
19

DISCRIMINATIVE METHODS FOR NOISE ROBUST SPEECH RECOGNITION:
A CHIME CHALLENGE BENCHMARK

Yuuki Tachioka

Mitsubishi Electric
Information Technology R&D Center

5-1-1, Ofuna, Kamakura, Kanagawa, Japan

Shinji Watanabe, Jonathan Le Roux, John R. Hershey

Mitsubishi Electric Research Laboratories
201, Broadway, Cambridge, MA, US

ABSTRACT

The recently introduced second CHiME challenge is a difficult
two-microphone speech recognition task with non-stationary inter-
ference. Current approaches in the source-separation community
have focused on the front-end problem of estimating the clean signal
given the noisy signals. Here we pursue a different approach, focus-
ing on state-of-the-art ASR techniques such as discriminative train-
ing and various feature transformations, in addition to simple noise
suppression methods based on prior-based binary masking with
estimated angle of arrival. In addition, we propose an augmented
discriminative feature transformation that can introduce arbitrary
features to a discriminative feature transform, an efficient combi-
nation method of Discriminative Language Modeling (DLM) and
Minimum Bayes Risk (MBR) decoding in an ASR post-processing
stage, and preliminarily investigate the effectiveness of deep neural
networks for reverberated and noisy speech recognition. Using these
techniques we present a benchmark on the middle-vocabulary sub-
task of CHiME challenge, showing their effectiveness for this task.
Promising results were also obtained for the proposed augmented
feature transformation and combination of DLM and MBR decod-
ing. A part of the training code has been released as an advanced
ASR baseline, using the Kaldi speech recognition toolkit.

Index Terms— CHiME challenge, Noise robust ASR, Discrim-
inative methods, Feature transformation, Prior-based binary masking

1. INTRODUCTION

The 2nd CHiME challenge is a recently introduced task for noise-
robust speech processing [1]. The scenario involves recognizing
speech from a single target speaker binaurally recorded in a domestic
environment. Unlike the 1st CHiME challenge, the second edition
contains a medium vocabulary task in which the speech is taken from
the Wall Street Journal (WSJ0) 5k vocabulary read speech corpus,
and convolved with binaural room impulse responses before mixing
with binaural recordings of a noisy domestic environment. This task
is much more difficult from a speech recognition point of view.

Whereas, in the 1st CHiME challenge, participants have focused
more on source separation approaches, here we focus on state-of-the-
art ASR techniques such as discriminative training and various fea-
ture transformations, using only simple noise suppression methods
based on estimated time difference of arrival (TDOA) in the front-
end. The goal is to understand how much can be gained from the
discriminative training ASR approach, as well as to improve the
baseline recognition systems used to test source-separation-based
approaches, in order to allow researchers who may not be experts
in ASR to better evaluate the benefit of these methods.

Recent advances in Automatic Speech Recognition (ASR) [2],
have greatly improved the accuracy of speech recognition systems.
Over the past ten years model training techniques have migrated
from Maximum Likelihood (ML) estimation to discriminative train-
ing [3, 4]. In addition, various types of feature transformations have
been proposed and showed effectiveness [5, 6, 7, 8, 9, 10]. Although
it is well known that the state-of-the-art ASR techniques are very
effective in clean speech conditions, we need further investigation of
their effectiveness in challenging conditions such as environmental
reverberation and noise. In this paper we focus on discriminative
training and feature transformations for the 2nd CHiME challenge.
This paper deals with several feature transformation approaches,
which convert original features to new features based on linear
transformations (Linear Discriminant Analysis (LDA) [5], Maxi-
mum Likelihood Linear Transformation (MLLT) [6, 7], Speaker
Adaptive Training (SAT) [8]), and discriminative non-linear feature
transformation [9]. LDA uses long context by context expansion
(e.g., contiguous 9 frames) to exploit feature dynamics, which
reduces the influence of non-stationary noises. MLLT finds a lin-
ear transformation of features to reduce state-conditional feature
correlations. SAT and feature-space Maximum Likelihood Linear
Regression (fMLLR) improve the recognition accuracy by adapting
to unknown and changing noise conditions.

