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Abstract
Automatic speech recognition (ASR), audio tagging (AT),

and acoustic event detection (AED) are typically treated as sep-
arate problems, where each task is tackled using specialized
system architectures. This is in contrast with the way the hu-
man auditory system uses a single (binaural) pathway to process
sound signals from different sources. In addition, an acoustic
model trained to recognize speech as well as sound events could
leverage multi-task learning to alleviate data scarcity problems
in individual tasks. In this work, an all-in-one (AIO) acous-
tic model based on the Transformer architecture is trained to
solve ASR, AT, and AED tasks simultaneously, where model
parameters are shared across all tasks. For the ASR and AED
tasks, the Transformer model is combined with the connection-
ist temporal classification (CTC) objective to enforce a mono-
tonic ordering and to utilize timing information. Our exper-
iments demonstrate that the AIO Transformer achieves better
performance compared to all baseline systems of various re-
cent DCASE challenge tasks and is suitable for the total tran-
scription of an acoustic scene, i.e., to simultaneously transcribe
speech and recognize the acoustic events occurring in it.
Index Terms: automatic speech recognition, DCASE chal-
lenge, acoustic event detection, audio tagging, Transformer

1. Introduction
In recent years, researchers have reported that machines have
reached human speech recognition performance on some well-
defined tasks [1, 2]. However, humans are still unmatched in
recognizing speech in difficult acoustic conditions [3] and for
complex or mismatched tasks [4]. More remarkably, the hu-
man auditory system can detect and recognize acoustic signals
irrespective of their nature using a single (binaural) pathway,
whereas state-of-the-art systems used for audio tagging (AT),
acoustic event detection (AED), and automatic speech recogni-
tion (ASR) mostly use task-specific architectures and are treated
as separate problems. This is true even among different AED
and AT domains, as can be noticed from the past Detection and
Classification of Acoustic Scenes and Events (DCASE) chal-
lenges [5–10]. The human auditory system can thus still be
regarded as a role model due to its strong detection and classi-
fication performance as well as its ability to better generalize to
unknown sounds, tasks, and acoustic conditions.

Along the auditory pathway, an acoustic signal passes sev-
eral processing stages, whereby early stages mainly extract and
analyze different acoustic cues, while the final stages, in the
auditory cortex, are responsible for perception [11]. Such pro-
cessing is in many ways analogous to encoder-decoder neural
network architectures, where the encoder extracts the important
acoustic cues for a given task, the attention mechanism acts as
the relay, and the decoder performs the perception, detecting
and recognizing acoustic events.

In this work, we propose a unified ASR, AT, and AED sys-
tem based on an encoder-decoder model. More specifically, we
develop our system around the Transformer architecture [12],
which has demonstrated improved end-to-end ASR results com-
pared to recurrent neural network (RNN) based systems by
leveraging self-attention to analyze the temporal information of
an acoustic signal [13]. However, the full Transformer archi-
tecture has not yet been applied to AT or AED, where the use
of self-attention has so far been limited to encoder-only archi-
tectures [14, 15]. Besides the analogy to the auditory system,
another motivation for using an encoder-decoder architecture in
AT and AED problems is that the decoder directly outputs sym-
bols, i.e., class labels, thus avoiding the cumbersome process
of setting detection thresholds for each class during inference
[14]. Moreover, encoder-decoder based systems do not require
a monotonic ordering of labels, and can thus easily make use of
weakly labeled audio recordings, annotated without temporal
or sequential information, which is often the case for acoustic
events. However, this can also be a disadvantage when temporal
information is needed, such as for AED and ASR. We thus train
our Transformer model jointly with the connectionist temporal
classification (CTC) objective for the AED and ASR tasks using
a multi-objective CTC-attention type of architecture [16, 17] to
leverage the monotonic alignment properties of CTC.

