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ABSTRACT

This paper proposes a generalized discriminative training framework
for system combination, which encompasses acoustic modeling
(Gaussian mixture models and deep neural networks) and discrimi-
native feature transformation. To improve the performance by com-
bining base systems with complementary systems, complementary
systems should have reasonably good performance while tending to
have different outputs compared with the base system. Although it is
difficult to balance these two somewhat opposite targets in conven-
tional heuristic combination approaches, our framework provides a
new objective function that enables to adjust the balance within a
sequential discriminative training criterion. We also describe how
the proposed method relates to boosting methods. Experiments
on highly noisy middle vocabulary speech recognition task (2nd
CHiME challenge track 2) and LVCSR task (Corpus of Spontaneous
Japanese) show the effectiveness of the proposed method, compared
with a conventional system combination approach.

Index Terms— discriminative training, margin training, boost-
ing, system combination

1. INTRODUCTION

Many researchers have pointed out that combining different systems
effectively improves performance (e.g., Recognizer Output Voting
Error Reduction (ROVER) [1] and [2, 3]) even if the performance
of the complementary systems is lower than that of the base sys-
tem. Because effective system combination relies on a combina-
tion of hypotheses with different trends, generally, different features
or training methods are used to construct complementary systems
[4, 5, 6, 7]. For example, the random forest approach [4] is a simple
way of constructing complementary systems, which builds multiple
shared tri-phone trees by randomly changing the topologies of exist-
ing trees. Especially for Deep Neural Networks (DNN), to avoid
local minimum problems, random initialization and averaging of
multiple model parameters are generally used to improve the perfor-
mance of the original single system. However, system combinations
do not necessarily improve the performance when the hypotheses of
complementary systems have similar trends or yield too many errors
(as we also confirmed in our experiments). Classical system com-
bination approaches require trial-and-error attempts because they do
not rely on a general theoretical background such as an objective
function in discriminative training [8, 9, 10].

To address this problem, we previously proposed a method to
discriminatively train acoustic models of complementary systems
for system combination by extending a lattice-based discriminative
training framework [11], where an objective function based on the
Maximum Mutual Information (MMI) criterion provides a theoreti-
cal background for training complementary systems.

In this paper, we extend the above approach and propose a
general framework of sequential discriminative training for system
combination encompassing various model training methods such
as acoustic modeling, here applied to Gaussian Mixture Models
(GMM) and DNN, as well as discriminative feature transformation.
Our method generalizes the objective function of discriminative
training in order to balance the objective function given by correct
labels and that given by the hypotheses of the base systems. The
advantages of our proposed method are the fact it leads to a sim-
ple extension of conventional lattice-based discriminative training
and its clear resemblance to a discriminative training method. In
addition, because the formulation of our proposed method includes
margin-based discriminative training, one can adjust the degree of
deviation of the complementary systems’ outputs with respect to
those of the base systems. Thus, the effectiveness of the proposed
approach covers the wide area of discriminative acoustic modeling
and feature transformation.

This paper first describes the general discriminative training
framework for complementary systems in Section 2. Then, we ap-
ply this framework to sequential discriminative training of acoustic
models (GMM and DNN) and discriminative feature transforma-
tion in Sections 3 and 4, respectively. Sections 5 and 6 show the
effectiveness of the proposed approach experimentally.

2. GENERALIZED DISCRIMINATIVE TRAINING
FRAMEWORK FOR COMPLEMENTARY SYSTEMS

In this paper, complementary systems are constructed by discrimi-
natively training a model starting from an initial model. The pro-
posed discriminative training method for complementary systems is
extended from a discriminative training principle. AssumingQ base
systems have already been constructed, the discriminative training
objective functionF is generalized to the following proposed objec-
tive functionFc, which subtracts from the original objective func-
tion involving the correct labelsωr, the objective functions involv-
ing the 1-best hypotheses (lattice)ωq,1 (q = 1, . . . , Q) of theQ base
systems:

Fc
φ(ωr, ωq,1) = (1 + α)Fφ(ωr)−

α

Q

Q∑
q=1

Fφ(ωq,1), (1)

whereφ is the set of model parameters of a complementary system
to be optimized andα is a scaling factor. The 1-best hypotheses
can be easily obtained by the lattice rescoring. Ifα equals zero, this
objective function matches that of classical discriminative training.
The first term in Eq. (1) promotes good performance according to
the discriminative training criterion, whereas the second term makes
the target system generate hypotheses that have a different tendency



from the original base models. The next sections provide concrete
forms of the objective function and model parameters in Eq. (1) for
acoustic modeling problems and discriminative feature transforma-
tion.

