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ABSTRACT

This paper presents a Bayesian nonparametric latent source discov-
ery method for music signal analysis. In audio signal analysis, an
important goal is to decompose music signals into individual notes,
with applications such as music transcription, source separation or
note-level manipulation. Recently, the use of latent variable decom-
positions, especially nonnegative matrix factorization (NMF), has
been a very active area of research. These methods are facing two,
mutually dependent, problems: first, instrument sounds often ex-
hibit time-varying spectra, and grasping this time-varying nature is
an important factor to characterize the diversity of each instrument;
moreover, in many cases we do not know in advance the number of
sources and which instruments are played. Conventional decompo-
sitions generally fail to cope with these issues as they suffer from the
difficulties of automatically determining the number of sources and
automatically grouping spectra into single events. We address both
these problems by developing a Bayesian nonparametric fusion of
NMF and hidden Markov model (HMM). Our model decomposes
music spectrograms in an automatically estimated number of com-
ponents, each of which consisting in an HMM whose number of
states is also automatically estimated from the data.

Index Terms— Nonnegative matrix factorization (NMF), Hi-
erarchical Dirichlet process (HDP), Infinite hidden Markov model
(iHMM), Gamma process, Collapsed variational Bayes (CVB)

1. INTRODUCTION

In acoustic signal processing, the use of latent variable decomposi-
tions, especially NMF [1], has been a very active area of research.
In the context of audio signal analysis based on NMF, the observed
signal (magnitude or power spectrogram) is approximated by a lin-
ear combination of spectral bases which can be regarded as the rep-
resentatives of the various spectral patterns in the signal.

This paper focuses on the two problems which standard NMF
faces in music signal analysis. Firstly, one needs to deal with
the non-stationarity of instrument sounds [2, 3]. Hopefully, each
spectral basis should be the representative of a single instrument
sound. In standard NMEF, this implies that the elementary compo-
nents (which one would like to correspond to one pitch of one in-
strument) of the analyzed sound are assumed to be nearly stationary.
However, real world sounds often exhibit non-stationary spectral
characteristics. For example, a piano note would be more accurately
characterized by a succession of several spectral patterns such as at-
tack, decay, sustain and release. As another example, singing voices
and stringed instruments feature a particular musical effect, vibrato.
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Spectra of instrument sounds with such variations are typically dif-
ficult to handle by standard NMF. Indeed, a single instrument sound
will tend to be modeled as the sum of several spectral bases, leading
to the difficult problem of determining which sources each compo-
nent belongs to. Standard NMF thus requires some post-processing
to group the bases into single notes. Secondly, it is difficult to esti-
mate the number of notes which are included in the observed poly-
phonic music signals [4, 5]. Most methods require that the number
of sources be specified in advance, or found with model selection
techniques [5]. This problem is related to the non-stationarity of
the spectrum of instrumental sounds, because the variations in the
spectral patterns of a sound make it even more difficult to estimate
the number of sources. These problems should thus be addressed
simultaneously.

We do so by developing a Bayesian nonparametric fusion of
NMF and hidden Markov model (HMM), which can be regarded as
an extension of the factorial hidden Markov model (FHMM). The
number of components and the number of states have a strong im-
pact on the standard FHMM. To overcome this issue, we place here
a prior over all their possible combinations via a Bayesian nonpara-
metric framework. Our model decomposes music spectrograms in
an automatically estimated number of components, each of which
consisting in an HMM whose number of states is also automatically
estimated from the data.

Conventional Bayesian nonparametric NMF, here reformulated
with the generalized KL-divergence, is explained in section 2. Sec-
tion 3 presents our model based on Bayesian nonparametric com-
bined NMF and HMM. An efficient inference algorithm based on
variational Bayes (and collapsed VB) is derived in Section 4. Sec-
tion 5 discusses potential improvements to the model based on a
different construction of the prior. Experimental results are shown
in Section 6.