The present work aims at investigating the following ques-
tions: 1) Can we develop a system that moves closer to the
versatility of the human auditory system? 2) Can training on
multiple heterogeneous tasks lead to a single system with per-
formance similar to or better than systems developed indepen-
dently for each task? 3) Can a single system successfully handle
multiple tasks with widely varying characteristics, large length
discrepancies, and with or without monotonicity?

2. System Architecture
Figure 1 shows the proposed unified ASR, AT, and AED system,
which is based on a joint CTC-attention architecture [16, 17].
The encoder and decoder neural network weights are shared
for all tasks, and the CTC objective is emphasized solely for
ASR and AED, for which sequential label information is avail-
able. The decoder is initialized with a task-specific start symbol,
which indicates the task of interest and controls the set of labels
that are recognized by the decoder, as shown in Fig. 1. Label
symbols are tagged using a task identifier, i.e., similar labels are
not shared across tasks for simplicity reasons.

The Transformer model leverages two different attention
types: encoder-decoder attention and self-attention [12] that are
both based on the scaled dot-product attention mechanism,

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V, (1)

where Q ∈ Rnq×dq , K ∈ Rnk×dk , and V ∈ Rnv×dv are
the queries, keys, and values, where the d∗ denote dimensions,
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Figure 1: The AIO Transformer system with an example output for each task that is switched by initially feeding a different start-of-task
token to the decoder, shown in angle brackets (〈asr〉, 〈aed〉, 〈at1〉, . . . , 〈at7〉). 〈\s〉 denotes the stop symbol for decoding, and the label
suffixes S , E , and C denote start and end boundaries as well as continuation of an event. The ASR and AED tasks are trained and
decoded jointly with CTC, whereas AT tasks use only the decoder output.

the n∗ denote sequence lengths, dq = dk, and nk = nv [12].
Instead of using a single attention head, multiple attention heads
are used by each layer of the Transformer model with

MHA(Q̂, K̂, V̂ ) = Concat(Head1, . . . ,Headdh)WH (2)

and Headi = Attention(Q̂WQ
i , K̂W

K
i , V̂ W

V
i ), (3)

where Q̂, K̂, and V̂ are inputs to the multi-head attention
(MHA) layer, Headi represents the output of the i-th attention
head for a total number of dh heads, and WQ

i ∈ Rdmodel×dq ,
WK
i ∈ Rdmodel×dk , WV

i ∈ Rdmodel×dv as well as WH ∈
Rdhdv×dmodel are trainable weight matrices that typically sat-
isfy dk = dv = dmodel/dh.

The encoder of our Transformer architecture consists of a
two-layer CNN module ENCCNN and a stack of E Trans-
former encoder layers with self-attention ENCSA:

X0 = ENCCNN(X), (4)
XE = ENCSA(X0), (5)

where X = (x1, . . . ,xT ) denotes a sequence of acoustic in-
put features, which are 80-dimensional log mel-spectral ener-
gies (LMSEs) plus 3 extra features for pitch information [18].
Both CNN layers of ENCCNN use a stride of size 2, a kernel
size of 3 × 3, and a ReLU activation function, which reduces
the frame rate of output sequence X0 by a factor of 4. The
ENCSA module of (5) consists ofE layers, where the e-th layer,
for e = 1, . . . , E, is a composite of a multi-head self-attention
layer and two ReLU-separated feed-forward neural networks of
inner dimension dff and outer dimension dmodel:

X ′e = Xe−1 + MHAe(Xe−1, Xe−1, Xe−1), (6)

Xe = X ′e + FFe(X ′e), (7)

FFe(X ′e) = ReLU(X ′eW
ff
e,1 + bffe,1)Wff

e,2 + bffe,2, (8)

where Wff
e,1 ∈ Rdmodel×dff , Wff

e,2 ∈ Rdff×dmodel , bffe,1 ∈ Rdff ,
and bffe,2 ∈ Rdmodel are trainable weight matrices and bias vec-
tors.

