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ABSTRACT

Clipping the gradient is a known approach to improving gra-
dient descent, but requires hand selection of a clipping thresh-
old hyperparameter. We present AutoClip, a simple method
for automatically and adaptively choosing a gradient clipping
threshold, based on the history of gradient norms observed
during training. Experimental results show that applying Au-
toClip results in improved generalization performance for au-
dio source separation networks. Observation of the train-
ing dynamics of a separation network trained with and with-
out AutoClip show that AutoClip guides optimization into
smoother parts of the loss landscape. AutoClip is very simple
to implement and can be integrated readily into a variety of
applications across multiple domains.

Index Terms— deep learning, optimization, audio source
separation, computer audition

1. INTRODUCTION

Audio source separation, a central task in computer audi-
tion, is the study of how to break down complex auditory
scenes into their constituent parts (e.g., isolating the voice of
a single speaker in a crowd). Robust audio source separation
has many practical applications, such as video conferencing,
hearing aids, speech enhancement, and home voice assistants.
In recent years, deep neural networks have greatly advanced
the state of the art in source separation across multiple audio
domains, such as speech, music, and environmental sounds.
However, optimizing deep networks for audio source sepa-
ration remains a tricky endeavor, requiring careful tuning of
hyperparameters and choice of optimizer, network architec-
ture, and loss function.

The loss landscape on which a neural network is optimized
is often non-smooth and filled with local minima. This is es-
pecially true in the case of recurrent neural networks, which
are vulnerable to both exploding and vanishing gradient is-
sues [1]. Gradient clipping [2–5] attempts to resolve the for-
mer issue: exploding gradients. Gradient clipping has been
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found to be a highly effective and necessary ingredient for
state-of-the-art performance in applications such as language
modeling [3, 5]. It has also proved crucial to the optimiza-
tion process of recent state-of-the-art source separation algo-
rithms [6–8]. In gradient clipping, if the norm of the gradient
vector (taken over all parameters) exceeds the clipping value,
the gradient vector is scaled so that its norm does not exceed
that value. The clipping value is typically set by hand.

The gradient clipping hyperparameter is very sensitive to the
loss function, the scaling of the data, and the network archi-
tecture. As an illustrative example, consider two implemen-
tations of the same mask inference architecture [9]. Mask in-
ference networks are typically applied to audio preprocessed
with a short term Fourier transform (STFT). Assume that, for
one network, the STFT normalizes each window, and for the
other, the STFT does not normalize. This can result in data
scales that differ by orders of magnitude. One cannot specify
a single gradient clipping value appropriate for both, other-
wise identical, implementations1. This is in contrast to other
facets of the optimization process, such as using an Adam op-
timizer [10], which adapts to the statistics of the gradients.

In this work, we propose AutoClip, a simple adaptive gradient
clipping procedure which removes the need to hand-tune the
clipping parameter, transfers easily across multiple loss func-
tions, and is scale-invariant by design. In experiments, we
show the impact of AutoClip on the optimization of source
separation networks. Our experiments also provide empiri-
cal evidence for the need for gradient clipping when training
source separation networks. An implementation is provided
here: https://github.com/pseeth/autoclip.

2. GRADIENT CLIPPING

Given a function f(X; θ) computed on data X and parame-
terized by θ, and a learning rate λ, a gradient descent update
at iteration t of the current parameters θt−1 to θt is defined as:

θt = θt−1 − λ∇θf(X; θt−1). (1)

1This situation has occurred in practice, resulting in degraded perfor-
mance after changing STFT functions with the same clipping threshold.

https://github.com/pseeth/autoclip


Note that a stochastic version of this update is more com-
monly used, with ∇θf(Xt; θt−1) being computed on mini-
batches Xt. Gradient clipping enforces an upper bound on
the update of θ, by placing a max on the norm of the gradient:

θt = θt−1 − λhc∇θf(Xt; θt−1), (2)

hc = min{ ηc
||∇θf(Xt; θt−1)||

, 1}. (3)

Here, ηc is a clipping value hyperparameter that needs to
be carefully chosen by the end user. Note that this clipping
scheme is the so-called clip by norm, not clip by value, where
individual values of the gradient vectors are clipped if they go
beyond a pre-set value. In clip by norm, the entire gradient
is scaled if the norm of the gradient exceeds a threshold. In
stochastic gradient descent (SGD), this places a maximum on
the step size that can be taken during training, preventing the
optimization from going too far in the direction of a gradi-
ent with very large magnitude. If the gradient is below the
threshold, the optimization is unaffected.