Discriminative non-linear feature transformations can provide
yet further gains in performance, because the transformation is op-
timized to reduce the error rate in the context of the decoder (e.g.,
[11]). Some of the popular non-linear transforms provide an ap-
proximately piece-wise linear transform by the inclusion of “region-
based” features based on Gaussian posterior probabilities. We pro-
pose to extend this basic approach by augmenting the set of region-
based features to include additional non-linear features that may be
relevant in noisy conditions. We call this method augmented dis-
criminative feature transformation. As an alternative discriminative
non-linear feature transformation, this paper also preliminarily in-
vestigates the effectiveness of Deep Neural Networks (DNN) [10].

In addition to testing the above methods in isolation, we con-
sider some minimal signal processing in the front end to take ad-
vantage of the binaural nature of the recordings. The method forms
a masking function using the discrepancy between the instantaneous
inter-microphone phase difference and the expected phase difference
for the target speaker location. In our ASR post processing step, we
deal with an N-best re-ranking technique based on Discriminative
Language Modeling (DLM) [12, 13, 14], and Minimum Bayes Risk
(MBR) decoding [15, 16, 17]1. We propose an efficient combination
method of DLM and MBR decoding, which further improves ASR

1Note that [17] performs DLMwith theMBR criterion, while we combine
DLM and MBR decoding in a cascade form.
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Fig. 1. Schematic diagram of the proposed system.

performance.
In summary, the goal of this paper is to evaluate the effectiveness

of the discriminative training and feature transformation for rever-
berated and noisy speech for 2nd CHiME challenge Track 2. In ad-
dition we aim to build a CHiME challenge benchmark using public
tools that can be shared with the community. We use a Kaldi toolkit
[18] to provide an advanced ASR back-end and compare with the de-
fault HTK [19] based ML baseline associated with the CHiME chal-
lenge. In addition we also experiment with augmented discrimina-
tive feature transformations, combination of DLM and MBR decod-
ing, and angle-of-arrival-based processing, all of which show some
promising improvements to recognition performance.

2. SYSTEM OVERVIEW

Fig. 1 shows a schematic diagram of the proposed system, which
consists of three components. First is a noise suppression step,
described in Section 3). It consists in a prior-based binary mask-
ing, which suppresses directional interferences. Second is a feature
transformation step, including feature-level transformation (LDA,
MLLT, fMLLR) and discriminative feature transformation (feature-
space techniques, presented in Section 4.2)[20]. Third is a decoding
step. ASR decoding uses a discriminative acoustic model with mar-
gin (MMI and boosted MMI, presented in Section 4.1). Results are
re-ranked using discriminative language model in Section 4.3 and
minimum Bayes risk decoding (MBR) is performed based on lattice
using re-ranked 1-best as a reference in Section 4.4.

3. PRIOR-BASED BINARY MASKING

In the CHiME challenge, two-channel recordings are provided and
the target speaker is assumed to be in a frontal position with respect
to the microphones. As binary masking based on the TDOA has
been shown [21] to be more effective than beamforming for speech
recognition with a small number of microphones, we investigate here
its usage in our system. In the frontal position setting, without re-
verberation, the TDOA for signals coming from the target speaker
should be equal to zero. Hence, time-frequency bins for which the
inter-microphone phase difference is not close to zero are less likely
to contain energy of the target speaker. However, with reverberation,
the phase differences for a source from a frontal position may not
be zero. Fig. 2 shows the phase difference histograms for 250 Hz
and 1 kHz in “reverberated” speech. For 250 Hz, the histogram is
almost symmetrical and variance is small but for 1 kHz, the mean is
drifted and variance is large. The extent to which the phase differ-
ence is affected by noises and reverberation is significantly different
for each frequency. Thus, a simple binary mask only using physi-
cal information will not work, and indeed, preliminary experiments
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Fig. 2. Histogram of phase differences for two frequency bins.

showed worse word error rate (WER) than the baseline. As in [22],
a statistical model is needed. To consider the offset and variance of
the phase difference from the anechoic value, a prior-based binary
masking is proposed. The phase difference θω,t at frequency bin ω
and time frame t is calculated for each time-frequency bin as