The Transformer objective function is defined as

patt(Y |XE) =

L∏
l=1

p(yl|y1:l−1, XE) (9)

with label sequence Y = (y1, . . . , yL), label subsequence
y1:l−1 = (y1, . . . , yl−1), and the encoder output sequenceXE .
The term p(yl|y1:l−1, XE) represents the Transformer decoder
model, which can be written as

p(yl|y1:l−1, XE) = DEC(XE ,y1:l−1), (10)

with

z0
1:l = EMBED(〈s〉θ, y1, . . . , yl−1), (11)

zdl = zd−1
l + MHAself

d (zd−1
l ,zd−1

1:l ,z
d−1
1:l ), (12)

z
d
l = zdl + MHAdec

d (zdl , XE , XE), (13)

zdl = z
d
l + FFd(z

d
l ), (14)

for d = 1, . . . , D, where D denotes the number of decoder
layers. Function EMBED converts the input label sequence
(〈s〉θ, y1, . . . , yl−1) into a sequence of trainable embedding
vectors z0

1:l, where 〈s〉θ∈Θ denotes a task specific start symbol
using θ to index sequence Θ = (〈asr〉, 〈aed〉, 〈at1〉, . . . , 〈at7〉),
as shown in Fig. 1. Function DEC finally predicts the poste-
rior probability of label yl by applying a fully-connected neural
network to zDl and a softmax distribution over that output. Si-
nusoidal positional encodings are conventionally added to the
sequences X0 and Z0 [12].

For the ASR and AED tasks, the Transformer model is
trained jointly with the CTC objective function

pctc(Y |XE) =
∑

π∈B−1(Y )

p(π|XE), (15)

where B−1 denotes a one-to-many map to expand the label se-
quence Y to a set of all possible frame-level label sequences
using the CTC transition rules [19]. π represents a frame-level
label sequence. The multi-objective loss function

L = −γ log pctc − (1− γ) log patt (16)

is used for training, where hyperparameter γ is used to control
the weighting between the two objective functions pctc and patt.

3. Experimental Setup
Parameter settings of the Transformer model are dmodel = 256,
dff = 2048, dh = 4,E = 12, andD = 6. The Adam optimizer
with β1 = 0.9, β2 = 0.98, ε = 10−9 and learning rate schedul-
ing similar to [12] is applied for training using 25000 warmup
steps. The initial learning rate is set to 5.0 and the number of
training epochs amounts to 80. Weight factor γ, which is used
to balance the CTC and Transformer model objectives during
training, is set to 0.3 for a batch of ASR samples, 0.4 for a
batch of AED samples, and to 0.0 otherwise. The same weights
are used for decoding as well. Layer normalization is applied
before and dropout with a rate of 10 % after each MHA and
FF layer. In addition, label smoothing with a penalty of 0.1 is
used. For ASR inference, a word-level long short-term memory
(LSTM) based language model (LM) [20] is applied via shallow



fusion using an LM weight of 1.0. For the AED task, tempo-
ral information for the recognized acoustic event sequence is
obtained by using CTC-based forced alignment [21, 22].

3.1. Data Sets
In this work, 8 different data sets are employed, see Table 1.
For ASR, the Wall Street Journal (WSJ) corpus of read English
newspapers is utilized. For multi-condition ASR training (in-
dicated by superscript “a”) and testing, a noisy training and
test set is generated by mixing the WSJ training data with the
DCASE training data sets of Table 1 and the eval92 test set with
DEMAND [23] and NOISEX-92 [24] noise data using a signal-
to-noise ratio (SNR) of 5 dB for training and 10 dB for testing.