The reason why gradient clipping stabilizes and accelerates
training of neural networks (especially recurrent ones) is an
active area of research, with both empirical work showing its
efficacy [2] as well as theoretical work analyzing the dynam-
ics of SGD with gradient clipping [4].

In gradient clipping, selection of ηc is very important. If it
is set too high, then the gradient norm will always be smaller
than that, and clipping is never applied. If set too low, then
the step size taken by the network may be too small. In prac-
tice, a heuristic proposed by Pascanu et al. [2] is often used
for setting the clipping threshold. First, start training and ob-
serve the gradient norms of each batch for a sufficient number
of updates. A set of reasonable values can then be selected to
serve as adequate settings for ηc, and an optimal value deter-
mined by cross-validation, or, as a simpler alternative, a value
anywhere between 5x and 10x the average gradient norm that
was observed can be used. This ad-hoc method must be done
for each network, loss function, and dataset. There is no “one-
size-fits-all” number for the gradient clipping threshold.

3. AUTOCLIP

AutoClip is an automated and dynamic approach to setting
the clipping value hyperparameter ηc based on the statistics
of the history of the gradient norms observed while training.
AutoClip sets ηc(t) at each training iteration t, where each
iteration corresponds to the processing of one minibatch. Au-
toClip keeps track of the gradient norm on every batch seen
during training. Given the history of the gradient normsGh(t)
up to iteration t, it calculates the gradient norm that would
reach the p-th percentile value np(t) of the current history. It
then sets ηc(t) = np(t). This is shown in Algorithm 1.

While AutoClip is agnostic to the optimizer and can be used
with SGD, in our work we use gradient clipping in conjunc-
tion with the Adam optimizer, rather than SGD. Adam has
become the de facto optimizer for source separation networks
[6, 8, 9, 11, 12] and is thus of particular interest to this work.
The standard Adam equations [10] for updating the param-
eters of the network θt−1 are used, with the only difference
that the gradients are replaced by their (potentially) clipped
versions before the Adam optimizer updates the estimate of
the first (mt) and second (vt) moments of the gradients.

Algorithm 1: Training with AutoClip
Input : p – Percentile cutoff for setting ηc(t).

θ0 – Initial network parameters.
D – Data to take batches from.
T – Total number of iterations.

Gh(0)← [ ];
foreach iteration t ∈ (1, . . . , T ) do

Calculate loss on batch of data Xt ∈ D;
Gh(t) = Gh(t− 1).append(∇θf(Xt; θt−1));
np(t)← p-th percentile of Gh(t);
ηc(t)← np(t);
Clip gradients using ηc(t);
θt ← Step optimizer on network parameters

end

The dynamics of AutoClip lead to an adaptive setting of ηc(t)
that is determined dynamically by the data, the network, and
the loss, as opposed to one selected carefully by a user after
observing the training dynamics. A user only has to specify
what percentile to clip to. As mini-batch stochastic optimiza-
tion is prone to outliers, using robust statistics [13] via per-
centiles would mitigate this issue. This setting can be trans-
ferred across multiple optimization scenarios, as it is defined
relative to the data and loss, rather than an absolute value that
is sensitive to these factors as well as to implementation.

For higher settings of p, less clipping is applied to the gradi-
ents. If p = 100, then no clipping is applied during optimiza-
tion. If p = 0, then every gradient is clipped to the minimum
gradient seen during training until then. For low values of
p, the clip value ηc(t) will have more “inertia,” as it will not
update significantly without a long sequence of high gradi-
ent norms. For higher values of p, ηc(t) will be much more
responsive to seeing higher gradient norms. As a result, Au-
toClip will only raise the clipping value during optimization
if a long-enough sequence of high gradient norms justifies it.

