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ABSTRACT
End-to-end automatic speech recognition (ASR) can significantly re-
duce the burden of developing ASR systems for new languages, by
eliminating the need for linguistic information such as pronuncia-
tion dictionaries. This also creates an opportunity to build a mono-
lithic multilingual ASR system with a language-independent neural
network architecture. In our previous work, we proposed a mono-
lithic neural network architecture that can recognize multiple lan-
guages, and showed its effectiveness compared with conventional
language-dependent models. However, the model is not guaranteed
to properly handle switches in language within an utterance, thus
lacking the flexibility to recognize mixed-language speech such as
code-switching. In this paper, we extend our model to enable dy-
namic tracking of the language within an utterance, and propose a
training procedure that takes advantage of a newly created mixed-
language speech corpus. Experimental results show that the ex-
tended model outperforms both language-dependent models and our
previous model without suffering from performance degradation that
could be associated with language switching.

Index Terms— End-to-end ASR, multilingual ASR, language-
independent architecture, language identification, hybrid atten-
tion/CTC

1. INTRODUCTION

End-to-end automatic speech recognition (ASR) has recently proven
its effectiveness by reaching levels of accuracy equivalent to the
state-of-the-art conventional hybrid systems [1, 2, 3, 4], while sur-
passing them in terms of ease of development. Conventional ASR
systems require language-dependent resources such as pronuncia-
tion dictionaries and word segmentation, which are incorporated into
models with phonemes as an intermediate representation. These re-
sources are developed by hand and so they carry two disadvantages:
first, they may be error-prone or otherwise sub-optimal, and sec-
ond, they greatly increase the effort required to develop ASR sys-
tems, especially for new languages. The use of language-dependent
resources thus particularly complicates the development of multi-
lingual recognition systems. End-to-end ASR systems, in contrast,
directly convert input speech feature sequences to output label se-
quences (mainly sequences of characters or tokens composed of n-
gram characters in this paper) without any explicit intermediate rep-
resentation of phonetic/linguistic constructs such as phonemes or
words. Their main advantage is that they avoid the need for hand-
made language-dependent resources.

There have been several prior studies on multilingual/language-
independent ASR [5, 6, 7]. In the context of a deep neural net-
work (DNN)-based multilingual system, the DNN is used to com-
pute language independent bottleneck features. In such models it is
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necessary to prepare language-dependent back end components like
pronunciation dictionaries and language models. In addition, the
uttered language has to be predicted in order to cascade language-
independent and language-dependent modules [8, 9].

In our previous work [10], we proposed a monolithic ASR
system, with a fully language-independent neural network archi-
tecture, that can recognize speech and identify language jointly
in ten different languages: English, Japanese, Mandarin, German,
Spanish, French, Italian, Dutch, Portuguese, and Russian. Un-
like a conventional language-dependent system, all parameters can
be shared across languages, including those in the output layer,
because the output set is the union of the grapheme sets of the
multiple languages. This monolithic end-to-end ASR system has
three advantages: first, the monolithic architecture obviates the
need for language-dependent ASR modules and a separate language
identification module; second, the end-to-end architecture makes
it unnecessary to prepare a hand-crafted pronunciation dictionary;
and third, the shared network enables the learning of better fea-
ture representations even for low-resource languages. However,
in the previous setup, we trained the model using data consisting
of one language per utterance. This setup does not guarantee the
proper handling of a language switch within an utterance because
it does not need to handle such a phenomenon at training time. In
linguistics, the alternating of languages by a speaker is called code-
switching. Speech recognition is thought to be more difficult with
code-switching, especially if it is intrasentential (within sentences).

In this paper, we extend our language-independent architecture
to enable the flexibility to switch languages within an utterance while
maintaining the original feature of joint language identification and
speech recognition. There exist a few corpora with code-switching
[11, 12], but their size and the number of language combinations are
limited. Therefore, we generate a new corpus in order to evaluate
our proposed model against changes of language within an utter-
ance. We further propose a method inspired by curriculum learning
to efficiently train our system. This extension is advantageous in
the recognition of utterance with intrasentential code-switching and
further eliminates the need for an accurate voice activity detection
(VAD) system for the segmentation of languages.