For AT, we use various data sets of the recent DCASE chal-
lenges as well as the RAVDESS corpus of emotional speech and
song [25]. The DCASE corpora used are DCASE 2017 task 4
(DCASE17-4) “large-scale weakly supervised sound event de-
tection for smart cars” [5], DCASE 2018 task 3 (DCASE18-3)
“bird audio detection” [6], DCASE 2019 task 1 (DCASE19-
1) “acoustic scene classification” [7], DCASE 2019 task 2
(DCASE19-2) “audio tagging with noisy labels and minimal su-
pervision” [8], DCASE 2019 task 4 (DCASE19-4) “sound event
detection in domestic environments” [9], and DCASE 2019 task
5 (DCASE19-5) “urban sound tagging” [10]. In this work, we
only use the coarse-level label information of DCASE19-5. The
DCASE18-3 and RAVDESS corpora do not provide develop-
ment and test data sets with ground truth annotations. We have
therefore created DCASE18-3 development and test data sets,
each consisting of 5 % of data randomly sampled from the
DCASE18-3 training data set, which results in training, devel-
opment, test data sets of size 89h, 5h, and 5h, respectively. The
RAVDESS corpus features 24 actors speaking and singing; we
use the audio recordings of the first 20 actors for training, those
of actors #21 and #22 for development, and those of actors #23
and #24 for testing. Labels used for the RAVDESS data sets are
those from the “emotion”, “vocal channel”, and “gender” in-
formation, e.g., “calm song male” or “disgust speech female”.
Since the DCASE19-1 data does not provide ground truth anno-
tations for the official test data, we use only 10 % of the official
development data for validation and the full set for testing. For
multi-condition AT training (indicated by superscript “b”) and
testing, we mixed the DCASE19-2 training and development
data with speech recordings from the WSJ training and evalua-
tion data sets using an SNR of approximately 0 dB.

For AED, the synthetic training data set of DCASE19-4 is
used, which is the only AT training data set with strong annota-
tions, i.e., where timing information is available. However, we
are not utilizing the exact timing information for training but
instead only the sequential label information. In order to handle
overlapping events and for evaluating the timing information,
each acoustic event is split into three event labels indicating the
start position, continuation, and end position, indicated by sub-
scripts S , C , and E , respectively. Continuation labels are re-
peated every second depending on the duration of an event.

For the experiments with our Transformer model, all data sets
are resampled to 16 kHz.

3.2. Baseline Systems
The presented baseline results are generated using the offi-
cial baseline systems provided for the respective DCASE chal-
lenge tasks. The DCASE19-1 baseline system first extracts 40-
dimensional LMSE features from 48 kHz sampled audio data
and applies two CNN layers followed by a fully connected neu-
ral network layer and a softmax layer [7]; inference is based

Table 1: Summary of all the data sets used, where the number of
hours per data set is shown in brackets. #C denotes the number
of classes per task.
Corpus Task #C Train data Dev. data Test data

WSJ ASR 49 train si284 (81h) dev93 (1.1h) eval92 (0.7h)
DCASE17-4 AT 19 train (140h) dev-test (1.3h) eval (3h)
DCASE18-3 AT 2 train (99h) n/a n/a
DCASE19-1 AT 10 train (25.5h) dev-eval (11.6h) n/a
DCASE19-2 AT 80 train (10.5h),

noisy (80.3h)
public (3.1h) private (9.8h)

DCASE19-4 AT 10 synthetic (5.7h),
weak (4.1h)

public (2.9h) validate (1.9h)

DCASE19-4 AED 10*3 synthetic (5.7h) public (2.9h) validate (1.9h)
DCASE19-5 AT 8 train (4.4h) validate (1.2h) test (0.7h)
RAVDESS AT 12 train (2.8h) n/a n/a

on the maximum output of the softmax layer. The DCASE19-2
baseline system uses a MobileNet v1 type of neural network
architecture, which consists of a CNN layer followed by 13
separable CNN layers including a pooling layer for each and
finally an 80-way logistic classifier layer [8]; 96-dimensional
LMSE features extracted from 44.1 kHz sampled audio record-
ings are used as input to the network. The DCASE19-4 base-
line system is based on the winning system of the previous
year DCASE challenge, which is a mean-teacher model with
context-gating CNN and RNN to maximize the use of unlabeled
and weakly labeled data [26]; as an input to the neural network,
128-dimensional LMSE features are extracted from 22,050 Hz
sampled audio data. The baseline system of DCASE19-5 is
based on a VGGish neural network setting to extract 128-
dimensional embeddings for classification [10,27]; the network
is fed with 64-dimensional LMSE features, which are extracted
from 16 kHz sampled audio data. The DCASE17-4 baseline
system consists of two 50-dimensional densely connected lay-
ers with 20 % dropout for each and a final output layer with sig-
moid units; five consecutive frames of 40-dimensional LMSE
features are used as input.