XL
ω,t/X

R
ω,t = Aω,te

θω,t , (1)

where  is the imaginary unit, Aω,t is a positive real number, and
XL and XR are the short-time Fourier spectrum for the left and
right channels, respectively. In classical binary masking, a maskW
is designed by using the following thresholding:

Wω,t =

{
ε if |θω,t| > θc,
1 if |θω,t| ≤ θc,

(2)

where ε is a very small constant and θc is a threshold determined in
advance. In our prior-based binary masking, the mask W ′ is deter-
mined using a frequency-dependent prior qω , here obtained from a
phase difference histogram, as

W ′
ω,t =

{
ε if qω(θω,t)/q̄ω < qc,
(qω(θω,t)/q̄ω)

α if qω(θω,t)/q̄ω ≥ qc,
(3)

where q̄ω = maxθ qω(θ), qc is a threshold probability, and α is a
warping coefficient.

4. BACK-END PROCESSING BASED ON
DISCRIMINATIVE METHODS

4.1. Discriminative training

Discriminative training is a supervised training algorithm that mini-
mizes the Bayes risk of posteriors for correct labeling and recogni-
tion results. This paper uses boosted MMI (bMMI) [23], where a
boosting factor b ≥ 0 is used to introduce a weight depending on
phoneme accuracies. The objective function is given as

FbMMI(λ) =
R∑

r=1

log
pλ ({xt}r|Hsr )

κ pL(sr)∑
s pλ ({xt}r|Hs)

κ pL(s)e−bA(s,sr)
, (4)
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where R is the number of training utterances and {xt}r is the rth
utterance’s feature sequence. The acoustic model parameters λ are
optimized by the extended Baum-Welch. Hsr andHs are the HMM
sequences of a correct label sr and a recognition result s, respec-
tively; pλ is the acoustic model likelihood, κ is the acoustic scale,
and pL is the language model likelihood; A(s, sr) is the phoneme
accuracy of s for a reference sr . In this paper, we compare the per-
formances of MMI (corresponding to b = 0) and bMMI to that of
ML.

4.2. Discriminative feature transforms with augmented features

In addition to discriminative training, feature transformation based
on the discriminative training criterion can be used. This method is
referred to as feature-space discriminative training [9]. It estimates a
matrixM that projects rich high-dimensional features down to low-
dimensional transformed features, as follows:

yt = xt +Mht, (5)

where xt are the original I-dimensional features, ht are J-dimensional
features which depend on x, with J # I , and yt are the transformed
features, and M is an I × J matrix. In this study, we validate the
effectiveness of feature-space MMI (f-MMI) and its extension,
feature-space boosted MMI (f-bMMI).

In addition, as it is often effective to use different types of fea-
tures for noisy speech recognition, such as in the tandem approach,
we propose a method that obtains new transformed features y′

t by
adding features h′

t to ht as

y′
t = xt +

[
M M′]

[
ht

h′
t

]
. (6)

The concatenated matricesM andM′ are optimized by maximizing
the following objective function:

Faf-MMI

([
M M′]) =

R∑

r=1

log
pλ ({y′

t}r|Hsr )
κ pL(sr)∑

s pλ ({y′
t}r|Hs)

κ pL(s)
. (7)

By augmenting discriminative feature transforms in this way we can
consider a wider class of transforms depending upon the chosen
auxiliary features. One could consider alternative region-based fea-
tures, features deriving from source-separation considerations such
as signal-to-noise ratios, masking values, or any other set of alterna-
tive features.

4.3. Discriminative language modeling

Discriminative Language Modeling (DLM) learns patterns of errors
in the hypotheses output by a speech recognizer, and adjusts scores
of hypotheses to reduce the errors. The score can be simply obtained
by the inner product of a feature vector φ(Hs) (e.g., N-gram counts)
extracted from a hypothesis (recognition result) Hs and a weight
vectorw. The weight vectors for each utterance are estimated based
on an on-line manner by using the following perceptron learning
rule, w = w + (φ(Hsr ) − φ(Hs)). Then, an aggregate weight
vector is obtained by averaging the weight vectors for all utterances
(i.e., averaged perceptron). In our paper, the approach is realized by
re-ranking the hypotheses, andHsr is selected from the lowest WER
(oracle) hypothesis in an N-best list computed from the correspond-
ing reference.

