21]. This corpus consists of a collection of 34 speak-

ers each reading 1,000 simple 6-word utterances of the

form <command:4> <color:4> <prepos.:4> <letter:25>

<digit:10> <adverb:4> where the numbers in the brackets

indicate the number of word choices. The task is to report the

letter and digit tokens and performance is measured as the

percentage of tokens recognised correctly.

The clean utterances were convolved with the BRIRs so

as to mimic a speaker at a distance of approximately 2 m in

front of the HATS. However, in contrast to the 1st CHiME

challenge, the precise simulated location was changed from

utterance to utterance within a box of dimension 20 cm by

20 cm and a time-varying BRIR was used to model small 5 cm

translational head movements occurring during the utterance.

The time-varying BRIRs were constructed by measuring the

true BRIRs on a 2-D grid with a resolution of 2 cm and then

using linear interpolation to estimate BRIRs at a finer spacing.

See [20] for further details.

The level of the reverberated utterances matched that of

conversational speech spoken live in the room. These utter-

ances were then positioned at selected quieter or louder times

within the background recordings so as to produce noisy ut-

terances at 6 different signal-to-noise ratios (SNRs): -6, -3, 0,

3, 6 and 9 dB. Note, this approach allows the target speech

to remain at natural levels (i.e., it is not arbitrarily scaled to

produce the desired SNRs) but it also means that the SNR

settings tend to have different types of noise background.

We generated a development set and a test set using two

separate sets of 600 utterances, each of these utterances being

used at each of the 6 SNRs. Utterances were added to the

continuously-recorded noise backgrounds at positions such

that no utterances overlapped. A 17,000 utterance training

set was produced using 500 utterances from each of the 34

Grid talkers made available as clean, reverberated and noisy

recordings.

2.2. Second challenge, Track 2: medium vocabulary

The medium vocabulary task was constructed using the Wall

Street Journal (WSJ0) 5k vocabulary read speech corpus [22].

The recognition task is to transcribe the entire utterance and

performance is evaluated in terms of word error rate (WER).

The data were mixed using the same approach as em-

ployed in the 1st CHiME challenge, i.e., similar to that de-

scribed in the previous section except that each utterance is

convolved with a fixed BRIR recorded at precisely 2 m di-

rectly in front of the HATS. As before, SNR was controlled

via the temporal positioning of the utterance. The WSJ0 utter-

ances can be quite long so SNR was defined to be the median

value of the segmental SNRs computed over segments of 200

ms. However, because of the large size of the WSJ0 corpus,

it was found to be impossible to achieve the -6 to 9 dB range

of SNRs using temporal positioning alone and at the same

time preventing the noise signals in different mixtures to par-

tially overlap. Therefore, when necessary, a limited amount

of rescaling on the speech signal was applied. If the rescaling

was still not sufficient for generating all the mixtures, over-

lapping noise sequences were also included in the search.

The development set employs 409 noisy utterances con-

structed from 10 speakers forming the “no verbal punctua-

tion” part of the WJS0 speaker-independent 5k vocabulary

development set. The test set comprises 330 noisy utterances

from 8 other speakers from the Nov92 ARPA WSJ evaluation

set. The test and development sets are provided at each of the

6 SNRs. The training set includes 7138 noisy utterances con-

structed from 83 speakers forming the WSJ0 SI-84 training

set with each utterance at an SNR randomly selected within

the -6 to 9 dB range.

2.3. Instructions

A number of challenge rules were imposed on all entrants.

These rules were designed so that the systems would be



broadly comparable, but were kept sufficiently open so as not

to artificially favour any one technique or research commu-

nity. The rules can be summarised as follows. The systems

were allowed to exploit knowledge of the temporal placement

of the utterances (i.e., no automatic voice activity detection

was required), of the surrounding acoustic background, of

the speaker identity (for Track 1) and of the speaker move-

ments (for Track 1). They were forbidden from exploiting

the SNR labels, the fact that the same utterances are used at

each SNR, the fact that the same noise background is used in

the development set and the final test set, or the fact that the

same utterances are used within the clean, reverberated and

noisy training set (note that this rules out so-called “stereo

data” approaches which employ clean and noisy versions of

the same utterances), the fact that the BRIRs are identical

between different test utterances (for Track 2) or the fact that

the noise signals in the test utterances may temporally over-

lap (for Track 2). Systems should use the language models

provided. All parameters should be tuned on the provided

training and development sets and run on the final test set

only once.

3. CHALLENGE BASELINES

For each of the two challenge tracks a baseline recognition

system was produced. These systems are summarised below

and full details are provided in [20].

