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ABSTRACT

We propose an unsupervised speaker adaptation method inspired by
the neural Turing machine for end-to-end (E2E) automatic speech
recognition (ASR). The proposed model contains a memory block
that holds speaker i-vectors extracted from the training data and
reads relevant i-vectors from the memory through an attention mech-
anism. The resulting memory vector (M-vector) is concatenated to
the acoustic features or to the hidden layer activations of an E2E
neural network model. The E2E ASR system is based on the joint
connectionist temporal classification and attention-based encoder-
decoder architecture. M-vector and i-vector results are compared
for inserting them at different layers of the encoder neural network
using the WSJ and TED-LIUM2 ASR benchmarks. We show that
M-vectors, which do not require an auxiliary speaker embedding ex-
traction system at test time, achieve similar word error rates (WERs)
compared to i-vectors for single speaker utterances and significantly
lower WERs for utterances in which there are speaker changes.

Index Terms— Unsupervised speaker adaptation, end-to-end
speech recognition, neural Turing machine, speaker memory

1. INTRODUCTION

Automatic speech recognition (ASR) models may not generalize
well to mismatched speaker characteristics between the training and
test data, which can lead to a significant degradation of the ASR
accuracy. In order to deal with this problem, various speaker adap-
tation methods have been proposed. These methods are generally
crafted towards adapting Gaussian mixture model - hidden Markov
model (GMM-HMM) systems [1] and deep neural network (DNN)
-HMM hybrids [2–7]. Recently, end-to-end (E2E) systems that do
not require explicit phonetic dictionaries have been used with in-
creasing success for ASR. So far, however, only a few studies have
dealt with speaker adaptation of E2E ASR models, which is the
focus of this work.

Prior studies on speaker adaptation of E2E systems include
appending i-vectors to the acoustic features [8], using speaker-
transformed features obtained by feature space maximum likelihood
linear regression (fMLLR) [9], using GMM-derived features [10],
or using a speaker adversarial network [11]. Most of these methods
apply adaptation only to the input features. However, at least for
DNN-HMM systems, adaptation at the input layer has been shown
not to be necessarily optimal [12]. It is thus worth investigating the
effect of adaptation at different layers for E2E systems.

In this work, we propose to use the read mechanism of the neu-
ral Turing machine (NTM) [13] for speaker adaptation in E2E ASR.
The read operation determines a weight distribution over all memory
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items, and each read memory vector, which we refer to as M-vector,
is obtained as a weighted linear combination of i-vectors from the
memory. The weights are computed using an attention mechanism
and the M-vector is appended as speaker-adapting features. The
main advantages of M-vector adaptation are that (a) it is unsuper-
vised, in that it does not require adaptation data or additional la-
bel information such as speaker information at test time; (b) it is a
frame-level adaptation approach, which enables faster adaptation to
speaker changes and application to streaming ASR systems; (c) any
kind of embedding can be stored in the memory, even embeddings
obtained from methods that may be impractical to be applied at test
time in real-world systems; (d) the NTM interpretation of the adap-
tation opens the door to incorporating a write operation, i.e., learning
speaker representations as we process the utterances, which is sub-
ject to further research.

The use of linear or convex combinations of existing speaker
templates to represent new speakers or to adapt the model using a
weighted combination of submodels has been studied in prior work.
However, none of these are applied to E2E systems. For exam-
ple, [14] discusses the use of eigenvoices for speaker adaptation in
GMM-HMM systems. In [15], the author uses a convex combi-
nation of the existing means for GMM mean adaptation. A linear
combination of subnetworks is used in [16] with a DNN-HMM sys-
tem, which, however, requires adaptation data from the test speakers.
In [17], a weighted combination of the hidden layer activations is
used, where the weights are determined by a context classifier. This
method also differs from ours in that it does not use an external mem-
ory block interacting with the ASR network or attention-based read-
ing. Recently, a weighted combination of speaker profiles has been
used for speaker separation [18]. That work has however not been
applied to speaker adaptation for ASR and it also does not provide
an NTM interpretation of the model, which allows a more general
adaptation scheme and provides opportunities for the introduction
of a writable speaker memory that can adapt to and learn from new
speakers. Another study that makes use of the memory idea for ASR
is [19], where the read vector is a convex combination of hidden
layer states in the history rather than speaker representations and the
memory is not applied for speaker adaptation.