2. GAMMA PROCESS
NONNEGATIVE MATRIX FACTORIZATION

An NMF approach to audio signal analysis is typically based on
the assumption that a magnitude or power spectrogram Y =
(Yo )oxr € RZ09XT where w = 1,- - -, is a frequency bin
index, and t = 1,---,7 is a time frame index, can be modeled
as the product of two non-negative matrices, H = (Hy.q)oxp €
RZ2XP and U = (Ug)pxr € RZP*T. This can be writ-
ten as Yo = > ,;Hu aUa:, where D is the number of bases
hg = [Hi,4, Hde]T. The term “component” is often used to
refer to a spectral portion corresponding to hg and Ug ;. Although
the discrepancy measure between Y and HU can be defined in

325



2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics

many ways, we will focus in this paper on the use of the generalized
Kullback-Leibler (KL) divergence in the magnitude domain, since
this choice has been shown to lead to good music source separation
performance [6].

The standard NMF assumes that the number of components D
is known in advance. In practice, we rarely know the adequate value
for this number and must resort to expensive techniques such as
model selection to estimate it. Recently, Bayesian nonparametric
approaches have proven to be effective for the problem of auto-
matically inferring model complexities [5, 7]. The Gamma pro-
cess nonnegative matrix factorization (GaP-NMF) [5] introduces a
hidden vector of nonnegative values @, where each element 6, is
the overall gain of the corresponding source d. While the orig-
inal GaP-NMF [5] is basically a nonparametric extension of the
Itakura-Saito divergence-based NMF, we start here by formulat-
ing a nonparametric extension of the generalized KL divergence-
based NMF using the Gamma process prior. The observed spec-
trogram Y and the overall gains @ are expressed according to the
following generative process: Co¢,a ~ Poisson(0aH., qUqt),
04 ~ Gamma(n/D,n\), Yo: ~ (Yo — >, Cu,i,a) Where
C1,...,Cp can be interpreted as latent components. Note that D
works as the truncation level. As D increases towards infinity, the
overall gains @ can be considered to be drawn from a Gamma pro-
cess with shape parameter 1 and inverse-scale parameter nA [8, 5].
When the truncated level D is sufficiently large, we can expect that
an adequate number of components will be active and the rest will
be suppressed. We thus don’t need to determine the adequate num-
ber of components in advance. Instead, we only have to prepare a
sufficiently large number D of them.

3. BAYESIAN NONPARAMETRIC
COMBINED NMF AND HMM
FOR MODELING MUSIC SPECTROGRAMS

GaP-NMF gives us an adequate number of components required by
the model to describe the data, but we would like each of these com-
ponents to correspond to a single event, such as “Cf of the piano”
or “Ab of the violin”. This would likely be the case if we could
assume that the spectrum of a note of a musical instrument can be
represented through a single spectral basis whose amplitude is mod-
ulated in time, but its variations in time are actually much richer.
Recently, an HMM-based approach has been proposed to
overcome this problem [2]. The spectrogram of the observed
signal is modeled under the assumption that it is composed
of spectral patterns which are themselves composed of a lim-
ited number of Markov-chained states. To introduce this con-
cept into GaP-NMF, we consider state-transition bases H =
{(H“(fi)gx;(, cey (Hfff)D)ng}, where (Hff()i)g denotes the k-
th possible state for the spectral basis of the d-th component and
K denotes the number of states. If we let Z = (Zq,+)pxr € N
denote which spectral basis state of the d-th component is acti-
vated at time ¢, the generative model can be expressed as H f)k()i ~
Gamma(am,br), Ud,t | Wa,r ~ Gamma(av,avWa,i), Way |
Ug,i—1 ~ Gamma(av, avUqgt—1), 04 ~ Gamma(n/D,n\) and

