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Abstract
The expressive power of end-to-end automatic speech recog-
nition (ASR) systems enables direct estimation of a character
or word label sequence from a sequence of acoustic features.
Direct optimization of the whole system is advantageous be-
cause it not only eliminates the internal linkage necessary for
hybrid systems, but also extends the scope of potential appli-
cations by training the model for various objectives. In this
paper, we tackle the challenging task of multilingual multi-
speaker ASR using such an all-in-one end-to-end system. Sev-
eral multilingual ASR systems were recently proposed based
on a monolithic neural network architecture without language-
dependent modules, showing that modeling of multiple lan-
guages is well within the capabilities of an end-to-end frame-
work. There has also been growing interest in multi-speaker
speech recognition, which enables generation of multiple label
sequences from single-channel mixed speech. In particular, a
multi-speaker end-to-end ASR system that can directly model
one-to-many mappings without additional auxiliary clues was
recently proposed. The proposed model, which integrates the
capabilities of these two systems, is evaluated using mixtures of
two speakers generated by using 10 languages, including code-
switching utterances.
Index Terms: end-to-end ASR, multilingual ASR, multi-
speaker ASR, code-switching, encoder-decoder, CTC

1. Introduction
The expressive power of end-to-end automatic speech recogni-
tion (ASR) systems enables direct conversion from input speech
feature sequences to output label sequences without any explicit
intermediate representations and hand-crafted modules [1–5].
In addition to eliminating these intermediate linkage compo-
nents found in hybrid systems, direct optimization of the whole
system allows models to be more easily applied to different sce-
narios simply by changing training data and objectives.

Multilingual speech recognition is one such scenario, in
which the goal is to support recognition of multiple languages.
A particularly challenging case is that of code-switching, where
speakers of multiple languages naturally switch language be-
tween or during utterances. Conventional approaches require
language dependent modules and rely on a pipeline processing
consisting of language identification followed by recognition
of speech with a matched language-dependent system. How-
ever, recent studies have demonstrated end-to-end systems that
can recognize multiple languages without language-dependent
modules [6–8]. These methods eliminate the need for a lan-
guage identification module, making it easier for application
developers to produce systems for an arbitrary set of languages.

Whereas conventional ASR systems support recognition of
speech by a single speaker, it is typically difficult or impossi-

Figure 1: Example of seamless ASR on code-switching speech
(top) and multilingual multi-speaker speech (bottom).

ble to use them in scenarios where multiple people are talk-
ing simultaneously. There has recently been growing interest in
dealing with such situations, with many developments in the
field of single-channel multi-speaker ASR [9–17]. The goal
of single-channel multi-speaker speech recognition is to recog-
nize the speech of multiple speakers given the single-channel
mixture of their acoustic signals, in a one-to-many transforma-
tion. Promising techniques have been proposed for this task, but
many earlier works have required the availability of additional
training information such as the isolated source signals of each
speaker [11] or the phonetic state alignments [12, 13] for effec-
tive learning. Some of these also require an explicit intermedi-
ate separation stage prior to recognition [11, 13, 16, 18]. More
recently, several studies have considered an end-to-end architec-
ture to directly generate multiple hypotheses from a speech mix-
ture without requiring additional auxiliary training signals or
separation modules [15,17]. While these systems were designed
for a given number of speakers, it is possible to train them for a
large enough maximum number of simultaneous speakers with-
out significant loss of performance with less speakers [12].

In this paper, we propose an unprecedented all-in-one
end-to-end multilingual multi-speaker ASR system integrating
end-to-end approaches for multilingual ASR and multi-speaker
ASR. This system can be used to provide a seamless ASR ex-
perience, in particular improving accessibility of interfaces fac-
ing a diverse set of users. As an example of potential appli-
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Figure 2: Overview of the proposed end-to-end multilingual
multi-speaker ASR system. The recognizer supports input in
multiple languages and allows speakers to switch languages
during an utterance (code-switching). For each speaker, the de-
coder network generates a language ID followed by a charac-
ter sequence, and repeats the generation of a language ID and
character sequence when the speech includes code-switching.

cation, we developed a live demonstration of a multilingual
guidance system for an airport, shown in Fig. 1. The sys-
tem realizes a speech interface that can guide users to var-
ious locations within an airport. It can recognize multilin-
gual speech with code-switching and simultaneous speech by
multiple speakers in various languages without prior language
settings, and provide the appropriate guidance for each query
in the corresponding language. The demonstration was pre-
sented during a Japanese press event in February 2019, result-
ing in reports in all national TV channels in Japan as well as in
Japan’s top newspaper. More details and a video are available
at http://www.merl.com/demos/seamless-asr.