We show that by using M-vectors as speaker embeddings to ap-
pend to the acoustic features, we achieve better performance than
using the “true” i-vectors directly. In contrast with previous E2E
speaker adaptation studies, we also investigate the effect of adapting
intermediate layers of the encoder in an E2E ASR system, and show
that it leads to lower word error rates (WERs) than adapting the input
features.

The rest of the paper is organized as follows. Section 2 sum-
marizes the joint connectionist temporal classification (CTC) and
attention-based encoder-decoder E2E ASR training, and the NTM.
The proposed method is described in Section 3. Experiments on



Fig. 1: Block diagram of the E2E ASR system with memory-based adaptation network.

WSJ and TED-LIUM2 are presented in Section 4. In Section 5, we
summarize the paper and discuss possible future directions.

2. BACKGROUND

We first give a brief summary of E2E ASR systems that are trained
using joint CTC and attention costs, and review the NTM concept
with a focus on the read function.

2.1. Joint CTC and Attention E2E ASR

E2E systems can be broadly classified into three groups, CTC-based
systems [20], attention-based encoder-decoder models [21], and
RNN transducer models [22], each aiming at achieving training with
mismatched-length input-output pairs. Recently, CTC and encoder-
decoder models have been combined using a multitask learning
approach in order to mitigate their disadvantages [23] and to enable
streaming recognition of encoder-decoder architectures [24, 25].
Given an acoustic feature sequence x and the corresponding ground
truth label sequence y∗, the goal is to maximize the log-likelihood
of the labels given the inputs in both approaches. However, they
differ in their assumptions and the way the probabilities are com-
puted. In CTC, the original label sequence is augmented with blank
symbols to generate y′ and the softmax output st of the DNN at
time t along with forward (αt) and backward (βt) probabilities of
partial hypotheses y′1:u, are used to compute the CTC loss

Lctc = − logPctc(y
∗|x) = − log

|y′|∑
u=1

αt(u)βt(u)

st(y′u)
, (1)

where |y′| denotes the length of the augmented label sequence
y′. In the attention-based approach, the conditional probability
Patt(y

∗
u|x, y∗1:u−1) is the output of the decoder model and the loss

function Latt is derived as follows

Latt = − logPatt(y
∗|x) = − log

∑
u

Patt(y
∗
u|x, y∗1:u−1). (2)

In the joint training framework, these two losses are combined using
a weight parameter λ:

Ljoint = λLctc + (1− λ)Latt. (3)

2.2. Neural Turing Machine

The NTM is a differentiable computer that has a memory compo-
nent, read and write attention heads to interact with the memory, and
a controller to determine the actions of these heads [13]. Let M be
the memory of the NTM, represented by a D ×N matrix, where N
is the number of items in the memory and D the size of the memory

vectors. Given a query vector qt ∈ RD at time t, the memory read-
ing step consists in computing a weighted sum rt over the memory
items Mn, with weights wt(n) determined by the cosine similarity
between the query and the items modulated by a scalar γt as follows:

K(qt,Mn) =
q>t Mn

||qt|| ||Mn||
, (4)

wt(n) =
eγtK(qt,Mn)∑N

n′=1 e
γtK(qt,Mn′ )

, (5)

rt =

N∑
n=1

wt(n)Mn. (6)

In this work, we only utilize the read head, hence we shall skip the
description of the writing mechanism. The interested readers can
refer to [13] for more details.

3. MEMORY BASED ADAPTATION FOR E2E ASR

The structure of our memory-based adaptation network is shown in
Fig. 1. In this architecture, the encoder is split into two parts (Enc1
and Enc2), where each part can include zero or more layers. The
query vector qt is computed by applying a projection layer on the
output of the first encoder. The query vector is used to read from
the speaker memory and to determine the speaker memory vector
(M-vector) rt using Eq. (6). As the query vector is time-dependent,
the computed M-vector changes at each frame as well, allowing the
flexibility to change the adaptation parameters within an utterance.
The M-vector is appended to the Enc1 output ht and projected to a
lower dimensional vector using another projection layer. This output
is fed into the second part of the encoder Enc2, whose output is fed
into both the CTC module and the attention module followed by a
decoder module, which is known as a joint CTC-attention based E2E
ASR system.