4.4. Minimum Bayes risk decoding for discriminative language
modeling

Minimum Bayes Risk (MBR) decoding finds the hypothesis that ap-
proximately minimizes the Bayes risk with respect to the word error
rate based on the lattice representation. To efficiently combine DLM
based on the N-best re-scoring framework and MBR decoding based
on the lattice framework, we use the algorithm of [16]. This algo-
rithm forms a consensus by choosing a word sequence that has the
minimum expected edit distance to each sequence in the lattice:

Hŝ = argmin
s′

∑

s∈L

pλ
(
{y′

t}|Hs

)κ
pL(s)L(Hs,Hs′), (8)

where L(Hs,Hs′) is the edit distance between a hypothesis in the
latticeHs and that of the argument of the minimization,Hs′ .

The edit distance is approximately computed based on the prob-
ability γ(q, u) of which symbol (including the epsilon symbol) u is
aligned at the position q in the word sequenceHŝ. The approximate
objective is iteratively updated, conventionally starting at the cur-
rent 1-best hypothesis from the lattice, and forming alignments with
the lattice sequences. Our approach improves upon the initializa-
tion point by starting with 1-best result in an N-best list re-scored by
DLM, rather than the conventional 1-best result. γ(q, u) is approx-
imately computed by using the original (non-rescaled) arc scores of
the DLM 1-best result2. Thus, we efficiently combine DLM-based
N-best re-scoring and minimum Bayes risk decoding.

5. EXPERIMENTAL SETUP

5.1. Task description

We validated the effectiveness of our proposed approach for re-
verberated and noisy speech on Track 2 of the 2nd CHiME chal-
lenge [1]. Track 2 is a medium-vocabulary task in reverberant
and noisy environment, whose utterances are taken from the Wall
Street Journal database (WSJ0). The training data set (si tr s) con-
tains 7138 utterances by 83 speakers (si84), the evaluation data set
(si et 05) contains 330 utterances by 12 speakers (Nov’92), and the
development set (si dt 05) contains 409 utterances by 10 speak-
ers. Acoustic models were trained using si tr s and some of the
parameters (e.g., language model weights) were tuned based on the
WERs of si dt 05. The language model size was 5 k (basic). This
database simulates a realistic environment. There are two types of
data: “reverberated,” created by convolving clean speech with bin-
aural room impulse responses corresponding to a frontal position at
a distance of 2 m from the microphones in a family living room, and
“isolated,” created by adding real-world noises recorded in the same
room to “reverberated” and selecting the noise excerpts to obtain
signal-to-noise ratio (SNR) ranges of −6, −3, 0, 3, 6, and 9 dB
without rescaling. Noises are non-stationary such as other speakers’
utterances, home noises, or music.

5.2. Feature extraction and transformation

We describe the settings of acoustic feature and feature transforma-
tion. The baseline acoustic features are MFCC and PLP (1-13 order
MFCCs (PLPs) + ∆ + ∆∆). It is well known that LDA transforms

2The accurate assignment probability can be obtained by converting the
estimated DLM weights to arc weights in a lattice. However, the conversion
is not trivial since DLM would include unseen N-gram features or wide-span
features, and the corresponding DLM weights cannot be converted to those
of lattice arcs, straightforwardly.
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the features of a class to make them as discriminable as possible
to those of the other classes. After concatenating 1-13 order static
MFCCs in nine contiguous frames, a total of 117-dimensional fea-
tures are compressed into 40 dimensions by an LDA whose class is
a tri-phone HMM state (2500 states). Because the acoustic features
are high dimensional, it is impossible to use full-covariance mod-
els (which consider correlations between dimensions), and, instead,
diagonal-covariance models are widely used. This simplification de-
creases the model’s performance. Several methods for transforming
a feature space so as to decrease correlations between features have
thus been proposed, among which MLLT is a widely used exam-
ple. Moreover, large variations among speakers degrade the acoustic
models. To address this problem, SAT is typically used: in SAT,
training is conducted after having transformed the training speech
into a canonical space so as to reduce the variances across speak-
ers. In this study, we validated the effectiveness of LDA, MLLT, and
SAT.