The binaural signals were first downmixed to a single

channel by averaging. Feature vectors were constructed at a

10 ms frame period from overlapping 25 ms signal windows.

Frames were parameterised using a 39 dimensional feature

vector composed of 12 Mel-cepstral coefficients plus log-

energy together with their deltas and accelerations. Cepstral

mean normalisation was employed.

The Track 1 baseline system is the same as that used in

the first CHiME challenge. Each of the 51 words in the Grid

vocabulary is modelled with a left-to-right HMM with 2 states

per phoneme. Each state is modelled using a 7-component

Gaussian mixture model (GMM) with components having di-

agonal covariance. The language model is fixed according

to the simple syntax of the Grid utterances. HTK scripts are

provided for building first speaker-independent models and

then speaker-dependent models using the challenge-defined

17,000 utterance training set. Recognition is performed using

the HVite Viterbi decoder and no pruning.

The Track 2 baseline follows the recipe in [23]. The sys-

tem employs 39 phonemes plus silence (sil) and short pause

(sp) models. Each phone is modelled using a 3-state HMM

with each state modelled as an 8-component diagonal covari-

ance GMM (16-component for the silence model). Triphone

states are clustered and tied, reducing the number of inde-

pendent states down to 1860. The standard WSJ 5K non-

verbalised closed bigram language model is employed. Train-

ing scripts are provided for re-estimating model parameters

Table 1. Strategies employed by the Track 1 systems.

Signal Feat. Inference

Geiger et al. [7] X X X

Moritz et al. [12] X X X

Meutzner et al. [11] X X X

Ma and Barker [10] X X X

Tran et al. [18] X X X

Nesta et al. [14] X X X

Gemmeke et al. [8] X

Mowlaee et al. [13] X X

Sivaraman et al. [15] X X

Yilmaz et al. [19] X X

Stadtschnitzer et al. [16] X X

Table 2. Strategies employed by the Track 2 systems.

Signal Feat. Inference

Tachioka et al. [17] X X X

Nesta et al. [14] X X X

Geiger et al. [7] X X X

Hurmalainen et al. [9] X X

from a clean speech acoustic model, but with no change to

the model topology. Recognition is performed using HVite

with a pruning threshold.

4. SUBMITTED SYSTEMS

13 teams participated in the challenge; 9 of which evaluated

their system in Track 1 only, 2 in Track 2 only and 2 in both

tracks. The systems typically combined multiple strategies

that can be individually grouped under three headings roughly

corresponding to a sequence of processing stages: target sig-

nal enhancement, robust feature extraction and robust statisti-

cal modelling/inference. Tables 1 and 2 summarise the basic

strategies employed by each system.

4.1. Target enhancement strategies

The first processing stage consists of target signal enhance-

ment. This is typically achieved by forming a time-frequency

representation of the signal and applying a linear filter in each

time-frequency bin. The filter parameters are estimated by

either exploiting the spatial and/or spectral diversity of the

speech and noise sources.

Spatial diversity is based on the fact that the target speech

and interfering noise sources have different spatial locations.

This includes beamforming approaches [16] or exploiting in-

teraural phase and level differences [11, 10, 17]. Filter param-

eters can be learnt from the data, e.g. by constructing inter-

channel level difference (ILD) and interchannel time differ-



ence (ITD) histograms for the target and background [17, 11]

or steered to fit the known location of the target speech source

[10].

Spectral diversity is based on the assumption that the

speech and noise have differing spectra. Techniques included

building separate GMMs of speech and noise, non-negative

matrix factorisation (NMF) (e.g. [7]) and exemplar based

enhancement [8]. For example, [7] describes the noisy spec-

trogram as a sum of a speech and noise spectrogram each es-

timated from a separate sparse dictionary. Dictionary weights

are estimated and the speech signal is estimated by Wiener

filtering.

Spatial and spectral cues can be used in conjunction to po-

tentially allow separation in situations where either cue alone

would fail. The straightforward approach is to use one fol-

lowed by the other. For example a delay-and-sum beam-

former followed by a codebook-driven spectral enhancement

[13] or a spatial dictionary based blind source extraction fol-

lowed by spectral filtering [14]. Alternatively, spatial and

spectral cues can be applied together by using a joint proba-

bilistic framework capable of capturing correlations between

the two (e.g. [18, 12]).