In this work, speaker i-vectors from the training data are used as
the memory elements. Instead of the cosine similarity of Eq. (4) as
used in the NTM, the scaled dot-product based attention mechanism
is applied to read from the memory instead, where the scale is the
square root of the vectors dimension [26]. We also set γt = 1 in
Eq. 5. In these equations, the output dimension of the projection that
generates the query must match the dimensionalityD of the memory
vectors. However, the proposed approach is not limited to this case,
as other attention methods without restriction on the dimension of qt
can be used.

In the training phase, speaker i-vectors of each training speaker
are extracted and arranged in a matrix to form the speaker memory.
The read mechanism of the memory block, the encoder, and the de-
coder are trained using the joint CTC-attention objective [23]. Dur-
ing test time, the memory block remains unaltered and only contains



speaker i-vectors extracted from the training data. Since no addi-
tional speaker information is extracted on the test data, the proposed
method achieves unsupervised adaptation.

4. EXPERIMENTS

We investigate the performance of the proposed approach on two
datasets, the Wall Street Journal (WSJ) corpus of read English news-
papers [27, 28], and the TED-LIUM2 corpus of TED conference
talks [29]. Training, development, and test set sizes in hours are
81.3, 1.1, and 0.7 for WSJ, and 211.1, 1.6, and 2.6 for TED-LIUM2,
respectively. We use TED-LIUM2 as a second dataset to investi-
gate how the performance evolves when using a larger training set
with a higher number of speakers. We use the ESPnet toolkit [30] to
implement and investigate our proposed methods. I-vectors are ex-
tracted using the Kaldi toolkit [31]. For the baseline systems without
adaptation, we use the default ESPnet recipes. We compare the per-
formance of the proposed M-vector approach with similar systems in
which either the oracle speaker i-vector or utterance-level i-vectors
are repeated and appended at each frame. Training of each ASR sys-
tem setup is conducted four times using a different random seed for
initializing neural network weights, and results of the model with the
best development set performance are reported.

We use 80-dimensional mel filterbank energies as input features
along with pitch features, namely probability of voicing, log-pitch,
and delta-log-pitch. The E2E model is character-based, and output
units consist of letters of the English alphabet and symbols for blank,
unknown, quote, space, end-of-sentence, and punctuation marks.

In the i-vector extraction, the trained universal background
model (UBM) has 1024 components and the i-vector dimension
is 100. The speaker memory is of size D × N with D being the
i-vector dimension and N the number of speakers in the training
dataset.

4.1. WSJ Experiments

The baseline E2E ASR model uses a stack of 6 encoder layers each
consisting of a BLSTM followed by a projection layer with 320 units
in each direction. The decoder has a single LSTM layer with 300
units. Location-based attention is used between the encoder and the
decoder. In joint CTC-attention training, the weight for the CTC loss
in Eq. (3) is set to λ = 0.2. At recognition time, a recurrent neural
network-based word language model (RNN-LM), which consists of
a single LSTM layer with 1000 units, is used via shallow fusion [32].
Decoding is performed with a beam size of 30. The memory size N
for WSJ is 283, which is equal to the number of speakers in the
training set. The development and evaluation sets include 10 and 8
speakers, respectively, who are distinct from the training speakers.

Table 1 shows results when appending i-vectors or M-vectors
at a given encoder neural network layer l, with 0 ≤ l ≤ 6. When
l = 0, the vectors are appended to the input features, otherwise to the
output of the l-th encoder layer (referring to the notations of Fig. 1,
Enc1 then consists of the first l layers, and Enc2 of the remaining
6−l layers). The i-vector system uses oracle speaker i-vectors. ASR
results without speaker adaptation are also shown for comparison.