5.3. Discriminative methods

In discriminative feature transformation (Section 4.2), 400 Gaus-
sians were used and offset features were calculated for each of the 40
MFCC dimensions with context expansion (9 frames). The dimen-
sion of the feature vector ht was 400×40×9. Features with the top
2 posteriors were selected and all other features were ignored. For
the DNN, we used a CPU version of neural network training imple-
mented in Kaldi with 3 hidden layers and 500,000 parameters. The
initial learning rate was 0.01 and was decreased to 0.001 at the end
of training.

5.4. Experimental procedure

We summarize the experimental procedure based on the above setup
as follows: First, a clean acoustic model was trained. The num-
ber of mono-phones was 40, including silence (“sil”). In the tri-
phone model, the number of states was 2500 and the total number
of Gaussians was 15000. Second, using their alignments and tri-
phone tree structures, reverberated acoustic models were trained us-
ing the “reverberated” dataset. Third, noisy acoustic models were
trained multi-conditionally using the “isolated” dataset without any
pre-processing such as blind source separation. Finally, using this
MLmodel, we validated the effectiveness of the discriminative train-
ing and feature transformation for the “isolated” dataset. The param-
eters used in our experiments were set as those in the WSJ tutorial
attached to the Kaldi toolkit.

6. RESULTS AND DISCUSSION

6.1. Maximum likelihood baseline

We retrained the initial tri-phone model (trained on clean data) using
reverberated and noisy data. Reverberation and noises cause errors
in the alignment and reconstruction of tree structures. We consider
whether alignment (A) and tree structures (T) are reconstructed (y),
i.e., retrained on noisy data, or not (n), i.e., the same to those of
clean model. There are three conditions: (A=n,T=n), (A=y,T=n),
and (A=y,T=y). From now on, we evaluate the WER on the devel-
opment set (si dt 05). For the “reverberated” case, the WERs of the
tri-phone models (ML) are 12.69% (A=n,T=n), 12.05% (A=y,T=n),
12.35% (A=y,T=y). Using an alignment by the (A=y,T=n) model
(the model that achieves the best performance), we retrained mod-
els on the “isolated” dataset. The averages of these ML models

Table 1. WER[%] for isolated speech (si dt 05) without
noise suppression. Tri-phone model, discriminative training
with MFCC features (upper), MFCC+LDA+MLLT (middle),
MFCC+LDA+MLLT+SAT (lower).

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
ML 74.20 66.57 58.24 51.84 46.73 40.64 56.37
MMI 73.40 65.60 56.88 51.17 45.40 41.20 55.61
bMMI 72.78 64.71 55.69 50.83 44.00 40.27 54.71
f-MMI 69.94 62.50 54.51 48.74 42.73 38.34 52.79
f-bMMI 68.64 61.56 53.11 47.65 41.73 36.98 51.61
ML 70.95 62.62 53.98 47.37 40.27 34.84 51.67
MMI 68.55 61.12 53.41 46.32 39.52 34.30 50.54
bMMI 68.74 60.98 51.95 45.86 38.16 32.85 49.76
f-MMI 66.19 58.24 49.23 43.58 36.89 31.35 47.58
f-bMMI 66.65 57.46 48.25 42.99 35.71 31.07 47.02
ML 68.36 58.30 48.80 40.73 35.09 28.54 46.64
MMI 65.13 55.27 45.89 39.64 33.12 27.29 44.39
bMMI 64.60 55.10 45.82 39.05 32.72 26.86 44.03
f-MMI 63.09 52.62 42.44 36.29 31.01 25.52 41.83
f-bMMI 62.43 52.23 42.17 35.31 29.84 24.72 41.12

are 56.29% (A=n,T=n), 56.37% (A=y,T=n), and 56.98% (A=y,T=y).
The performance of the (A=y,T=y) model is inferior to that of the
other models. The performances of (A=n,T=n) and (A=y,T=n) are
almost equivalent; we use the (A=y,T=n) model as a baseline model.
Discriminative training and feature transformation were carried out
using this model as the initial model.