4.2. Feature extraction strategies

Feature extraction strategies aim to provide invariance to the

background noise that remains after the target enhancement

stage. A wide variety of approaches have been employed

including normalized modulation cepstral coefficients [15],

Gabor filterbank features [12], gammatone frequency cep-

stral coefficient (GFCC) features [14, 10], nonnegative sparse

classification (NSC) features [7], recurrent neural network

(BLSTM) features [7], and vocal tract variable trajectories

[15]. These features have selective sensitivity to speech-like

patterns in either frequency and/or time. A separate strategy

is to apply feature transforms to either decorrelate features,

e.g. principal component analysis (PCA) (e.g. [15]) or to in-

crease the discriminating power of the recogniser, e.g. linear

discriminant analysis (LDA) (e.g. [11]) and feature-space

maximum mutual Iinformation (f-MMI) (e.g. [17]). Some

systems gain performance by using multiple features mod-

elled either as separate streams [7] or by feature concatenation

prior to dimensionality reduction [15].

4.3. Robust modelling/inference

The baseline recognition systems performed decoding (i.e.,

converting feature streams into word sequences) using a

conventional HMM-GMM recogniser. Most CHiME sys-

tems adapted this background recogniser in some manner.

The most commonly employed strategy was noise adaptive

training, i.e., simply retraining the models on noisy speech

processed by the target-enhancing front-end. Systems also

used discriminative or speaker-adaptive techniques either

during training (to improve the models, e.g. [12]) or built into

the decoding objective (to compensate for model mismatch,

e.g. [17]). A small number of systems employed some form

of uncertainty propagation – modelling noisy observations

as distributions (e.g. uncertainty decoding [14] and fragment

decoding [10]). One system employed a purpose-built decod-

ing algorithm compatible with a dictionary of variable-length

exemplars [19]. Finally, four teams improved performance

using system combination either at the feature level using ei-

ther multistream decoding [7] or feature vector concatenation

[15], or at the decision level using recogniser output voting

error reduction (ROVER) [17, 11].

5. RESULTS

5.1. Submitted systems
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Fig. 1. Keyword accuracy for the Track 1 systems compared

to a human listener and to the ASR baselines. A system com-

bination performance is also shown (see Section 5.2).

Results of the 11 systems entered for Track 1 and the

4 systems for Track 2 are presented in Figures 1 and 2

respectively, in which systems are ordered by decreasing

performance. Also shown are performances for the baseline

systems trained on noise-free reverberated speech or noise-

added speech and, for Track 1, the human performance that

was measured on the similar 1st CHiME challenge [6]. For

Track 1 the system performances are evenly spread within

the range from just above the baseline to just below human

performance. The performance curves for both Track 1 and

2 are roughly parallel indicating that individual systems are

broadly optimised across the SNR range rather than special-

ising on specific SNRs.



−6 −3 0 3 6 9
0

10

20

30

40

50

60

70

80

90

SNR (dB)

W
E

R
 (

%
)

 

 
HTK Baseline (reverb)

HTK Baseline (noisy)

Hurmalainen et al. [9]

Geiger et al. [7]

Nesta et al. [14]

Tachioka et al. [17]

Fig. 2. WERs for the Track 2 systems compared to the ASR

baselines.

Careful analysis shows that the strategies which are most

effective for both tracks are spatial diversity based enhance-

ment and noise adaptive training. Spectral diversity based en-

hancement also performed extremely well in the small vocab-

ulary setting of Track 1, but less so in Track 2 due to its rela-

tive novelty in this setting. By contrast, careful design of the

ASR back-end played a major role in performance in Track 2

but it had a smaller impact in Track 1.

The above strategies are insufficient, however, and achiev-

ing good performance requires combination of multiple fea-

tures or systems, each of which involves modifications at ev-

ery stage of ASR. Indeed, the top systems for the two tracks

are highly complex systems. For Track 1, the best system is

using exemplar-based enhancement followed by multiple fea-

ture streams that combine the advantages of MFCC, BLSTM

and sparse-coding features and a decoder employing noise-

adaptive training and MAP speaker adaptation [7]. The per-

formance of this system is only marginally poorer than that

of the human listener. The top Track 2 system is using spatial

enhancement, a host of feature-space transformations (LDA,

MLLT, MLLR) and then a decoder employing discriminative

acoustic and language models plus a ROVER combination of

system variants [17]. This system has a WER that is just 49%

that of the multicondition-trained baseline system, and at 9

dB WER is reduced from 41.7% to just 14.8%.

5.2. System combination

CHiME challenge entrants were also asked to submit recog-

nition transcripts for both the development and final test sets.

Access to these transcripts allowed us to perform system com-

bination experiments for the Track 1 systems.