We first see that both the i-vector and M-vector approaches re-
duce the WERs significantly, implying that speaker information can
be effectively used to adjust the model within our E2E ASR system.
Furthermore, the proposed unsupervised adaptation approach using
M-vectors obtains comparable performance with the supervised i-
vector baseline on the development set, and a relative improvement
of 10.6% on the evaluation set. This demonstrates that the proposed

Table 1: WERs [%] on the WSJ task for the i-vector and M-vector
based systems that adapt the output of the l-th layer of the encoder
(l = 0 denotes input features).

i-vector M-vector

Layer dev93 eval92 dev93 eval92

l = 0 6.8 4.4 7.3 4.2
l = 1 6.7 4.4 6.6 4.2
l = 2 6.5 4.7 6.5 4.2
l = 3 6.4 4.7 6.8 4.6
l = 4 7.0 4.6 7.3 4.3
l = 5 6.6 4.3 7.2 4.6
l = 6 7.2 4.7 7.9 4.4

No adaptation 8.9 5.8 8.9 5.8

Table 2: WERs [%] on WSJ for i-vector based systems when train-
ing/testing with speaker (Spk) or utterance-level (Utt) i-vectors.

Train Spk i-vec Spk i-vec Utt i-vec

Test Spk i-vec Utt i-vec Utt i-vec

dev test dev test dev test

l = 1 6.7 4.4 7.2 4.9 6.8 4.4
l = 2 6.5 4.7 6.3 4.8 6.6 4.3
l = 3 6.4 4.7 6.4 4.9 6.4 4.7

memory-based approach is applicable to unseen test speakers. Note
that, despite the apparent advantage of using the true speaker i-vector
computed on the test set, the i-vector baseline sees the same informa-
tion repeated for each frame in the utterance, whereas the proposed
approach has the opportunity to take advantage of frame-level adap-
tation, thus achieving a lower WER.

If we compare performance depending on the layer at which
adaptation is performed, for i-vectors, layer 3 gives the lowest
WERs, and for M-vectors, adaptation after the second layer gives
the best results while performance tends to degrade as l gets larger.

We shall stress here the fact that the i-vector baseline requires
speaker labels for the test set, and thus is a form of speaker-
aware adaptation, contrary to our proposed unsupervised adaptation
method. In order to eliminate this obvious advantage of the speaker
i-vector approach, we also tested the system with utterance-based
test set i-vectors, which are shown in the middle two columns of
Table 2. In all cases, we observed an increase in WER on the test
set mainly because of the mismatch between training and testing
conditions (speaker vs. utterance). To prevent this mismatch, we
also tested the condition where utterance i-vectors are used for both
training and testing, which is shown in the last two columns of
Table 2. If we compare the utterance-level i-vector results with the
M-vector approach shown in Table 1, we see that M-vectors achieve
10.6% (4.7→4.2) relatively lower WER on the evaluation set while
having a similar development set performance.

In order to show the advantage of the frame-level adaptation
strategy of the M-vector approach, we also tested the models trained
with single-speaker utterances on utterances with speaker change.
The speaker change condition is synthetically generated by sampling
pairs of utterances from different speakers and concatenating them
while ensuring that each test utterance is used exactly once. In addi-
tion, silence parts between concatenated utterances are removed.

For the i-vector setup, we extracted i-vectors using the concate-



Table 3: WERs [%] on single speaker utterances (dev93, eval92) and
simulated speaker change utterances (dev93∗, eval92∗) from WSJ.

single speaker speaker change

dev93 eval92 dev93∗ eval92∗

i-vector 6.4 4.7 10.4 7.8
M-vector 6.5 4.2 7.6 4.9

Table 4: WERs [%] on the TED-LIUM2 task for the i-vector and
M-vector based systems that adapt the output of the l-th layer of the
encoder (l = 0 denotes input features).

i-vector M-vector

Layer dev test dev test

l = 0 12.9 12.3 12.3 11.7
l = 1 11.7 11.2 12.1 11.6
l = 2 12.0 11.6 12.1 11.7
l = 3 11.8 11.4 11.8 11.0

No adaptation 18.6 16.7 18.6 16.7

nated utterances and the performances of the best i-vector (l = 3)
and M-vector (l = 2) setups are compared for these new test sets
as shown in Table 3. As we can see, WER for the i-vector system
increases by up to 4% absolute, whereas WER for the M-vector sys-
tem increases only by 1%, showing that the M-vector based system
is more robust to speaker change condition.