3.1. Relationship to other optimization approaches

Much recent work in optimization has centered around “de-
noising” the gradient during training. AdaGrad [14] achieves
this by keeping track of the sum of the squared gradients



for each parameter. One drawback of AdaGrad is that the
learning rate will decay to an infinitesimally small number
as more iterations are taken. A refinement of AdaGrad,
AdaDelta [15], resolves this issue by accumulating the sum
of the squared gradients over a window. Adam [10] addresses
outliers in the gradient by keeping track of the first and sec-
ond moments of the gradient for each parameter using an
exponential moving average. After correcting for bias, the
optimizer step taken on each parameter is adjusted based on
the observed variance of the gradient history. Adam can be
seen as combining the best of AdaGrad with RMSProp [16].
AutoClip can be applied in conjunction with any existing
optimization approach (including AdaGrad, Adam, SGD,
etc.). AutoClip denoises the gradients via adaptive gradient
clipping, which is done prior to the optimization step.

For p = 0, assuming that a small gradient norm appears early
in training, all subsequent gradients will be normalized to that
constant value, so all clipped gradients passed to the optimizer
will have the same norm. For a scale-invariant optimizer such
as Adam, such a setting is equivalent to using normalized gra-
dients, which was shown to improve optimization [17].

4. EXPERIMENTAL DESIGN

Our experiments are designed to investigate the impact of
AutoClip on optimization. Our primary research question is
whether a single setting of AutoClip can transfer easily across
loss functions that have vastly different scales. When setting
gradient clipping manually, the thresholds must be carefully
chosen based on observing the gradient norms of training for
every network and loss function individually. AutoClip scales
the clipping threshold automatically, potentially enabling a
“set-and-forget” approach to applying gradient clipping.

Our secondary research question stems from the fact that Au-
toClip is interpretable, because it is relative to the actual gra-
dient norms. For example, if p = 10, then we know 90% of
the gradients are typically being clipped during training. By
varying p, we can draw conclusions about the impact of more
or less aggressive clipping during optimization.

We apply AutoClip to the problem of separating individual
speech streams from a mixture of concurrent speech. We use
a standard dataset in the speech separation literature, WSJ0-
2mix [18], which consists of 20,000 2-speaker mixtures for
training, 5,000 for validation, and 3,000 for test. The sample
rate of all audio files was fixed to be 8 kHz. We use 32 ms
windows, 8 ms hop length, and the square root of the Hann
window as our window function for computing the STFT.

4.1. Loss functions

We investigate the interaction between AutoClip and five
commonly used loss functions in the source separation lit-

erature. Because these loss functions have different scales,
their gradients will also likely have different scales2. These
gradients will thus have different norms, and therefore the
optimal gradient clipping value ηc will vary.

We chose the classic deep clustering loss (LDC) [18], the
whitened k-means loss (LWKM) [9], a mask inference loss
based on the L1 distance between the estimated source and
the actual source (LMI) [9], a Chimera multi-task loss func-
tion that combines LMI and LWKM (LMI+WKM) [9, 19], and
a waveform loss where the audio output of the network is
optimized via the signal-to-noise ratio (LSNR) [20].

The mask inference loss uses the truncated phase-sensitive
spectrum approximation (PSA) loss [21] to compare an esti-
mated spectrogram Ŝ with the ground truth spectrogram S:

LMI =
1

N

∥∥∥|Ŝ| − T
|X|
0

(
|S| ◦ cos(θŜ − θS)

) ∥∥∥
1
, (4)

where N denotes the number of time-frequency points in S,
X the input mixture, |Y | and θY the magnitude and phase of
a spectrogram Y , and Tba(x) = min(max(x, a), b) denotes
truncation to the range [a, b]. The values of LMI are on the
order of 1e-5. The deep clustering loss compares the affinity
matrix of embeddings V for all time-frequency (TF) points
with that of ground truth assignments Y , introducing weights
W for every TF point:

LDC = ||W 1/2(V V T − Y Y T )W 1/2||2F . (5)

The values of LDC range between 0 and 1, when W is nor-
malized for the number of TF points. The whitened k-means
loss is a self-normalizing variant of LDC:

LWKM = D − tr((V TV )−1V TY (Y TY )−1Y TV ) (6)

where D is the embedding size. The range of LWKM is be-
tween 0 and D, where D is typically around 20.