3.3. Evaluation Metrics
The ASR performance is measured using word error rates
(WERs). For the AT tasks, we use micro-averaged F1-scores
to determine the systems’ accuracy. The AED systems’ perfor-
mance is assessed by the macro-averaged event-based F1-score
measure using a 200 ms collar for both onsets and offsets, as
well as by the macro-averaged segment-based F1-score mea-
sure using a segment length of 1 second [9, 28].

4. Results
Table 2 shows the F1-scores for the AT experiments using the
DCASE challenge baseline systems and our proposed Trans-
former architecture with different training configurations. The
“single” and “multi” AT training configuration denote that the
Transformer is trained separately for each individual AT task
using the respective training data only or for all AT tasks com-
bined. Check marks for “ASR” and “AED” indicate that the
model is trained with ASR and AED data, respectively. The
AIO Transformer is jointly trained for all tasks, whereby super-
script “a” denotes use of multi-condition ASR and superscript
“b” the use of multi-condition AT training data, which are de-
scribed in Section 3.1. The results show that multi-task training
improves F1-scores on average for each task. Only small im-
provements can be seen for DCASE19-1 and RAVDESS, while
for all other task, scores are considerably increased by more
than 5 %. The proposed Transformer model clearly outperforms
the baseline results for all tasks, except for DCASE19-1, where
results are about the same.



Table 2: Micro-averaged F1-scores [%] for the different audio tagging tasks. Baseline results are obtained using the baseline systems
provided for the corresponding DCASE challenge tasks. For AT training data, “single” indicates the data for the corresponding
single task, while “multi” indicates the data for all tasks. Superscripts “a” and “b” denote the usage of the multi-condition ASR and
DCASE19-2 training data set, respectively.

DCASE19 DCASE18 DCASE17 RAVDESS

Training data Task 1 Task 2 Task 4 Task 5 Task 3 Task 4

System AT AED ASR dev dev test dev test dev test dev test dev test dev test

Baseline systems single 62.5 39.8 38.8 71.4 66.8 73.0 68.9 n/a n/a 19.0 29.3 n/a n/a
Transformer single 59.2 45.3 46.0 71.9 71.0 73.7 70.9 83.6 84.1 45.4 51.6 89.4 86.1
Transformer single X 60.4 48.2 47.4 74.2 72.7 74.9 69.9 89.1 89.2 50.4 55.2 83.0 85.7
Transformer multi 63.7 45.0 46.5 74.7 71.8 77.2 73.3 88.3 88.2 46.7 52.9 84.6 87.5
Transformer multi X 62.3 47.4 45.2 78.5 73.8 76.9 73.4 88.3 89.4 45.8 52.6 84.8 86.5
Transformer multi X 62.4 48.8 49.3 78.7 77.4 77.5 74.6 87.7 88.1 49.1 56.6 82.4 83.5
AIO Transformer multi X X 62.9 46.7 48.8 79.6 76.0 79.0 76.6 88.2 89.1 49.6 56.9 87.7 86.1
AIO Transformer multi X Xa 61.3 50.8 51.5 81.1 78.7 76.2 77.7 89.0 89.9 51.0 58.2 82.4 84.3
AIO Transformer multib X Xa 61.6 52.7 53.8 79.8 78.2 74.9 74.2 89.5 89.5 50.7 56.0 85.3 87.3

Table 3: WSJ-based ASR results for a CTC-Transformer based
baseline system as well as for our proposed multi-task Trans-
former models.