3. DISCRIMINATIVE TRAINING OF ACOUSTIC MODELS

This section applies the MMI criterion to the above-mentioned
framework1. MMI training aims to maximize the following ob-
jective function for a correct label sequenceωr in reference to
hypothesesω in a lattice, which is generated by an initial model
(e.g., ML model):

FMMI
λ (ωr) = ln

Pλ(ωr,X)∑
ω Pλ(ω,X)

, (2)

= ln

∑
sr∈Sωr

pλ (sr,X)κ pL(ωr)∑
ω

∑
s∈Sω

pλ (s,X)κ pL(ω)
, (3)

whereλ is the set of HMM parameters to be optimized andX =
{xt|t = 1, · · · , T} is a feature vector sequence for theT -frame ut-
tarance. The summation over utterances is omitted for readability.
The product of the acoustic model scorepλ with a HMM state se-
quences (and acoustic scaleκ) and the language model scorepL is
denoted byPλ(ω,X). In Eq. (3), the acoustic score is obtained by
the summation over a referencesr or s, andSωr orSω is a set of the
HMM state sequences, which outputs a correct labelωr or a hypoth-
esisω, respectively. For simplicity, the number of base systemsQ is
taken as one below, and the indexq is omitted.

In the MMI criterion, we replaceφ by λc andF by FMMI in
Eq. (1) to obtain:

Fc
λc
(ωr, ω1) = FMMI

λc
(ωr) + α ln

Pλc(ωr,X)

Pλc(ω1,X)
, (4)

which is a new objective function for a complementary system
within an MMI discriminative training framework, that has an addi-
tional log-likelihood ratio term.

In boosted MMI (bMMI) [9], the standard MMI objective func-
tion is modified to include a factor that enhances the effect of hy-
potheses with low accuracies:

FbMMI
λ (ωr) = ln

∑
sr∈Sωr

pλ (sr,X)κ pL(ωr)∑
ω

∑
s∈Sω

pλ (s,X)κ pL(ω)e−bA(s,sr)
, (5)

whereA(s, sr) is the state/phoneme/word accuracy calculated from
the HMM state sequences ofs for a referencesr, which is computed
frame by frame in our implementation. As a simple extension of the
Eq. (4), by replacingFMMI with FbMMI, and adding the (reverse
sign) boosting factors to the log-likelihood ratio term analogous to
Eq. (5), we can introduce the following objective function2 3:

Fc
λc
(ωr, ω1) = FbMMI

λc
(ωr)

+ α ln

∑
sr∈Sωr

pλ (sr,X)κ pL(ωr)∑
s1∈Sω1

pλ (s1,X)κ pL(ω1)eb1A(s1,sr)
,

(6)

1The MMI discriminative criterion is used in this paper, but this procedure
is easily applied to other discriminative criteria (e.g., MPE[12] or MCE[13]).

2There is another derivation obtained by substituting the bMMI criterion
Eq. (5) into our generalized form Eq. (1). We will further investigate the
relationship in our future work.

3Note that because there are multiple HMM state sequences realizing the
same phoneme/word sequence, the denominator of the second term in Eq. (6)
is obtained by the summation over these multiple sequences, and thus the
boosting factorb1 do affect the optimization.

wheres1 is an HMM state sequence corresponding to the 1-best hy-
pothesis of the base systemω1. The reverse sign boosting factorb1
is discussed in the Section 3.1. This procedure is commonly used
to obtain the objective functions of acoustic modeling (GMM and
DNN) and discriminative feature transformation in this paper.