2. LANGUAGE-INDEPENDENT ARCHITECTURE WITH
FLEXIBLE CODE-SWITCHING

2.1. Augmented character set

A key idea in our original language-independent end-to-end system
[10] is to consider as the set of output symbols an augmented char-
acter set including the union of character sets appearing in all the
target languages, i.e., U = UEN ∪ U JP ∪ · · · , where UEN/JP/··· is a
character set of a specific language. By using this augmented char-
acter set, likelihoods of character sequences can be computed for



Fig. 1. The proposed language-independent architecture. The sys-
tem repeats the prediction of language ID and speech recognition
given consecutive multilingual speech.

any language, without requiring a separate language identification
module. The network is trained to automatically predict the correct
character sequence for the target language of each utterance. The
use of the union, as opposed to using a unique character set for each
language, eliminates the duplication of output symbols that occur in
multiple languages, and yields a more compact model representation
with reduced computational cost.

Table 1 summarizes the number of distinct characters/tokens in-
cluding special symbols (e.g., <blank> used in CTC, end of sen-
tence <eos>, space <space>). For English, in order to handle
the relatively long sentences in the WSJ corpus, we expand the al-
phabet character set to 201 by adding tokens corresponding to up
to 5-gram character sequences frequently appearing in the WSJ text
corpus. This makes the output length L shorter, in order to reduce
computational cost and GPU memory usage.

Table 1. Numbers of distinct characters/tokens (or character/token
vocabulary size) for each language and the union of all languages.

EN JP CH DE ES FR IT NL PT RU Union
201 3,315 3,653 54 33 59 37 32 41 35 5,510

2.2. Joint language identification and speech recognition

Instead of letting the system implicitly predict the target language
of the utterance, we make the prediction of the language ID an ex-
plicit part of the system by further augmenting the set of output to-
kens to include the language ID, i.e., Ufinal = U ∪ {EN, JP, · · · }.
In our previous paper, the network first predicts a language ID, k ∈
{EN, JP, · · · }, only once. Instead of a posterior distribution p(C|X)
where C = (c1, . . . , cL) is a sequence of characters in U and X
is a sequence of acoustic features, the system models the joint dis-
tribution p(k, C|X) of the language ID and character sequence as
that of an augmented sequence C′ = (k, C) where c′0 = k and
c′l = cl, ∀l > 0. This is formulated using the probabilistic chain rule
as follows:

p(k, C|X) = p(k)
∏
l

p(cl|k, c1, . . . , cl−1, X).

In this paper, we extend the architecture by removing the restric-
tion to output a unique language ID k once and for all at the begin-
ning of the sequence, thus allowing the network to output multiple
language IDs throughout. For a sequence C = (cl) of characters in
Ufinal, we denote by l1, . . . , lN the indices of the characters kn = cln
in C that are language IDs (i.e., kn ∈ {EN, JP, · · · }). The system
now models the joint distribution of language IDs and characters as

p(C|X) =
∏
n

p(kn|c1, . . . , cln−1, X)

ln+1−1∏
l=ln+1

p(cl|kn, c1, . . . , cl−1, X).

Table 2. Details of original language-dependent corpora without
code-switching and generated corpus with code-switching. The cov-
erage of each original corpus in the generated corpus is shown after
the slash.

Corpus Tasks Length (h) / Coverage(%)
Original Generated

WSJ
English

(EN)

Training 81.5 / — 87.4 / 63.6
Development 1.1 / — 0.8 / 54.4
Evaluation 0.7 / — 0.5 / 57.6

CSJ
Japanese

(JP)

Training 216.3 / — 149.1 / 49.1
Development 6.6 / — 5.2 / 59.2
Evaluation 5.2 / — 4.8 / 66.9

HKUST
Mandarin

(CH)

Training 170.1 / — 114.9 / 74.1
Development 4.8 / — 6.2 / 66.0
Evaluation 4.9 / — 6.9 / 64.3

Voxforge
German

(DE)

Training 45.7 / — 64.6 / 54.2
Development 5.5 / — 6.9 / 68.0
Evaluation 5.6 / — 6.8 / 68.4

Voxforge
Spanish

(ES)

Training 40.3 / — 61.6 / 78.6
Development 3.2 / — 2.9 / 70.3
Evaluation 7.0 / — 4.0 / 47.5

Voxforge
French
(FR)

Training 29.6 / — 57.9 / 88.4
Development 4.0 / — 4.4 / 78.5
Evaluation 3.6 / — 3.9 / 78.1

Voxforge
Italian
(IT)

Training 15.8 / — 35.7 / 92.9
Development 2.1 / — 2.0 / 72.8
Evaluation 2.0 / — 1.9 / 72.6

Voxforge
Dutch
(NL)

Training 8.4 / — 23.6 / 96.7
Development 1.1 / — 1.3 / 82.3
Evaluation 1.1 / — 1.3 / 81.5

Voxforge
Portuguese

(PT)

Training 3.0 / — 9.0 / 98.3
Development 0.4 / — 0.5 / 80.2
Evaluation 0.3 / — 0.4 / 90.6

Voxforge
Russian

(RU)

Training 12.0 / — 18.5 / 74.3
Development 1.7 / — 1.0 / 50.2
Evaluation 1.3 / — 1.0 / 63.9

Table 3. Number of utterances with nconcat = 2 in the evaluation set
according to the number of included speakers and languages.