System outputs were combined using a standard weighted-

voting technique. Letter and digit tokens were considered in-

dependently. For a given input utterance the output token for

the combined system was determined by taking a weighted

vote accross the individual system outputs. Each classifier’s

vote was weighted by its logodds of beings correct. The

logodds were determined by measuring the classifier’s let-

ter and digit recognition performances on the development

set and averaging across all SNRs (i.e., the combination was

SNR-independent and thus did not break the rule that systems

should not exploit knowledge of the SNR).

For each N , we evaluated all possible combinations of N

systems among the top N + 1 systems. Using the develop-

ment set, the best performance was attained by combining all

but the third system among the top 5 systems, i.e., the 4 sys-

tems in [7], [12], [10] and [18]. This is consistent with the

phoneme confusion metrics in [24] which show that the third

system in [11] is the least different from the other top 4 sys-

tems and therefore least likely to be useful in a combination.

Final Track 1 test set results for the combination of these 4

systems are shown in Figure 1. Averaged over SNRs, the key-

word accuracy achieved by the combined system is 94.11%

compared to 92.99% for the best single system and 94.67%

for the human. The combined system outperforms the human

by approximately 0.5% (absolute) at the intermediate 0 and 3

dB noise levels.

6. CONCLUSIONS AND FUTURE DIRECTIONS

The purpose of the 2nd CHiME challenge was to separately

investigate the demands on systems of introducing speaker

motion and of increasing the complexity of the speech recog-

nition task. It has been found that small speaker movements

do not significantly increase the task difficulty. The best

performing system achieved a score that was similar to that

achieved by best system for the 1st challenge and had an

error rate that was only 30% (relative) greater that that of

the human listener. Teams that directly compared their sys-

tem’s performance on the CHiME 1 and CHiME 2 datasets

achieved equal performance on each [10]. On the other hand,

increasing vocabulary size did significantly increase the chal-

lenge difficulty. Performance gains relative to the baseline

systems were substantially poorer and the best WERs at -6 dB

remained at over 40%.

The most effective single strategies to address the chal-

lenge turned out to be spatial diversity based enhancement

and noise adaptive training. Spectral diversity based enhance-

ment was also beneficial with a small vocabulary, while im-

provements to the ASR back-end were essential with a larger

vocabulary. Nevertheless, it is remarkable that, in either case,

the best results were obtained from the combination of highly

complicated and tuned systems resulting from collaborative

efforts.



It is clear that the challenges reported here are still highly

artificial. For example, if the speaker location was not ap-

proximately fixed in time and space then we would need to

solve other high-level problems such as speaker tracking,

speaker identification and speech activity detection. Further,

we would need solutions to the problems caused by vari-

ability in speaker-receiver geometry. Future editions of the

challenge will attempt to move closer to realistic conditions

but we need to make advances while remaining aware of

the need to retain involvement from a broad community of

researchers. This will be best achieved by extensive consul-

tation and cross-community discussion.
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full-rank spatial covariance models for noise-robust ASR,” in

Proc. CHiME-2013, Vancouver, Canada, June 2013, pp. 31–

32.

[19] E. Yılmaz, J. F. Gemmeke, and H. Van hamme, “Noise-robust

automatic speech recognition with exemplar-based sparse rep-

resentations using multiple length adaptive dictionaries,” in

Proc. CHiME-2013, Vancouver, Canada, June 2013, pp. 39–

43.

[20] E. Vincent, J. Barker, S. Watanabe, J. L. Roux, F. Nesta,

and M. Matassoni, “The second ‘CHiME’ speech separation

and recognition challenge: Datasets, tasks and baselines,” in

Proc. ICASSP 2013, Vancouver, Canada, May 2013, IEEE.

[21] M. P. Cooke, J. Barker, S. P. Cunningham, and X. Shao,

“An audio-visual corpus for speech perception and automatic

speech recognition,” Journal of the Acoustical Society of Amer-

ica, vol. 120, pp. 2421–2424, 2006.

[22] J. Garofalo, D. Graff, D. Paul, and D. Pallett, “CSR-I (WSJ0)

Complete,” Linguistic Data Consortium, Philadelphia, 2007.

[23] K. Vertanen, “Baseline WSJ acoustic models for HTK and

Sphinx: Training recipes and recognition experiments,” Tech.

Rep., Cavendish Laboratory, University of Cambridge, 2006.

[24] S. R. M. Prasanna, B. Yegnanarayana, J. P. Pinto, and H. Her-

mansky, “Analysis of confusion matrix to combine evidence

for phoneme recognition,” Tech. Rep. RR 07-27, IDIAP, 2007.