3.1. Gaussian Mixture model (GMM)

In GMM training, Eq. (3) is broken down into the update formulae
for the meanµjm and covarianceΣjm of GMM (HMM statej and
Gaussian indexm) as

µ′
jm =

∑
t ∆jm,txt +Djmµjm∑

t ∆jm,t +Djm
,

Σ′
jm =

∑
t ∆jm,txtx

⊤
t +Djm(Σjm +Ujm)∑

t ∆jm,t +Djm
−U′

jm,

(7)

where∆jm,t is γnum
jm,t − γden

jm,t, γ
num
jm,t andγden

jm,t are the numerator
and denominator of the posteriors of Eq. (3) or (5), and⊤ denotes
the transpose.Ujm andU′

jm denoteµjmµ⊤
jm andµ′

jmµ′ ⊤
jm, re-

spectively. These update formulae are introduced by approximat-
ing the update formulae for discrete HMM optimization [14]. The
Gaussian-specific learning rateDjm is set to makeΣ′

jm positive def-
inite. The mixture weightsπjm of GMM can be also optimized [9].

We now explain the update equation of the complementary sys-
tem by using the proposed objective function (6). The update formu-
lae for the mean and covariance of GMM take the same form as the
original (b)MMI formulae (7) up to simply modifying the variables
as (γnum

jm,t is unchanged)

∆′
jm,t = (1 + α)

(
γnum
jm,t − γden

jm,t

′)
,

γden
jm,t

′
=

γden
jm,t + αγ1

jm,t

1 + α
,

D′
jm =

Djm

1 + α
.

(8)

To elucidate the effect of theb1 term, we first consider for simplicity,
the single-frame classification problem of the proposed approach,
which is approximated by assuming an utterance has only one frame.
In a single frame, because we do not need to consider the HMM
states transition, posteriors are proportional to the product of acous-
tic and language scores multiplied by the boosting factors. In this
case, the indext is omitted, andγ1

jm can be represented by

γ1
jm =

{
C1

jmeb1 (j, s.t., s1 = sr, correct),
C1

jm (j, s.t., s1 ̸= sr, incorrect),
(9)

C1
jm =

pλ (j,m,x)κ pL(ω1)∑
m′,j′1∈Sω1

pλ (j′1,m
′,x)κ pL(ω1)eb1A(j′1,jr)

,

pλ (j,m,x) = πjmN (x;µjm,Σjm),

(10)

whereN is a probability density of a single Gaussian andj1 and
jr are the HMM states obtained from the 1-best hypotheses of the
base system and the label, respectively. The factorb1 decreasesγ1

jm

in the case that the base system gives incorrect hypotheses. Because
γ1
jm is subtracted in Eq. (8), diminishing it increases∆jm,t for these

hypotheses. This is analogous to boosting algorithms such as Ad-
aBoost [15, 16], which assign larger weights to data points where
the base system gives incorrect hypotheses.



For the sequential case, it is difficult to show a direct relation-
ship between the posterior and the boosting factors as in the single
frame case because, to gather posteriors, the forward-backward al-
gorithm is used and posteriors at the current frame are affected by
the previous and future frames. However, similarly to the discussion
in the single frame case, because the posteriorγ1

jm,t is an increasing
function of the base system’s sentence average accuracy, even in the
sequential case, the proposed method has a relationship to boosting.

Algorithm 1 shows the proposed algorithm for updating a com-
plementary system model by using the extended Baum-Welch
(EBW) algorithm or gradient descent (GD). In this paper, EBW
algorithm was used.

Algorithm 1 Construct complementary system model for GMM

Input: Initial modelλ (e.g., ML), base system modelsλq, numera-
tor (ωr aligned) latticeA, and denominator latticeL of Eq. (2) or
(5)
for i = 1 to ieb do

RescoreA andL with λ
γnum
jm,t andγden

jm,t ⇐posteriors are gathered onA andL, respec-
tively
γjm,t ⇐ −γden

jm,t + (1 + α)γnum
jm,t

for q = 1 toQ do
RescoreL with λq

L1 ⇐best path ofL
RescoreL1 with λ
γ1
jm,t ⇐ posteriors are gathered onL1

γjm,t ⇐ − α
Q
γ1
jm,t + γjm,t

end for
γnum
jm,t , γ

den
jm,t ⇐positive and negative parts ofγjm,t

λ⇐ Updateµ andΣ by EBW or GD (Eq. (7))
end for

Output: Complementary system model (λc ← λ)