# languages
1 2

# speakers 1 85 28
2 868 2707

When recognizing an utterance with code-switching, the network
can switch the language of the output sequence. Figure 1 shows
an example of forward computation. The bi-directional encoder net-
work computes hidden representations by taking as input acoustic
features consisting of Japanese and English speech. The decoder
network predicts language ID “[JP]” followed by a Japanese charac-
ter sequence. After decoding the first Japanese character sequence,
the network predicts the language ID that matches the character se-
quence that follows, here “[EN]”. There is no boundary or indicator
in the hidden representations between the languages. This forces the
network to predict the language ID for variable length segments.

2.3. Data generation for multilingual speech

In this section, we describe the generation of a new corpus with
code-switching by integrating existing language-dependent corpora
without code-switching. We selected utterances from language-
dependent corpora while paying attention to the coverage of selected
utterances and the variation of language transitions as described fur-
ther below. The selected utterances are concatenated to form a
single utterance in the generated corpus (we concatenated whole
utterances for simplicity, but using parts of utterances may be more



Table 4. Character Error Rates (CERs, %) on the original evaluation set without code-switching.
Training with

code-switching
HKUST WSJ CSJ Voxforge Avg.CH EN JP DE ES FR IT NL RU PT

Language-dependent × 35.1 7.4 13.2 5.2 50.8 26.5 14.3 25.5 49.4 52.2 28.0

Language-independent
× 33.3 5.1 10.9 5.5 31.9 19.8 11.1 18.6 33.1 28.0 19.7

X (flat start) 41.2 6.6 14.8 6.2 33.4 21.3 10.6 18.2 37.6 28.0 21.8
X (retrain) 31.8 5.0 10.9 5.3 33.1 19.2 9.8 17.3 34.7 26.9 19.4

realistic in code-switching applications). This procedure is repeated
until the duration of the generated corpus reaches that of the union
of the original corpora. Table 2 shows the details of the original
language dependent corpora (without code-switching) and the gen-
erated corpus (with code-switching). The original corpora are based
on WSJ [13, 14], CSJ [15], HKUST [16], and Voxforge (German,
Spanish, French, Italian, Dutch, Portuguese, Russian) [11], which
are the same as in our previous paper, except for CSJ and HKUST:
speech of HKUST was up-sampled from 8 kHz to 16 kHz, but speed
perturbation was not applied; only academic lectures were used in
CSJ. The column “original” shows the corpora before concatenation,
with their duration indicated before the slash. The column “gener-
ated” shows the duration and coverage of the generated corpus. The
coverage shows the ratio of the duration selected for concatenation
to the utterances in the original corpus. We can see that the duration
of large-scale corpora (e.g., CSJ and HKUST) is decreased while
that of smaller corpora (e.g., Voxforge) is increased.

Algorithm 1 Generation of code-switching corpus
Nconcat ⇐ maximum number of utterances to concatenate.
N ⇐ number of languages.
D ⇐ duration of the union of the original corpora.
nreuse ⇐ maximum number of times same utterance can be used.
for i ← 1 to N do

P (langi) =
1
2

duration of langi∑
j duration of langj

+ 1
2N

P (utterlangi,k) =
1

number of utterances in langi
end for
while duration(generated corpus) ≤ D do

for nconcat ← 1 to Nconcat do
for i ← 1 to nconcat do

Sample language langi and utterance utterlangi,k, resam-
pling if utterlangi,k already selected nreuse times.

end for
Concatenate nconcat utterances.
Add to generated corpus.

end for
end while

Algorithm 1 shows the details of the generation procedure. We
first define probabilities to sample languages and utterances. The
probability of sampling a language is proportional to the duration
of its original corpus, with a constant term 1/N added to alleviate
the selection bias caused by data size. We set a maximum number
Nconcat of utterances to concatenate, 3 in our experiment. For each
number nconcat between 1 and Nconcat, we create a concatenated ut-
terance consisting of nconcat utterances from the original corpora, by
sampling nconcat languages and utterances based on their sampling
probabilities. In order to maximize the coverage of the original cor-
pora, we prevent utterances from being reused too much by introduc-
ing a maximum usage count, nreuse, set to 5 for the training set, and
2 for the development and evaluation sets. We use this procedure to
generate a training set, a development set, and an evaluation set.