Cuta | (HE)E=1, Uae, Za,s ~ Poisson (GdHL?;’t)Ud,t) ,
Yo~ (Yo = > Cua) M

d
where W = (W4 ) pxr are auxiliary variables. The Gamma chain
of U and W promotes temporal continuity, often encountered in
real-world sounds [13].
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The number of states is likely to be an important factor to char-
acterize the diversity of each instrument. Hopefully, the adequate
number of states should be assigned in response to the tested instru-
mental sounds. To address this problem, we introduce a Bayesian
nonparametric approach to the state-transition bases, similarly to
the infinite HMM [9]. Our model is constructed based on the
Bayesian nonparametric HMM using hierarchical Dirichlet pro-
cess (HDP) [9, 10, 11]. A two-level HDP can be used to develop
an HMM with an infinite state space. It is a collection of DPs,
{G1, G2, ...}, sharing a base distribution Go: G; ~ DP(a, Go),
for each j. G is also drawn from a DP with a base distribution F:
Go ~ DP(v, F). a, are referred to as concentration parameters,
which can be interpreted as controlling the impact of the base dis-
tribution. The intuitive interpretation of the HDP in our model can
briefly be described as follows: the base distribution F' is a distribu-
tion over the nonnegative spectrum space and draws independently
the atoms of the top-level DP Gg. As a draw from DP, G is almost
surely discrete, leading to the discreteness of the HMM. The fact
that all G; share Gy enables them to share the same set of atoms
with only different weights. It ensures that transitions are allowed
only on the same set of atoms.

Various constructions of the HDP-HMM prior have been pro-
posed [9, 12, 11, 15]. Although, as discussed in Section 5, some
alternatives may lead to potentially better models, we choose to
present in this paper an intuitive construction based on the def-
inition of the HDP and the stick-breaking process [9, 12]. Let
B4 = Baz1,Baz2,--.,Pdk, ... be generated from a stick-breaking
process: B, ~ GEM(y), that is, 8} ,,|7 ~ Beta(1,7), Bam =
Bit.m 7;;1(1 — Ba1)- Let war ~ DP(a,B,) where mq ) de-
notes the state-specific transition distribution, that is, 7g , - shows
the state-transition probability from state k to state k’. Then, the
states are encouraged to be similar because E[mg k. /|8 4] = Bar’-
The whole model can be expressed by combining Eq. (1) and the
following generative process:

B4~ GEM(y) , max ~ DP(c,B,)

Zat | Zag—1, (Tak)ee1 ~ Td,Zg 41 2)

The key property is that only meaningful elements of the unlimited
number of states are active in essence. We thus do not need to find
the suitable number of states in advance, as it is assigned in response
to the tested instrumental sounds.

To summarize, we introduced two infinite models into the stan-
dard FHMM. We shall refer to this model as the infinite factorial
infinite hidden Markov model (iFiIHMM).

4. VARIATIONAL INFERENCE

Inference algorithms for models with an HDP prior are mostly
based on sampling methods. For HDP-HMM, various types of
Markov chain Monte Carlo methods have been proposed [9, 10, 11].
In the context of Bayesian inference, there are alternatives based on
variational Bayes (VB). Especially, for large-scale problems, VB
may prove to be one of the most convenient methods. In this paper,
we use variational inference for our model because music spectro-
grams often comprise a large number of parameters.

The VB approach in general assumes a factorized form of the
posterior distribution. This implies that the parameters are assumed
to be independent of each other, and such an assumption is likely to
often degrade the performance of the inference when it is not met. It
is the case in iFiIHMM, where 7 4 is likely to have a strong impact on
Z 4. In order to better approximate the posterior, we thus use here
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the recently developed collapsed VB (CVB) for HDP, integrating
out certain parameters while assuming that other latent variables
are independent [12].
To derive collapsed variational updates, we first integrate out 7r,
leading to a joint distribution over Z, «, 8 as follows:
_ I'(a) U(aBak + nd.jk) }

p(Z]e.B) g{r(mrnd,j,.) =m0 @
where ng ;1 counts the number of times that the state transition
from state j to state k is drawn and ng,;. = Y, Na,jk The
gamma function in Eq. (3) makes the hyperparameter posterior up-
dates cumbersome. We thus introduce auxiliary variables sq, ;1. tak-
ing integral values, similarly to [12]. The joint distribution over the
expanded system is obtained as:

p(Z,s|a,B)= H {ﬁ 11 |:nd,j¢k’:| (aﬂdyk)sdz,j,k}

8d,j,k

where [] denotes the unsigned Stirling numbers of the first kind.