3.2. Deep Neural Networks

In a DNN-HMM hybrid system, sequential discriminative training
according to the MMI criterion (2) has been proposed [17, 18, 19].
The DNN provides posterior probabilities for the HMM statej.
Acoustic likelihoodpθ is replaced by pseudo likelihood as

pθ (xt|j) =
pθ (j|xt)

p0 (j)
, (11)

wherep0 (j) is the prior probability calculated from the training
data. For each HMM state, the modelθ includes a softmax acti-
vation functionpθ:

pθ(j|xt) =
exp a(j|xt)∑
j′ exp a(j

′|xt)
, (12)

wherea is the activation at the output layer. These activations are
trained discriminatively according to MMI criterion. The MMI ob-
jective function is the same as Eq. (6), simply replacingλ by θ. The
update rule for activationa is obtained by differentiating the objec-
tive function:

∂FbMMI

∂a(j)
=

∑
j′

∂FbMMI

∂ log pθ (xt|j′)
∂ log pθ (xt|j′)

∂a(j)
,

= κ(γnum
j,t − γden

j,t ).

(13)

For the proposed method, the denominator posterior is modified by
Eq. (8) as in the GMM case. The gradients for all the DNN pa-
rameters are derived from Eq. (13) based on the back-propagation
procedure.

Algorithm 2 shows that the method for constructing complemen-
tary system models for DNN is similar to the GMM case. This ver-
satility is one of the advantages of the proposed generalized frame-
work.

Algorithm 2 Construct complementary system model for DNN

Input: Initial model θ, base system modelsθq, numerator (ωr

aligned) latticeA, and denominator latticeL of Eq. (2) or (5)
for i = 1 to ieb do

RescoreA andL with θ
γnum
j,t andγden

j,t ⇐posteriors are gathered onA andL, respec-
tively
γj,t ⇐ −γden

j,t + (1 + α)γnum
j,t

for q = 1 toQ do
RescoreL with θq
L1 ⇐best path ofL
RescoreL1 with θ
γ1
j,t ⇐ posteriors are gathered onL1

γj,t ⇐ − α
Q
γ1
j,t + γj,t

end for
γnum
j,t , γden

j,t ⇐positive and negative parts ofγj,t
θ ⇐ Updatea by EBW or GD (Eq. (13))

end for
Output: Complementary system model (θc ← θ)

4. DISCRIMINATIVE FEATURE TRANSFORMATION

In addition to discriminative training of acoustic models, feature
transformation based on the discriminative training criterion can
be used [20]. This method estimates a matrixM that projects
from high-dimensional (L-dimensional) non-linear features to low-
dimensional (K-dimensional) transformed features as:

yt = xt +Mht, (14)

whereht is the nonlinear feature, andyt is the transformed fea-
ture. The matrixM is K × L-dimensional and trained on the MMI
criterion, which is then called feature-space MMI (f-MMI) and can
also be extended to a boosted version (f-bMMI). After substituting
y of Eq. (14) forx into Eq. (5), we obtain the objective function for
f-bMMI:

F f-bMMI
M (ωr) = ln

∑
sr∈Sωr

pM (sr,Y)κ pL(ωr)∑
ω

∑
s∈Sω

pM (s,Y)κ pL(ω)e−bA(s,sr)
,

(15)
whereY is a feature vector{yt|t = 1, · · · , T}. Differentiating the
objective functionF byM as

∂F
∂M

=
[

∂F
y1

· · · ∂F
yTf

] [
h1 · · · hTf

]⊤
, (16)

whereTf is the total number of frames of training data. The opti-
mized matrixM is obtained by gradient descent using the (b)MMI
statistics. Indirect differential of the objective function is given by

∂F
∂yt

=
∑
j

∑
m

γML
jm,t∑
t γ

ML
jm,t

[
∂F

∂µjm,t

+ 2
∂F

∂Σjm,t
(yt − µjm,t)

]
,

(17)



whereγML
jm,t is the ML model posterior and ∂F

∂µjm,t
and ∂F

∂Σjm,t

have been already obtained by the (b)MMI discriminative training
of acoustic models [20]. To form the features,N components of
the GMM are obtained by clustering the Gaussians in the initial tri-
phone acoustic models intoN components and re-estimating their
parameters. The non-linear featureht [21] is calculated as

ht,n =

[
pt,n

xt,1 − µn,1

σn,1
, · · · , pt,n

xt,K − µn,K

σn,K
, βpt,n

]⊤

,

(18)
whereµn,k andσn,k arekth dimensional mean and standard devi-
ation parameters of thenth Gaussian component.β is the scaling
factor. pt,n are Gaussian component posteriors computed for each
frame, which are approximated such that all but theN1-best poste-
riors are set to zero. This approximation is undertaken in order to
reduce computational cost by ensuring thatht is sparse.