There is a concern in the generated corpus that the change of
speaker fully synchronizes with the change of language. Table 3

shows the number of utterances in the evaluation set for which
nconcat = 2 (concatenations of two utterances), according to the
number of included speakers and languages. 85 samples concate-
nate utterances from the same language by the same speaker. 868
samples concatenate utterances from the same language by different
speakers. 28 samples concatenate utterances from different lan-
guages by the same speaker (this can occur in the Voxforge corpus).
In our experiments, we separately evaluate these 28 utterances, ut-
tered by 10 speakers, as a more realistic scenario, e.g., recognition
of foreign named entities, which is referred to as real. The number
of such utterances in the training set is 2.

2.4. Training Procedure
In our experiments, we consider two training procedures. In the flat
start procedure, the model is trained only using the generated cor-
pus, from scratch. In the retrain procedure, the model is trained
in two steps, using both the original and generated corpora as fol-
lows. We first train the model using the training data without code-
switching (i.e., the original corpora), then continue the training using
the data with code-switching (generated corpus). We consider these
two steps for the following reasons. First, the model trained by the
data without code-switching is a good starting point for the training
of the arguably more difficult data with code-switching, in the spirit
of curriculum learning [17]. Second, we allowed the data generation
algorithm to select duplicated utterances in order to increase the ra-
tio of imbalanced low-resource languages in the dataset. However,
this property causes a decrease in coverage. The two step training
alleviates this problem.

3. EXPERIMENTS
3.1. Setup
We built language-dependent and language-independent end-to-end
systems with the same hybrid attention/connectionist temporal clas-
sification (CTC) network architecture [3] and hyperparameters as in
our previous paper [10]. The language-dependent model uses a 4-
layer encoder network, while the language-independent model has a
deeper 7-layer encoder network.

We used 80-dimensional mel filterbank features concatenated
with 3-dimensional pitch features as implemented in Kaldi [18].
For the language-independent models, the final softmax layers in
both CTC and attention-based branches had 5,520 dimensions (i.e.,
|Ufinal| = 5, 520). For each language, we trained a language-
dependent ASR model, where the dimension of the final softmax
layers was set to the number of distinct characters/tokens for that
language as shown in Table 1. This paper strictly followed an end-
to-end ASR concept, and did not use any pronunciation lexicon,
word-based language model, GMM/HMM, or DNN/HMM. Our hy-
brid attention/CTC architecture was implemented with Chainer [19].

3.2. Results

Table 4 shows the character error rates (CERs) of the trained
language-dependent and language-independent end-to-end ASR



Table 5. CERs (%) on generated evaluation set.
Training with

code-switching
# concatenated utter. Avg. real1 2 3

× 21.1 31.5 38.6 32.2 30.5
X (flat start) 23.0 21.3 20.8 21.5 27.8
X (retrain) 21.2 19.3 18.6 19.4 26.4

Table 6. CERs (%) with oracle code-switching on generated evalu-
ation set.

Training with
code-switching

# concatenated utter. Avg. real1 2 3
× 21.1 19.3 18.6 19.4 23.7

X (flat start) 23.0 21.1 20.6 21.3 26.7
X (retrain) 21.2 19.1 18.3 19.2 26.4

systems on the original evaluation set, where each sample consists
of a single utterance in a single language. The Avg column shows
the macro average CER for the 10 languages. As in our previous
work, the language-independent models showed better performance
on average than the language-dependent models. Further analyzing
the bottom three rows, we can see the influence on CERs of the
choice of training corpora and training procedure. The flat start
training of the model on the generated corpus leads to slightly worse
performance than the model trained on the original corpora, while
still outperforming the language-dependent models. The retrained
model outperforms both the flat start model and the model trained on
the original corpora, even though evaluation is performed on speech
with no code-switching.

Table 5 shows the CERs on the generated evaluation set, which
includes code-switching. The table reports the CERs for each num-
ber of concatenated utterances and for the realistic scenario, in addi-
tion to the average CERs. The model trained on the original corpora
obtains an average CER of 32.2%. The use of the generated code-
switching corpus and the two-step training procedure improved the
average performance by 12.8% absolute, mainly improving the per-
formance for concatenated utterances. The model is able to properly
switch between languages during the decoding process, as can be
seen from the consistent performance for different numbers of con-
catenated utterances. The real column is a set of utterances where a
single speaker speaks two languages. The CERs also decreased by
training the model using code-switching corpus.