The multi-task loss function – the Chimera loss in [9, 19] –
combines the mask inference loss with the whitened k-means
loss, weighting each using a constant factor α:

LMI+WKM = αLMI + (1− α)LWKM. (7)

In this work, α is chosen to be 0.75. Because of the large dif-
ference between the magnitudes of LMI and LWKM (in prac-
tice orders of magnitude apart), this results in LWKM mostly
dominating the optimization. The range of LMI+WKM is be-
tween 0 and (1− α)D (typically between 0 and 5).

The signal-to-noise ratio compares the time-domain audio es-
timate ŝ and the time-domain ground truth source s [20]:

LSNR = −10 log10
(
||s||2

||s− ŝ||2

)
. (8)

LSNR is the negative SNR so that it is minimized during opti-
mization. It can range anywhere between −∞ and +∞, but
more typically stays between −20 and 20.

2∇(af) = a∇f , where a is a constant.



p LDC LWKM LMI LMI+WKM LSNR

0 10.7 11.1 10.0 11.2 9.9

1 10.7 11.2 10.3 11.3 10.2
10 10.8 11.0 10.2 11.3 10.4
25 10.7 11.0 9.9 11.3 10.3
50 10.7 11.0 9.2 11.2 9.9
90 10.5 11.0 8.7 11.1 9.5

100 10.2 10.8 8.5 10.9 8.3

Table 1. Performance in terms of SI-SDR [dB] on the WSJ0-
2mix test set for each loss function when using AutoClip with
varying percentile thresholds p. Higher values are better.

4.2. Network architectures

We train identical networks for each of these loss functions,
with minor differences to account for their losses’ particu-
larities. At the core of each network is a stack of 4 bidi-
rectional LSTM layers with 600 hidden units in each direc-
tion. The input to each network is the log-magnitude spec-
trogram of the mixture. The networks that are trained with
LDC and LWKM output 20-dimensional embeddings for each
time-frequency point. These embeddings are unit-norm with
sigmoid activation. The mask inference network outputs two
masks with sigmoid activation. The Chimera network trained
with LMI+WKM outputs an embedding and two masks. The
network that is trained with LSNR does so by using an inverse
STFT within the network: it outputs two masks which are ap-
plied to the magnitude spectrogram; the masked STFT is then
inverted using the mixture phase to the time-domain audio for
each source within the network. We use permutation-invariant
versions of LSNR, LMI, and LMI+WKM [18, 22].

4.3. Training and evaluation

All networks are trained with identical hyperparameters and
are initialized with the same random seed. We use the Adam
optimizer with an initial learning rate of 1e-3, and a sequence
length of 400 frames (25536 samples for the network trained
with LSNR) which are selected from random offsets within
each utterance. Mixtures that are too short are padded with
zeros to the required length. We use a batch size of 25 and
train for 100 epochs. For each loss function, we experiment
with the value of p, the percentile threshold in AutoClip, set-
ting it to 0, 1, 10, 25, 50, 90, and 100. Setting p to 0 cor-
responds to the most aggressive clipping strategy of “min-
clipping,” where every gradient is clipped to the minimum
gradient norm seen so far during training. Setting it to 100
corresponds to no gradient clipping at all applied during train-
ing. We evaluate the performance of each network on the
WSJ0-2mix test set using scale-invariant source-to-distortion
ratio (SI-SDR) [12].

5. RESULTS AND DISCUSSION

The performance of each network we trained is shown in Ta-
ble 1. As expected, the bottom row, corresponding to p = 100
where no gradient clipping is applied, gets consistently worse
results across the board for every loss function. In the case of
LMI and LSNR, not applying clipping results in a huge perfor-
mance drop of nearly 2 dB. To the best of our knowledge, this
is the first formal reporting of this phenomenon for source
separation. Setting p = 1 or p = 10 results in vastly im-
proved performance across the board for each loss function.
As a reminder, setting a static clipping threshold for each of
these loss functions would require individual hyperparame-
ter search for each scenario. With AutoClip, one can set
p = 10 to get greatly improved performance, showing that
AutoClip can be a “set-and-forget” approach to gradient clip-
ping. Even continuously updating the clipping value to be
very low (p = 1) or even the minimum (p = 0) of the gradi-
ents seem to greatly aid optimization.