As in the GMM case, the objective function for complementary
systems is introduced from Eq. (1) by replacingφ by Mc andF by
F f-MMI (b = 0 for Eq. (15)) as

Fc
Mc

(ωr, ω1) = F f-MMI
Mc

(ωr) + α ln
PMc(ωr,Y)

PMc(ω1,Y)
, (19)

and, in the same procedure from Eq. (4) to Eq. (6), the boosted ver-
sion of Eq. (19) is given by

Fc
Mc

(ωr, ω1) = F f-bMMI
Mc

(ωr)

+ α ln

∑
sr∈Sωr

pMc (sr,Y)κ pL(ωr)∑
s1∈Sω1

pMc (s1,Y)κ pL(ω1)e−b1A(s1,sr)
.

(20)

Thus the proposed framework can be applied to the discriminative
feature transformation for a complementary system starting from the
generalized objective function.

Algorithm 3 shows the proposed algorithm for updating a com-
plementary system model by using the gradient descent algorithm.

Algorithm 3 Construct complementary system model for f-MMI

Input: Acoustic modelλ, initial matrixM, base system matrixMq,
numerator (ωr aligned) latticeA, and denominator latticeL of
Eq. (15)
for i = 1 to ieb do

RescoreA andL with λ usingyt (= xt +Mht)
γnum
jm,t andγden

jm,t ⇐posteriors ofA andL, respectively
γjm,t ⇐ −γden

jm,t + (1 + α)γnum
jm,t

for q = 1 toQ do
RescoreL with λ usingyt (= xt +Mqht)
L1 ⇐best path ofL
RescoreL1 with λ
γ1
jm,t ⇐ posterior ofL1

γjm,t ⇐ − α
Q
γ1
jm,t + γjm,t

end for
γnum
jm,t , γ

den
jm,t ⇐positive and negative parts ofγjm,t

M⇐ Update elements inM by calculating the indirect differ-
ential in Eq. (17)

end for
Output: Complementary system matrix (Mc ←M)

5. EXPERIMENTAL SETUP

We evaluated the performance improvement provided by these
system combination techniques on two corpus: the 2nd CHiME
challenge Track 2 and Corpus of Spontaneous Japanese. The for-
mer aimed to validate the performance of the proposed method for
acoustic modeling (GMM and DNN) and discriminative feature
transformation and the effectiveness of our proposed generalized
framework experimentally. The latter aimed to show that the pro-
posed method is effective for other tasks and the performance
improvement does not depend on tasks. The 2nd CHiME challenge
Track 2 was designed for evaluating the word error rate (WER)
of a medium vocabulary task (Wall Street Journal (WSJ0)) under
reverberated and non-stationary noisy environments [22]. The lan-
guage model size was 5 k (basic). The evaluation data set (siet 05)
contained 330 utterances from 12 speakers (Nov’92), and the de-
velopment set (sidt 05) contained 409 utterances from 10 speakers.
Acoustic models were trained using sitr s and the acoustic scaleκ
was tuned using sidt 05. These data simulated realistic environ-
ments. Noise was non-stationary, such as other speakers’ utterances,
household noise, or music and was added to ‘isolated’ speech at
SNR = {−6,−3, 0, 3, 6, 9}dB. Although the database provided
two-channel data, we used noise-suppressed single-channel data
obtained by prior-based binary masking [23].

The settings of acoustic feature and feature transformation was
as follows [24]. We used the Kaldi toolkit [25]. The baseline fea-
tures were MFCC and PLP (1-13 order MFCCs/PLPs +∆ + ∆∆).
Feature transformation techniques (Linear Discriminant Analysis
(LDA) and Maximum Likelihood Linear Transformation (MLLT))
and speaker adaptation technique (Speaker Adaptive Training (SAT)
and feature space Maximum Likelihood Linear Regression (fM-
LLR)) were used.