For further analysis, we considered the performance that would
have been obtained by each of our systems assuming oracle code-
switching: for a sample X generated by concatenating utterances
X1, . . . , Xnconcat with reference transcripts C1, . . . , Cnconcat , we gen-
erate a pseudo-transcription (C̃1, . . . , C̃nconcat) by concatenating the
estimated transcriptions C̃n obtained by the system on Xn alone.
Table 6 shows the results. By comparing them with those in Table 5,
we see that the performance of the retrain model is roughly the same
whether it is given oracle knowledge of the code-switching points or
not, showing its robustness in handling utterances with changes in
language. On the contrary, the CER of the model without code-
switching increases significantly when the model is not given oracle
knowledge of the switching points.

Table 7 shows language identification error rates (LERs). The
LER was calculated by computing the edit distance between the pre-
dicted language IDs and corresponding reference IDs, discarding
non-ID characters. The results in parenthesis with “or.” are ora-
cle results obtained as above. Similarly to CERs, the LER of the
model trained on the corpus without code-switching worsened dra-
matically to 51.8%, mainly due to deletion errors: the model output

Table 7. LERs (%) on original and generated evaluation sets.
Training with

code-switching
Evaluation set (code-switching: ×/X)

original (×) generated (X) real (X)
× 1.9 51.8 (or.: 1.5) 51.8 (or.: 5.4)

X (flat start) 2.1 6.6 (or.: 1.7) 14.3 (or.: 5.4)
X (retrain) 2.0 8.5 (or.: 1.6) 10.7 (or.: 7.1)

Table 8. Examples of recognition results.
Model w/o code-switching

[IT] P O I N T O N A N D E S C H E D O A F A N O T O C H E M
A C H E G I R A V A I N A C A T T A N D I R C H E D O W E ’ R E S
E E I N G A R E S P O N S E T H E I R I G H T D I R E C T I O N B U
T I T ’ S C L E A R L Y T E M P O R A R E D B Y N A T U R A L C
O N S E R V A T I V E S I N W I G H T N O H W H D O O N Z E I D A T O
N I E R D A N V O L G E N Z O C I S
Model w/ code-switching

[JP]ポイントなんですけどその時はまーこちらはいなかっ
たんですけど [EN] W E ’ R E S E E I N G A R E S P O N S E I N
T H E R I G H T D I R E C T I O N B U T I T ’ S C L E A R L Y T E M
P O R A R E D B Y N A T U R A L C O N S E R V A T I V E S I N R I G
H T N O W [NL] D O O N Z I J D A T N I E T D A N V O L G E N D
E Z A M P Z I S
Reference

[JP]ポイントなんですけどその時はまークジラはいなかっ
たんですけど [EN] W E ’ R E S E E I N G A R E S P O N S E I N T
H E R I G H T D I R E C T I O N B U T I T ’ S C L E A R L Y T E M P
E R E D B Y N A T U R A L C O N S E R V A T I S M R I G H T N O W
[NL] D O E N Z I J D A T N I E T D A N V O L G E N S A N C T I E S

a single language ID in almost all multilingual utterances. However,
training on the code-switching corpus significantly recovers the LER
by forcing the network to predict language IDs based on variable
length segments. We think this ability to predict language IDs with
high accuracy within an utterance is advantageous in later text-based
post-processing.

We briefly analyse the results for the real scenario. The models
with code-switching again showed similar CERs in the oracle and
non-oracle results: while we should be cautious to draw conclusions
given the small size (28 utterances) of the real set, this seems to
show that the models are not relying on the change of speaker as a
hint to switch languages. Indeed, the LER for real is only slightly
worse than for the whole generated set in the non-oracle case, while
it is much worse in the oracle case, hinting at real being a more
difficult than an average set of utterances for language ID. We shall
note that the higher CERs for real can be partly explained by the
particular mix of languages in that subset: if we adjust the language
distribution of the generated set (excluding real) to match that of
real, the retrain model leads to a CER of 21.2% in both oracle and
non-oracle conditions.

Table 8 shows transcription examples generated by our models.
The utterance consists of Japanese, English, and Dutch. The model
without code-switching cannot predict neither the correct language
IDs nor the use of the Japanese character set. We can observe that
the model with code-switching recognized multilingual speech with
low CER.

4. SUMMARY

We extended our monolithic multilingual ASR system to enable
the flexibility of switching between languages within an utterance.
Since the resources of code-switching corpora are limited, we arti-
ficially generated a large-scale corpus in which multiple languages
appear within the same utterance. Experimental results showed that
our proposed model obtains the best performance in the recognition
of speech which includes code-switching. In addition, compari-
son with oracle results shows that the performance is roughly the
same whether an utterance features a single language or multiple
languages. Future work will consider evaluation on real-world
code-switching data.
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