4.2. TED-LIUM2 Experiments

The baseline E2E model and the RNN-LM structures for the TED-
LIUM2 experiments are similar to the WSJ setup except that the
mixing weight for the CTC loss is set to λ = 0.5. The memory
size N for the TED-LIUM2 experiments is 1267. While the default
Kaldi setup considers different recordings of the same speaker as
different speakers, we here mapped all those recordings to the same
speaker. The development and test sets include 8 and 11 speakers,
respectively.

Table 4 shows results of the speaker i-vector and M-vector based
systems, as well as of the unadapted model. Based on the observa-
tion that the adaptation is not effective when l gets larger, we per-
formed TED-LIUM2 experiments with adaptation only up to and in-
cluding the third layer. As shown in Table 4, appending the i-vectors
to the first layer (l = 1) leads to lower development set WER than
using layers l = 2 or l = 3.

The best WERs for the proposed M-vector approach are ob-
tained for l = 3. In this setup, M-vectors perform about equally
well compared to the best i-vector results of Table 4. Our approach
still provides the advantage of the unsupervised online adaptation as
compared to the i-vector baseline as we do not need to compute the
test set i-vectors and simply use the training memory for adaptation.
Moreover, the speaker i-vector system here is allowed to see all ut-
terances of the same speaker, whereas our method is agnostic to this.

In Table 5, we compare speaker and utterance-level i-vectors for
the TED-LIUM2 dataset. Using utterance-level i-vectors increases
the test set WER by 0.7% absolute compared to using speaker-level
i-vectors. Compared to M-vector results shown in Table 4, we see
that the M-vector approach applied to l = 3 achieves a similar devel-
opment set performance, and a 7.6% (11.9→11.0) relatively lower

Table 5: WERs [%] on TED-LIUM2 for i-vector based systems
when training/testing with speaker (Spk) or utterance-level (Utt) i-
vectors.

Train Spk i-vec Spk i-vec Utt i-vec

Test Spk i-vec Utt i-vec Utt i-vec

dev test dev test dev test

l = 1 11.7 11.2 11.7 11.9 11.7 11.8
l = 2 12.0 11.6 12.2 12.3 11.9 11.8
l = 3 11.8 11.4 12.1 12.0 11.8 11.9

Table 6: WERs [%] on single speaker utterances (dev, test) and sim-
ulated speaker change utterances (dev∗, test∗) from TED-LIUM2.

single speaker speaker change

dev test dev∗ test∗

i-vector 11.7 11.2 16.1 15.9
M-vector 11.8 11.0 14.1 11.9

WER for the test data set. If utterance i-vectors are used during
training as well, i.e., without training mismatch, the i-vector test set
WER increases by 0.6% absolute as compared to the speaker i-vector
model. If we compare this to the best M-vector result from Table 4,
we observe 6.8% (11.8→11.0) relatively lower WER than the utter-
ance i-vector based system.

We also compared the performance of M-vectors and i-vectors
with speaker changes on the TED-LIUM2 data set by synthetically
concatenating utterances from different speakers as described in Sec-
tion 4.1 and decoding using the best i-vector and M-vector models.
The resulting WERs are given in Table 6. We can see that M-vectors
are more robust to the speaker change scenario than the i-vectors. On
the test set, for example, we achieve 4% absolute lower WER than
the i-vector system, which demonstrates the advantage of frame-
level adaptation.

5. CONCLUSIONS AND FUTURE WORK

In this work, we presented an NTM-inspired speaker adaptation
method for E2E ASR systems. We proposed to use a speaker i-vector
memory that interacts with the encoder using an attention mecha-
nism. The attention mechanism determines the mixing weights that
are used to combine memory i-vectors. The read memory vector, or
M-vector, is appended to the acoustic features or to the output of an
intermediate encoder layer and then projected before being fed into
the next layer. We showed that, compared with speaker i-vectors
and utterance i-vectors, the proposed M-vector system achieved
similar or improved WERs on the WSJ and TED-LIUM2 datasets
despite the fact that the M-vector approach is unsupervised and
does not require i-vector computation at test time. We also showed
that M-vectors are significantly more robust to the case where test
utterances contain a speaker change.

Future directions include investigating the effect of differ-
ent types of speaker embeddings such as x-vectors [33] or d-
vectors [34]. Going further in the application of the NTM concept,
incorporating a writing capability for the speaker memory can be ex-
plored. This way, the network can gradually learn to store previously
seen speakers.
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