The procedure of training acoustic models and the setup of
feature transformations are described in [23, 24]. The number of
the context-dependent HMM states was 2,500 and the total number
of Gaussians was 15,000. Tree structures were different between
MFCC and PLP features, the latter of which also considered a ran-
dom forest-like effect. For the DNN, we used a CPU version of
neural network training implemented in Kaldi with 3 hidden layers
and 1,000,000 parameters. The initial learning rate was 0.01 and
was decreased to 0.001 at the end of training. In discriminative
feature transformation,400 Gaussians were used and offset features
were calculated for each of the 40 dimensional features with context
expansion (9 frames). The dimension of the feature vectorht was
400 × 40 × 9. Features with the top2 posteriors were selected
and all other features were ignored.β was set to 5. For the pro-
posed method, parametersα andb1 were 0.75 and 0.3, which were
optimized by using the development set.

Corpus of Spontaneous Japanese (CSJ) is a lecture-style LVCSR
speech recognition task [26]. Test set 1 contained about 10-15 min-
utes lecture by 10 different male speakers. The ASR settings were
similar to the CHiME challenge, but the language model size was
about 70k and the number of the context-dependent HMM states was
3,500 and the total number of Gaussians was 96,000. The parame-
ters for the proposed method are the same to those for the CHiME
challenge.

We used ROVER for combining output hypotheses from multi-
ple systems. Certainly, especially for two systems, confusion net-
work combination (CNC) is better than ROVER, however, ROVER
is more simple and can be applied for many systems.



6. RESULTS AND DISCUSSION

6.1. CHiME challenge (Noise robust ASR)

For the GMM system, although detailed results are shown in [11],
we briefly describe the results for comparison with the other ap-
proaches. Table 1 shows the WER using MFCC and PLP features
with the feature transformation of LDA+MLLT and SAT+fMLLR.
The upper, upper middle, lower middle, and lower sections corre-
spond to conventional single systems (S1-S4), ROVER among con-
ventional multiple systems (R1,R2), proposed complementary sys-
tems (P1,P2), and ROVER including proposed complementary sys-
tems (RP1,RP2), respectively. The performances of proposed com-
plementary systems (P1,P2) were in between that of ML(S1,S3) and
that of bMMI(S2,S4). Because the performance of ML was much
lower than that of bMMI, the combination with the ML model was
not effective for ROVER (S2→R1). In this case, even though the
numbers of systems were the same (two) for both cases, the perfor-
mance of the combination of bMMI and bMMIc (RP1) was higher
than that of the combination of ML and bMMI (R1) because the per-
formance of bMMIc was moderate, which made the system combi-
nation effective. This is an advantage of the performance adjustabil-
ity of the proposed method. Adding two systems to the conventional
ROVER using four systems further improved the WER by 0.42%(dt)
and 0.51%(et) (R2→RP2). Because the hypotheses of MFCC sys-
tems are quite different from those of PLP systems, alternative up-
date of the complementary system for both feature systems could not
improve the performance.

In addition, we validated the discriminative feature transforma-
tion and DNN on the development set. Table 2 (left column) shows
the WER using discriminative feature space transformation on top
of MFCC features with the feature transformation of LDA+MLLT
and SAT+fMLLR. f-bMMI is usually combined with discrimina-
tive training of GMM (i.e., bMMI). In this case, we constructed
complementary systems in two ways: for both f-bMMI and bMMI,
the objective functions were modified (i.e., f-bMMIc + bMMIc us-
ing Eqs. (20) and (6)) or only for f-bMMI, the objective function
was modified (i.e., f-bMMIc + bMMI using Eqs. (20) and (5)).
The performance of the combination of bMMI and f-bMMI (R3)
was lower than that of f-bMMI only, but the combination with the
proposed complementary systems (RP3 and RP4) improved the
accuracy. There was no significant difference between f-bMMIc

Table 1. Average WER[%] for isolated speech (si dt 05 and
si et 05) on acoustic modeling (GMM). (MFCC and PLP with
LDA+MLLT+SAT+fMLLR) (upper: conventional Single systems
(S), upper middle: ROVER among conventional multiple systems
(R), lower middle: single Proposed complimentary systems (P), and
lower: ROVER including Proposed complementary system (RP))