6.2. Discriminative training and feature transformation

First, with regard to the MFCC features, the improvement of the
WER by discriminative training from the ML baseline is shown in
Table 1 (upper). The mixture of speech and noise increases the
likelihood of detecting erroneous phonemes and leads to incorrect
recognition. These errors could be modified by discriminative train-
ing. The boosted model improves the WER by 1% relative to the
non-boosted one, whereas the feature space technique improves the
WER by 3%. We believe that the feature space is adapted for a target
speaker to improve the WER and that this effect reduces the influ-
ence of other noises. In these tables, the boosting factor is set to 0.1.
The preliminary experiments show that the performance does not
heavily depend on the boosting factors and that the optimized val-
ues of the boosting factor are approximately 0.1-0.2. Denominator
lattices for discriminative training are generated using ML model.

Second, the MFCC features are transformed using LDA and
MLLT. Table 1 (middle) shows the WER, whereas LDA by itself
achieves 54.37% (ML). This shows that features that are highly dis-
criminable from other phonemes can be obtained by LDA. These
significant improvements are partly a result of the characteristics
of the CHiME database. As mentioned in the Introduction, LDA
and MLLT improve the model performance in ordinary noise con-
ditions. Additionally, the CHiME database’s noises include many
utterances by other people. These types of noises are best suited to
be handled by LDA, because if two or more phonemes exist in the
same frame when sources are mixed, the model can possibly dis-
criminates between these phonemes separately, as if it were a source
separation problem. It is also effective to use context to reduce the
influence of non-stationary noises. Furthermore, although noises in-
crease the correlations between MFCC coefficients in each dimen-
sion, MLLT reduces the correlations and improves the WER. De-
nominator lattices for discriminative training are re-generated using
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Table 2. WER[%] for isolated speech (si dt 05) without noise sup-
pression. Tri-phone model, discriminative feature transformation
with PLP (P) features.

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
ML(M) 74.20 66.57 58.24 51.84 46.73 40.64 56.37
ML(P) 74.57 67.50 59.76 53.02 47.00 42.23 57.35
f-MMI 69.94 62.50 54.51 48.74 42.73 38.34 52.79
(+P) 69.52 62.31 54.48 48.59 42.94 37.90 52.62

Table 3. WER[%] for isolated speech (si dt 05) with noise sup-
pression by prior-based binary masking. Tri-phone model, discrim-
inative training with MFCC features (upper), MFCC+LDA+MLLT
(middle), MFCC+LDA+MLLT+SAT (lower).

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
ML 66.82 57.87 48.86 42.29 38.18 31.86 47.65

(+MBR) 66.16 57.09 48.15 41.47 37.16 31.23 46.88
bMMI 65.73 56.98 46.95 41.57 36.27 31.02 46.42
f-bMMI 63.40 54.05 44.28 38.87 33.72 29.90 44.04
ML 64.64 54.24 46.35 37.91 32.75 28.96 44.14
bMMI 63.39 52.54 44.56 35.60 30.98 28.10 42.53
f-bMMI 60.92 50.41 41.76 33.59 29.56 25.90 40.36
DNN 57.21 45.85 36.21 30.61 26.36 23.31 36.59
ML 59.94 47.93 39.83 33.01 28.00 23.47 38.70
bMMI 56.90 45.79 37.60 30.31 26.15 21.74 36.42
f-bMMI 52.93 42.62 34.59 27.63 24.27 20.24 33.71
(+DLM) 53.16 42.93 34.36 27.26 23.72 19.47 33.48
(+MBR) 52.65 42.04 33.75 27.05 23.74 19.91 33.19
(both) 52.54 42.09 33.72 27.02 23.66 19.66 33.11

ML (MFCC+LDA+MLLT) model.
Third, we added SAT and fMLLR to the model described in the

second step. Table 1 (lower) shows the WER. As the amount of
training data is very limited, transformation into a canonical space,
which leads to an increase in the effective amount of training data,
has a strong impact on the estimation accuracy of the acoustic mod-
els. Additionally, fMLLR adaptation for a target speaker reduces the
influence of noises. Denominator lattices for discriminative training
are re-generated using ML model.