Figure 2 shows an overview of the multilingual multi-
speaker ASR system processing a mixture of two speakers,
where one speaker first speaks in Japanese then in English,
while the other speaker speaks in Chinese. In this example,
the left side encoder-decoder network performs recognition of
multilingual speech with code-switching between Japanese and
English, and the right side network performs recognition of the
Chinese part. The input speech is a mixture of two speakers
and the system is expected to generate hypotheses for two char-
acter sequences, one for each speaker. Inherently, this task is
a combination of existing multilingual ASR and multi-speaker
ASR. In this study, we investigate whether this challenging task
can be accomplished using a monolithic neural network archi-
tecture optimized through an ASR loss, the network learning to
perform language-independent source separation implicitly.

2. Multilingual speech recognition
2.1. End-to-end ASR network
We employ a hybrid CTC/attention end-to-end ASR frame-
work [19] and follow the notations of [15]. An attention-based
encoder-decoder network predicts labels in a label sequence
Y = {yn ∈U|n = 1, . . . , N} of length N given an input fea-
ture vector sequence O of length T and the past label history,
where U denotes a set of character labels. At inference time,
the previously emitted labels are used as past history, whereas at
training time, the reference labels R = {rn∈U|n = 1, . . . , N}
are used in a teacher-forcing fashion. The probability of se-
quence Y is computed by multiplying the sequence of condi-
tional probabilities of label yn given the past history y1:n−1:

patt(Y |O) =

N∏

n=1

patt(yn|O, y1:n−1). (1)

The hybrid CTC/attention network also includes a connection-
ist temporal classification (CTC) sub-module computing CTC
probabilities pctc(Y |O) (cf. [15]). The attention network and the
CTC sub-module share as input the encoder output. The CTC
loss and the attention-based encoder-decoder loss are combined
with an interpolation weight λ ∈ [0, 1]:

Lhyb = λLctc + (1− λ)Latt, (2)

where we define the CTC and attention losses as:

Lctc = Lossctc(Y,R) � − log pctc(Y = R|O), (3)

Latt = Lossatt(Y,R) � − log patt(Y = R|O). (4)

2.2. Augmented character set

For the recognition of multiple languages, we employ the union
of all target language character sets as an augmented character
set, i.e., U = UEN ∪ U JP ∪ · · · , where UEN/JP/··· is a character
set of a specific language, as in [6] and [8]. By using this aug-
mented character set, likelihoods of character sequences can be
computed for any language without requiring a separate lan-
guage identification module. The network is trained to auto-
matically predict the correct character sequence for the target
language of each utterance.

2.3. Auxiliary language identification

Language identification symbols, such as “[EN]” and “[JP]” for
English and Japanese, are further added to the augmented char-
acter set for an explicit identification of the target language and
for modeling the joint distribution of a language ID and a char-
acter sequence [6, 20, 21]. The language ID is inserted at the
beginning of the reference label. The final augmented character
set is Ufinal = U ∪ {[EN], [JP], . . . }.

2.4. Code-switching speech

It is natural for speakers of multiple languages to switch lan-
guage between or during utterances, a phenomenon known
as code-switching. Monolingual speakers also frequently use
code-switching with foreign named entities and expressions.
Code-switching speech is particularly challenging for conven-
tional ASR systems, and typically requires combining multiple
mono-lingual systems under a language identification module.

It was showed in [7] that multilingual speech recognition
with code-switching can be more elegantly solved using an end-
to-end multilingual ASR system trained on a dataset of code-
switching speech. Because existing corpora of code-switching
speech are limited and thus inadequate for large scale exper-
iments with end-to-end frameworks, [7] instead generated a
large code-switching corpus by concatenating speech from ex-
isting monolingual corpora, mostly from different speakers.
Here, we use the same strategy to generate a large dataset of
multi-speaker multilingual speech with code-switching, follow-
ing a generation procedure described in Section 4.1.