Prior work optimizing LDC, LMI, and LMI+WKM all used static
clipping thresholds [9]. For LDC, we obtain higher perfor-
mance (10.7 dB) than reported in prior work (10.2 dB). We
also observe this for LMI (10.3 dB with AutoClip vs 10.0 dB
in prior work), LWKM (11.2 dB with AutoClip vs 10.4 dB in
prior work), andLMI+WKM (11.3 dB with AutoClip vs 11.2 dB
in prior work). AutoClip discovers optimal clipping thresh-
olds, without requiring an exhaustive hyperparameter search.

The results in Table 1 hints at very different learning dynam-
ics when training with and without AutoClip. To investigate
this further, we observe the training dynamics of a smaller
speaker separation network (as capturing detailed training be-
havior is computationally expensive). The smaller network
has 2 BLSTM layers with 300 hidden units. The training
recipe is identical to that in Section 4.3. We compare training
the network with AutoClip (p = 10) and without (p = 100).
Every 20 iterations, we record the training loss, the step size,
the gradient norm, and the local smoothness. Given model pa-
rameters θt−1 and θt at consecutive time steps, the step size is
computed as ||θt − θt−1||2, the L2 norm of the difference in
the model parameters. Local smoothness is measured via the
local gradient Lipschitz constant, as used in prior work [4,23].

Fig. 1 shows that the step size varies more smoothly when us-
ing AutoClip. AutoClip induces an almost constant step size,
which decays slowly over the course of training. Initially,
the gradient norms are small, leading to small step sizes. As
the gradient norms get bigger, so does the clipping threshold.
This manifests as an initial ramp in the step size, similar to
learning rate warmup, another popular training trick for deep
networks [24]. After this initial stage, the step size then de-
cays slowly with little variance. This corresponds to better
optimization, as shown by the lower training loss, and higher
test performance (9.2 dB vs 8.1 dB).
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Fig. 1. Training dynamics of a smaller mask inference network (2 BLSTM layers with 300 hidden units) with LMI, with and
without AutoClip. The top left figure shows the norm of the step size taken on the model parameters. The top right figure
shows the training loss over time, showing that AutoClip leads to better optimization. The bottom figures show the relationship
between gradient norm and a measure of smoothness along the training trajectory. Statistics were recorded every 20 iterations
during training. With AutoClip, we observe a stronger correlation (r-value of .86), compared to without (r-value of .62). All
gradients to the right of the dashed black line in the bottom right plot are clipped. We show the location of the AutoClip
threshold at the end of training. The threshold changes during training, see an animated version: https://imgur.com/a/rfbKUDE.

In the two lower plots in Fig. 1, we show the relationship
between the gradient norm and the local smoothness. When
training with AutoClip, there is a better correlation between
the two. With AutoClip, areas of low gradient norm (e.g.,
minima) are also smoother. Smoother minima are believed to
result in better generalization performance [25,26]. AutoClip
does not clip the gradient in relatively smooth regions.

6. CONCLUSION

We have presented AutoClip, a simple method for adaptively
choosing a threshold for gradient clipping based on the his-
tory of gradient norms observed during training. AutoClip
obviates the need for a hand-tuned clipping threshold and
generalizes across loss functions with different scales. Exper-

iments show that AutoClip results in better test performance
for source separation networks. We examined the training dy-
namics of a separation network trained with and without Au-
toClip, showing that AutoClip stabilizes optimization. It is
simple to implement and can be integrated readily into a va-
riety of applications across multiple domains. In future work,
we will examine AutoClip’s suitability to other tasks, such
as image classification, language modeling, sound event de-
tection, and more. We will also explore applying different
clipping thresholds to each layer independently, similarly to
the usage of block normalized gradients in [17]. Finally, we
plan to investigate using moving windows, rather than the en-
tire gradient history, as a way to reduce AutoClip’s memory
usage as well as make ηc more sensitive to local rather than
global training dynamics.
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