6.3. Augmented discriminative feature transformation

Table 2 shows the WER of ML and f-MMI whose auxiliary features
h′
t in Eq. (6) are PLP (13 dimensions each), respectively. In the
ML model, we observe that the performance of PLP is worse than
that of MFCC by about 1% absolute. However, adding PLP to the
discriminative feature transformation improves the WER. Thus, it is
effective to obtain new features that contain information that cannot
be obtained using the features ht.

6.4. Noise suppression

Table 3 shows the WER with noise suppression by prior-based bi-
nary masking. Binary masking improves the WER in all cases by
7% to 9% absolute. We tried several α and α = 0.25 achieved the
best WER. Directional noise is suppressed to some extent but dif-
fused noises such as music still remain.

Table 4. WER[%] for isolated speech (si et 05) without noise
suppression. The baseline is ML (MFCC), whereas on top of
MFCC+LDA+MLLT+SAT, “Best 1” is ML and “Best 2” is feature-
space boosted MMI.

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
Baseline 69.79 62.71 55.86 46.89 42.07 37.49 52.47
Best 1 60.83 52.14 43.51 34.28 29.22 23.82 40.63
Best 2 54.70 45.11 35.98 28.64 24.38 21.39 35.04

6.5. Deep neural network

Table 3 also provides the WER of a DNN based on ML baseline with
MFCC+LDA+MLLT (middle) after the noise suppression step. The
DNN result outperformed bMMI and f-bMMI results by 2.8% at the
most and was comparable to the SAT system (lower). This shows the
potential effectiveness of DNN for reverberated noisy speech recog-
nition. Although DNN is not embedded to our total system currently,
the integration of DNN and our system is likely to further improve
ASR performance.

6.6. Discriminative language modeling and minimum Bayes
risk decoding

Weights w of a discriminative language model are learned on the
training data set using 100-best recognition candidates, where the
weight w0 associated with the original score is set to 20. Using
these weights, results are re-ranked, with w0 set to 13. Weights
are obtained by averaged perceptron at three iterations. Features are
counts of uni-grams, bi-grams, and tri-grams. DLM improves WER
by 0.23% on average, especially for 9dB with a 0.77% improvement.
DLM is not always effective because, while error tendencies are de-
pendent on SNR, training is performed on the whole training set,
which includes all SNRs. This leads to a mismatch between training
and recognition, damaging performance.

MBR improves the WER by 0.77% for ML (MFCC) and 0.52%
for f-bMMI (MFCC+LDA+MLLT+SAT). The performance of MBR
is stable with respect to SNR. Combination of DLM and MBR as
mentioned in Section 4.4 improves the WER because DLM refines
the initial 1-best result and adapts to error tendencies inherent to the
decoder.

6.7. Evaluation set

Table 4 shows the WERs on the evaluation set using the models
tuned using the development set. The baseline is ML (MFCC),
whereas on top of MFCC+LDA+MLLT+SAT, “Best 1” is ML and
“Best 2” is f-bMMI. Using both discriminative training and feature
transformation (“Best 2”) achieves 33.22% error reduction relative
to the baseline. Thus, we show the effectiveness of both discrimina-
tive training and feature transformation for reverberated and noisy
speech. The WERs after noise suppression are shown in Table 5,
which represents a 37.9% error reduction.

The HTK baseline results for si dt 05 and si et 05 using our
front end are shown in Table 6 as a reference. “Denoised” are the
results obtained with HMMs retrained on denoised data. “Noisy”
are the results obtained with the original HMMs trained on the noisy
data. Performance is lower than that of Kaldi, but the settings are
different and only limited tuning was performed for HTK.
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Table 5. WER[%] for isolated speech (si et 05) with noise
suppression. The baseline is ML (MFCC), whereas on top of
MFCC+LDA+MLLT+SAT, “Best 1” is ML and “Best 2” is feature-
space boosted MMI.