We are aware of the limitations of such artificially gener-
ated data. In particular, our dataset does not consider acoustical
nuances such as Lombard effect and appropriate room impulse
responses. Several analyses also show differences between nat-
ural and artificially generated code-switching [22,23]. There are
currently many efforts on the development of code-switching
speech corpora [24–28], and in particular, a promising data aug-
mentation method to increase the size of code-switching data
was proposed [29]. We thus plan to consider training and eval-
uation of the proposed system under real conditions in future



works. We shall note however that the proposed system per-
formed satisfactorily in limited testing on real code-switching
speech by a single speaker as well as multilingual speech by
multiple speakers in the demonstration mentioned above.

3. Multilingual multi-speaker ASR
3.1. Loss function for end-to-end multi-speaker ASR

When a speech mixture contains speech uttered by S speakers
simultaneously, our encoder network generates S hidden repre-
sentations from the T -frame sequence of D-dimensional input
feature vectors, O = {ot ∈ R

D|t = 1, . . . , T}:

Hs = Encoders(O), s = 1, . . . , S. (5)

In the training stage, the attention-based decoder network uses
reference labels R = {R1, . . . , RS} for the generation of hy-
potheses, in a teacher-forcing fashion. There is however here an
ambiguity, known as the permutation problem [10], as to which
reference label should correspond to which estimate. Therefore,
the conditional probability of the decoder network for the u-th
output depends on the selected v-th reference label. The proba-
bility of the n-th label yu,v

n is computed by conditioning on the
past reference history rv1:n−1:

patt(Y
u,v

att |O) =
∏

n

patt(y
u,v
n |Hu, rv1:n−1). (6)

During training, all possible permutations of the S sequences
Rs={rs1, . . . , rsNs

} of Ns reference labels are considered, and
the one leading to minimum loss is adopted for backpropaga-
tion, resulting in a permutation-free objective [10, 11, 13]. Let
P denote the set of permutations on {1, . . . , S}. The final at-
tention loss Latt is defined as

Latt = min
π∈P

S∑

s=1

Lossatt(Y
s,π(s)

att , Rπ(s)), (7)

where π(s) is the s-th element of permutation π. As the decoder
network takes more computation time than CTC, the permuta-
tion of reference labels is in practice selected based on minimiz-
ing the CTC loss only: an optimal permutation π̂ is determined
from the CTC network output Y s

ctc (considered as a random vari-
able) corresponding to Hs and the reference labels, as

π̂ = argmin
π∈P

S∑

s=1

Lossctc(Y
s

ctc, R
π(s)). (8)

This optimal permutation is then used to compute both CTC and
attention losses, which are combined as in Eq. (2):

Lctc =

S∑

s=1

Lossctc(Y
s

ctc, R
π̂(s)), (9)

Latt =

S∑

s=1

Lossatt(Y
s,π̂(s)

att , Rπ̂(s)). (10)

By defining the augmented character set as in Section 2.3
and using a multilingual multi-speaker corpus, we can train the
system to recognize simultaneous speech by multiple speakers
in multiple languages.

4. Experiments
4.1. Experimental setup

A multilingual multi-speaker corpus was generated using the
following corpora: WSJ (English) [30,31], CSJ (Japanese) [32],

HKUST (Chinese Mandarin) [33], and Voxforge (German,
Spanish, French, Italian, Dutch, Portuguese, Russian) [34] for
a total of 622.7 hours and 10 languages. The generated mix-
tures are intended to mimic overlapped speech by two speakers,
where each speaker may speak any language and change lan-
guage during the utterance. Because available corpora typically
do not share speakers, we here concatenate utterances in vari-
ous languages uttered by different speakers. Two such streams
are prepared and mixed down into a multilingual overlapped
speech mixture with code-switching. We now explain this pro-
cess in more detail. We first sample the number of concate-
nations n1

concat and n2
concat ranging from 1 to Nconcat for code-

switching within each stream. Then, n1
concat and n2

concat utter-
ances are sampled from the union of original corpora. We limit
the number of times each utterance can be selected to nreuse, and
prevent the same speaker from appearing in both streams to be
mixed. The probability of sampling a language is proportional
to the duration of its original corpus, while that of sampling
an utterance within a language is uniform. Selected utterances
are concatenated into respective streams, which are mixed with
randomly selected SNR ranging from 0 to R dB. Since the du-
rations of the streams to be mixed are different, we randomize
the starting point of the overlapping part by padding the shorter
stream with silence. These procedures are repeated until the
cumulative duration d of the generated corpus reaches the total
duration of the original corpora. In our experiment, Nconcat and
nreuse were set to 3, and R was set to 2.5 dB.