ID
MFCC PLP WER

ML bMMI bMMI c ML bMMI bMMI c (dt) (et)
S1 ✓ 38.15 32.20
S2 ✓ 35.86 29.46
S3 ✓ 38.10 32.23
S4 ✓ 36.43 29.98
R1 ✓ ✓ 36.06 29.26
R2 ✓ ✓ ✓ ✓ 34.97 28.00
P1 ✓ 36.21 30.09
P2 ✓ 36.72 30.46

RP1 ✓ ✓ 35.67 28.80
RP2 ✓ ✓ ✓ ✓ ✓ ✓ 34.55 27.49

Table 2. Average WER[%] for isolated speech (si dt 05, si et 05)
on discriminative feature transformation. (MFCC with LDA+MLLT
and SAT+fMLLR)

ID bMMI f-bMMI
f-bMMI c f-bMMI c WER
+ bMMIc +bMMI (dt) (et)

S5 ✓ 35.86 29.46
S6 ✓ 33.19 27.00
R3 ✓ ✓ 33.80 27.15
P3 ✓ 35.38 28.27
P4 ✓ 33.88 27.86

RP3 ✓ ✓ 32.75 26.60
RP4 ✓ ✓ 32.67 26.62

Table 3. Average WER[%] for isolated speech (si dt 05, si et 05)
on acoustic modeling (DNN). (MFCC with LDA+MLLT)

ID DNN bMMI bMMI c
WER

(dt) (et)
S7 ✓ 36.59 30.84
S8 ✓ 32.40 26.91
P5 ✓ 33.09 27.97

RP5 ✓ ✓ 31.38 26.48

Table 4. WER[%] in terms of SNR[dB] for isolated speech
(si et 05) on f-bMMI (S6→RP3) and DNN (S8→RP5).

−6dB −3dB 0dB 3dB 6dB 9dB Avg.
S6 44.14 35.42 28.56 21.46 17.4114.98 27.00
S8 43.86 33.36 28.13 22.01 17.75 16.3626.91

RP3 43.21 34.24 28.25 21.5817.17 15.13 26.60
RP5 42.85 32.43 27.91 21.5617.75 16.40 26.48

Table 5. Average WER[%] (CSJ, test set 1) on acoustic modeling
(GMM). (MFCC)

ID ML bMMI bMMI c WER
S1 ✓ 21.00
S2 ✓ 18.64
R1 ✓ ✓ 18.69
P1 ✓ 18.81

RP1 ✓ ✓ 18.52
RP2 ✓ ✓ ✓ 18.28

+ bMMI and f-bMMIc + bMMIc. Table 3 shows the WER using
DNN on top of MFCC and PLP features with the feature transforma-
tion of LDA+MLLT. Discriminative training improved the accuracy
by 4.19% (S7→S8) significantly. Combination with the proposed
method also improved the accuracy further (RP5).

We also validated the performance on the evaluation set, and
confirmed the similar experimental tendencies. Table 4 further in-
vestigates the WER in terms of SNR by comparing S6 with RP3 (f-
bMMI case) and S8 with RP5 (DNN case). For almost all the cases,
the proposed method improved the WER, especially for the low SNR
cases (1.2% maximum). Thus, the performance improvements were
stable and robust in different environments.

In conclusion, the experimental results confirmed the effec-
tiveness of the proposed approach for a wide range of sequential
discriminative training methods for acoustic modeling and feature
transformation.



6.2. CSJ (LVCSR)

The performance was evaluated on a second corpus (CSJ). This task
did not include noises but it was composed of spontaneous speech
and the vocabulary size was much larger than the CHiME challenge
(WSJ0). Table 5 shows the WER for the test set 1 by using the
proposed GMM training. In this case, conventional ROVER (R1)
decreased the performance from the single system (S2), however, the
proposed method using two or three systems improved the accuracy
by 0.36%. Thus, the proposed approach was also effective for large-
scale spontaneous speech recognition.

7. CONCLUSIONS

We proposed a general discriminative training framework for system
combination. The proposed method can construct complementary
systems in the framework of discriminative training methods, and it
is capable of improving the WER on reverberated and highly noisy
speech as well as large vocabulary spontaneous speech recognition
tasks. Moreover, it is effective for discriminative training of acoustic
models (GMM and DNN) and discriminative feature transformation.
In future work, the proposed method will be combined with other
discriminative techniques, such as acoustic modeling with other dis-
criminative criteria and discriminative language modeling [8].
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