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
Baseline 60.58 52.87 45.60 37.70 33.38 29.24 43.23
Best 1 50.91 41.64 33.89 26.30 21.61 18.85 32.20
Best 2 44.54 35.91 29.24 22.31 17.77 15.88 27.61
(+DLM) 44.27 35.48 28.75 21.61 17.34 15.37 27.14
(+MBR) 44.51 35.42 28.81 21.46 17.41 14.98 27.10
(both) 44.12 35.46 28.12 21.20 17.43 14.83 26.86

Table 6. WER[%] for isolated speech with noise suppression
by prior-based binary masking (tri-phone model) using HTK with
MFCC features.

si dt 05
−6dB −3dB 0dB 3dB 6dB 9dB Avg.

denoised 72.18 66.16 57.95 53.99 48.36 43.58 57.04
noisy 74.67 68.08 61.12 56.61 51.33 47.65 59.91
si et 05

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
denoised 68.56 61.97 56.34 48.76 43.51 40.58 53.29
noisy 72.00 65.27 59.05 52.34 48.57 44.14 56.90

7. CONCLUSIONS

We developed a state-of-the-art recognition system following a sim-
ple prior-based binary masking for realistic reverberated and noisy
environments and validated the effectiveness of both feature trans-
formation and discriminative methods. Combination of MBR and
DLM improves the WER by considering error tendencies, which are
inherent to the decoder. Experiments show that these techniques are
effective for non-stationary interference and reverberation.

8. REFERENCES

[1] E. Vincent, J. Barker, S. Watanabe, J. Le Roux, F. Nesta, andM.Matas-
soni, “The 2nd ‘CHiME’ speech separation and recognition challenge:
Datasets, tasks and baselines,” in Proc. ICASSP, 2013.

[2] J.M. Baker, L. Deng, J. Glass, S. Khudanpur, C.H. Lee, N.Morgan, and
D. O’Shaughnessy, “Research developments and directions in speech
recognition and understanding part 1,” IEEE Signal Process. Mag.,
vol. 26, pp. 75–80, May 2009.

[3] D. Povey and P.C. Woodland, “Minimum phone error and I-smoothing
for improved discriminative training,” in Proc. ICASSP, 2002, pp. 105–
108.

[4] E. McDermott, T.J. Hazen, J. Le Roux, A. Nakamura, and S. Katagiri,
“Discriminative training for large-vocabulary speech recognition using
minimum classification error,” IEEE Trans. Audio, Speech, Language
Process., vol. 15, pp. 203–223, Jan. 2007.

[5] R. Haeb-Umbach and H. Ney, “Linear discriminant analysis for im-
proved large vocabulary continuous speech recognition,” in Proc.
ICASSP, 1992, pp. 13–16.

[6] R.A. Gopinath, “Maximum likelihood modeling with Gaussian distri-
butions for classification,” in Proc. ICASSP, 1998, pp. 661–664.

[7] M.J.F. Gales, “Semi-tied covariance matrices for hidden Markov mod-
els,” IEEE Trans. Speech Audio Process., vol. 7, pp. 272–281, Jul.
1999.

[8] T. Anastasakos, J. McDonough, R. Schwartz, and J. Makhoul, “A
Compact Model for Speaker-Adaptive Training,” in Proc. ICSLP,
1996, pp. 1137–1140.

[9] D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau, and G. Zweig,
“fMPE: Discriminatively trained features for speech recognition,” in
Proc. ICASSP, 2005, pp. 961–964.

[10] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Se-
nior, V. Vanhoucke, P. Nguyen, and T. Sainath, and B. Kingsbury,
“Deep Neural Networks for Acoustic Modeling in Speech Recogni-
tion,” IEEE Signal Process. Mag., vol. 28, pp. 82-97, Nov. 2012.

[11] S. Renals, T. Hain, and H. Bourlard, “Recognition and understanding
of meetings the AMI and AMIDA projects,” in Proc. ASRU, 2007,
pp. 238–247.
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