We followed the setup of earlier work on hybrid
CTC/attention-based encoder-decoder networks [3]. For the en-
coder network, we used the initial 6 CNN layers in the VGG
network stacked with an 8-layer bi-directional long short-term
memory (BLSTM) network. For the generation of multiple hy-
potheses, the encoder network was split at the BLSTM layer:
the VGG network generates a single hidden vector, from which
two speaker-differentiating 2-layer BLSTMs generate two hid-
den vectors. The two hidden vectors are further independently
fed into the (shared) 6-layer BLSTMs and the decoder network
to generate hypotheses for the utterances in the mixture. As
input feature, we used 80-dimensional log mel filterbank coeffi-
cients with pitch features and their delta and delta delta features
extracted using Kaldi [35]. The BLSTM layer has 320 cells
in each layer and direction, and a linear projection layer with
320 units follows each BLSTM layer. The decoder network has
a 1-layer LSTM with 320 cells. We used the AdaDelta algo-
rithm [36] with gradient clipping [37] for optimization. The
networks were implemented using ChainerMN [38] and opti-
mized under synchronous data parallelism using 8 GPUs. Fol-
lowing the pre-training procedure in [15], we first trained a ran-
domly initialized network using single-speaker speech without
code-switching. The network was then retrained using mixed
speech without code-switching, and finally using mixed speech
with code-switching1.

4.2. Results

Recognition example: Table 1 shows three examples of tran-
scriptions generated by the proposed model. The first exam-
ple contains German and Japanese utterances, where there is no
code-switching. The results are almost perfect. In the second
example, one stream is a concatenation of English speech fol-
lowed by Chinese speech, and the other is a concatenation of
two Japanese utterances. The Japanese result has a few errors

1 [17] eliminated the pre-training step and directly trained a whole
network as a mono-lingual multi-speaker ASR system.



Table 1: Examples of multilingual multi-speaker recognition result. CER of hypotheses HYP1 and HYP2 are shown in parentheses,
respectively. Errors are emphasized in red. “*” is a special token inserted to pad deletion and insertion errors for better readibility.

REF1: [DE] eine höhere geschwindigkeit ist möglich
Example 1 HYP1: [DE] eine höh*re geschwindigkeit ist möglich (CER=2.6%)

REF2: [JP] まずなぜこの内容を選んだかと言うと
HYP2: [JP] まずなぜこの内容を選んだかと言うと (CER=0.0%)
REF1: [EN] grains and soybeans most corn and wheat futures prices were stronger [ZH] 也是的

Example 2 HYP1: [EN] grains and soybeans most corn and wheat futures prices were strong*k [ZH] 也是的 (CER=2.8%)
REF2: [JP] えーここで注目すべき**点は例十十一の二重下線部に示すように [JP] アニメですとか
HYP2: [JP] えーここで注目すべきい点は零十十一の二十下線部に示すように [JP] アニメですとか (CER=8.6%)
REF1: [EN] he noted that last week’s one hundred eight point dro**p in* **the dow j*on***es industrial average resulted from

a slightly weaker dollar [ZH] 呃****子其也蛮普通的 [DE] ich darf nicht
Example 3 HYP1: [EN] it arter th*e last week’s one hundred eight point cround and with* daw jumn the***defter almove***s resulted from

a fl**atly reaker dollar [ZH] 呃是想的其也蛮不同的 [DE] ich darf nicht (CER= 29.2)
REF2: [ES] sorte*ando los p*r*omontorios de los respaldos los golfos y penı́ns *ulas formados por las **rodillas [JP] えー次

の一手についてま**さまざまな******議論をしなければいけないというような状況になっています それでまーえーこれからそれぞ
れの研究の関連とまーえーこのセッションの****見所聞き**所というのを説明したいんですけれども [ZH] 噢

HYP2: [ES] sortenando los para el turios de las respa*dos los golfos * penens bulas formados por la* car*ei*das [JP] えー次の
一手についてまーさまざまなんていうのをしなければいけないとい****うな状況になっています そいでまーえーこれからそれぞれ
の研究の関連とまーえーこのセッションのみところききとこというのを説明したいんですけれども [ZH] 哦 (CER=20.2)

Table 2: Character error rates (CER) [%] of mixed speech
recognized by the baseline multilingual single-speaker system.