Training data WER [%]

System AT AED ASR dev test 10 dB

Transformer (Baseline) X 7.7 5.0 10.9
Transformer (Baseline) Xa 7.6 4.8 5.4
Transformer X X 7.8 5.0 11.3
Transformer X Xa 7.9 4.7 5.5
Transformer multi X 8.0 5.3 14.4
AIO Transformer multi X X 7.5 5.1 12.5
AIO Transformer multi X Xa 7.7 5.2 6.3
AIO Transformer multib X Xa 7.8 5.3 5.8

Table 4: AED results for the DCASE 2019 task 4 baseline sys-
tem as well as for our proposed multi-task Transformer systems.

F1-scores [%]

Training data Event-based Segment-based

System AT AED ASR dev test dev test

Baseline system X 29.0 24.0 58.5 54.8
Transformer X 16.0 10.6 43.8 34.8
Transformer X X 26.3 18.8 48.9 38.2
Transformer X Xa 21.4 15.4 44.6 34.2
Transformer multi X 11.0 8.4 51.9 44.3
AIO Transformer multi X X 21.2 12.5 60.7 49.6
AIO Transformer multi X Xa 26.3 16.7 61.2 50.7
AIO Transformer multib X Xa 23.8 14.9 62.0 51.4

Table 3 shows the ASR results of our multi-task trained
Transformer models. The ASR baseline system is based on a
CTC-Transformer architecture as well, using the same model
parameters [16]. It can be noticed that WERs of the AIO Trans-
former are similar or only slightly higher compared to the base-
line. For the noisy test set, the AIO model proves to be less
noise robust compared to the baseline system, if both systems
are trained using clean speech only. We suppose the reason for
this is that the AIO Transformer has learned to maintain fea-
tures for both “noise” and speech, while an ASR model would
learn to extract speech features only and to ignore other cues.
Hence, the AIO Transformer can easily be confused by other
sound events, which can be avoided by multi-condition training
as shown by the results in Table 3.

AED results for the DCASE19-4 task are shown in Table 4.
Without the ASR task, the Transformer model did not learn the
AED task well. We suppose the reason is that it is arduous to
learn how to estimate the correct temporal ordering of events
given only a small amount of AED training data but it can be
learned from the larger ASR task by transfer learning. In addi-
tion, the AT data does not help to improve the event-based F1-
scores, since the CTC objective is only applied to the AED and
ASR tasks, and thus the CTC projection layer is not updated for
every batch, which can lead to mismatches, especially since the
AT data is larger than the ASR and AED data sets. Compared
to the baseline, the event-based F1-scores obtained by the AIO
Transformer are lower, which is likely partly due to the evalua-
tion metric that uses a collar of only 200 ms. Hence, segment-
based F1-scores obtained by the AIO Transformer, which are
also improved by using AT data unlike the event-based scores,
show that the Transformer system is competitive to the baseline
system but the learned temporal alignment of events may be less
accurate for the above mentioned reasons.

We showed above that the AIO transformer was able to ro-
bustly transcribe speech in the presence of interfering sound
events. To show that the AIO Transformer can provide a to-
tal transcription of a complex acoustic scene, we now test the
robustness of AT to interfering speakers as well. The multi-
condition trained AIO Transformer achieves an F1-score of
63.1 % for the multi-condition DCASE19-2 test data, which is
described in Section 3.1. Note that this score is higher than the
scores reported in Table 2 as the multi-condition data features
additional AT speech labels that can be detected.

5. Conclusions
In this work, we show that ASR, AED, and multiple AT
tasks can be unified under a single Transformer-based system,
whereby multi-task learning has been shown to improve the sys-
tem’s performance for each individual task. The proposed AIO
Transformer model achieves competitive or better recognition
scores compared to all baseline systems of recent DCASE chal-
lenges, as well as compared to an end-to-end ASR baseline sys-
tem of similar architecture. The system’s capability to simulta-
neously recognize speech and acoustic events is evaluated, and
results demonstrate that it can be used to perform the total tran-
scription of an audio signal, whereby efficient and simultaneous
ASR, AED, and AT decoding can be achieved by batch process-
ing similar to [29].
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