Given the observed spectrogram Y, we want to compute the
posterior distribution p(C,0,H, U, Z, 3, s|a,n, A, a,b). In the
following, we will refer to the parameters of interest as =. CVB ap-
proximates the posterior with the variational distribution ¢(Z) =
q(C)q(0)q(H)q(U)q(Z)q(B)q(s|Z). We optimize the factor-
ized distribution of each parameter iteratively while holding the oth-
ers fixed. Space constraints allow only for a sketch of the update
rules for ¢(Z):

q(Zd,t = k}) X exp( — ZE[QdHSf;Ud,t}
+Y E[Cualog HY\Uu] + Ellog(aBak +ngt,, 1))

+E[10g(a/8dvzd,t,+l + nc?je,zd,H_l + ]I(Zd,tfl = k)]I(Zd,t+1 = k))]
~Eflog(a + naf.. +W(za.-1 = k))])

where n;tyk counts the number of times that state transition from
state j to state k is drawn, excluding the number of transitions
Zai-1— a1 Ot Zag — L t41.

The update rules for ¢(C), ¢(H) and ¢(U) are derived by
making a slight modification (adding 0) to [3]. The updates of ¢(3)
and ¢(s|Z) are derived similarly to [12]. The updates of ¢(0) de-
rived in [5] are generalized to account for the state transitions be-
tween spectral bases. It is computationally difficult to obtain some
of the expectations. However, we can use the same tractable ap-
proximations employed in [12].

5. ALTERNATE CONSTRUCTION
FOR THE HDP-HMM PRIOR

It is worth noting that a different VB approach for HDP has recently
been introduced in [11, 15], based on the Chinese restaurant fran-
chise (CRF) [9]. The whole model can be expressed by combining
Eq. (1) and:

Bq ~ GEM(v) , ma; ~ GEM(a) , Saj,i ~ By

Nd,jt ™~ Tdj > Zdt = SdZg s 1ma,z,, 4. “)

Because this construction does not involve variables having a strong
influence on others, there is no special incentive to using collapsed
VB. Moreover, owing to the full conjugacy of the construction, VB
can be straightforwardly applied and the update rules obtained in
closed form. This construction thus seems very promising, and we
shall report on it in more details in a future publication.
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6. EXPERIMENTS

We present some results on the application of our algorithm to au-
dio signals, for fully unsupervised sound separation. All data were
downmixed to mono and downsampled to 16 kHz. The magnitude
spectrogram was computed using the short time Fourier transform
with 32 ms long Hanning window and with 16 ms overlap.

We first generated synthetic data (shown in Fig. 1 (a)) consist-
ing in a mixture of piano (C), violin (E) and flute (G), chosen to
have overlapping harmonic components: first, each note is played
alone in turn, then all the combinations of two notes are played and
finally all notes are played simultaneously. To clarify the effect of
the present method, we used as a comparison standard NMF where
the number D of bases is fixed to 3. The result is shown in Fig. 1.
Standard NMF, even when given the proper D, is unable to repre-
sent correctly the time-varying spectra, such as the attack part of
the piano and the vibrato of the violin. It would need more spectral
bases to capture the time-varying spectra, but some post-processing
would then be required to group the bases into single notes. By con-
trast, the proposed method (truncation levels: D = 10 and K = 30)
automatically factorizes the observed spectrogram into the mainly
active components (shown in Fig. 2). The relative level of the re-
maining components is —109.2 dB. The proposed method is thus
able to automatically find the adequate number of components and
group the proper number of Markov-chained spectral bases to rep-
resent non-stationary spectra.

As an example of real application, we also present results on the
task of note-level manipulation of real-world music signals. Some
audio samples as well as a description of the procedure we used are
available at http://hil.t.u-tokyo.ac.jp/ "mnakano/.

7. CONCLUSION

This paper presented a Bayesian nonparametric combined NMF and
HMM framework for modeling music spectrograms. We showed
through experiments that our model is capable of automatically de-
termining the number of sources and of modeling the variety of the
time-varying spectra of each instrument sound, via a Bayesian non-
parametric approach. In the future, we will apply this model to var-
ious tasks related to music signal analysis. We also plan to extend
our model to a semi-supervised setup.
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Figure 2: Estimated model obtained by applying the proposed method to
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pending on the observed signal.
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