# concat. utt. in softer stream
1 2 3 Avg.

# concat. utt. 1 107.2 107.3 109.6 108.0
in louder 2 107.5 100.5 102.0 103.3
stream 3 109.1 101.1 98.1 102.7

Avg. 107.9 103.0 103.2 104.7

Table 3: CERs [%] of mixed speech recognized by our pro-
posed multilingual multi-speaker ASR system.

# concat. utt. in softer stream
1 2 3 Avg.

# concat. utt. 1 42.9 42.0 40.3 41.7
in louder 2 41.6 46.7 47.5 45.3
stream 3 40.6 47.9 50.8 46.4

Avg. 41.7 45.5 46.2 44.5

Table 4: Oracle CERs [%] of isolated speech for each of the
utterances appearing in the mixtures used in Tables 2 and 3,
recognized by the baseline multilingual single-speaker system.

# concat. utt. in softer stream
1 2 3 Avg.

# concat. utt. 1 24.4 25.3 25.3 25.0
in louder 2 25.2 26.1 25.9 25.7
stream 3 25.5 25.4 25.9 25.6

Avg. 25.1 25.6 25.7 25.4

but these errors are in fact mostly correct in terms of pronuncia-
tion. The third example includes more complex utterances with
code-switching, where each stream contains three concatenated
utterances. This is the most difficult condition and the CERs are
higher than in the other cases. The network did make substitu-
tion, insertion, and deletion errors, but there is no swapping of
words between sentences, and language IDs are correctly esti-
mated.

Recognition performance: Table 2 shows character er-
ror rates (CERs) for the generated multilingual multi-speaker
speech recognized by the baseline multilingual single-speaker
model. Results are reported separately according to the num-
ber of concatenated utterances in each stream within the mix-
ture. We can see that the baseline model has high CERs, over
100%, because the model was trained as a multilingual single-
speaker ASR system. For the evaluation of the baseline system,
the generated hypothesis is duplicated to match the number of
references.

Table 5: Language ID error rates (LER) [%] of the baseline,
proposed, and oracle systems.

baseline 86.8
proposed 18.6
oracle 2.8

Table 3 shows the CERs for the generated speech recog-
nized with the proposed model. Our model significantly re-
duced the CERs from the baseline model, obtaining an average
CER of 44.5%, a 57.5% relative reduction from the baseline.

To investigate the lower bound of CER for the gener-
ated corpus, we evaluated the performance of the multilingual
single-speaker ASR system of [7] on each of the multilingual
streams used in the generated corpus, prior to mixing. This can
be considered an oracle result with perfect speech separation.
Table 4 shows the oracle CERs. The average CER of the oracle
result was 25.4%, showing that there is still room for further
performance improvement.

Language identification: Table 5 shows language identifi-
cation error rates (LERs) of the baseline single-speaker system,
our proposed system, and the oracle system described above.
The LER was calculated by computing the edit distance be-
tween the predicted language IDs and corresponding reference
language IDs. Similar to the CERs, there is a gap between the
proposed and oracle results, but the obtained LERs were much
better than with the baseline single-speaker ASR system.

5. Conclusion
We proposed an end-to-end multilingual multi-speaker ASR
system by integrating a multilingual ASR system and a multi-
speaker ASR system. The model is able to convert a speech
mixture to multiple hypotheses directly without explicit sepa-
ration. We evaluated the proposed model using speech mix-
tures involving two simultaneous speech streams in which the
language can switch between 10 languages during the utter-
ance. Our all-in-one multilingual multi-speaker system ob-
tained 57.5% relative improvement in CER over the baseline
multilingual single-speaker ASR system, and showed strong po-
tential towards this challenging task. In future works, we plan
to consider training and evaluation of the proposed system un-
der more realistic conditions in terms of code-switching. In the
same way as sequence-to-sequence models eliminated hand-
crafted modules such as lexicons, we believe that removal of
language-dependency and single-speaker assumption is part of
the future direction towards simplicity.
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