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ABSTRACT

Deep learning based speech enhancement and source separation sys-
tems have recently reached unprecedented levels of quality, to the
point that performance is reaching a new ceiling. Most systems rely
on estimating the magnitude of a target source, either directly or
by computing a real-valued mask to be applied to a time-frequency
representation of the mixture signal. A limiting factor in such ap-
proaches is a lack of phase estimation: the phase of the mixture is
most often used when reconstructing the estimated time-domain sig-
nal. We propose to estimate phase using “phasebook”, a new type
of layer based on a discrete representation of the phase difference
between the mixture and the target. We also introduce “combook”,
a similar type of layer that directly estimates a complex mask. We
present various training and inference schemes involving these rep-
resentations, and explain in particular how to include them in an end-
to-end learning framework. We also present an oracle study to as-
sess upper bounds on performance for various types of masks using
discrete phase representations. We evaluate the proposed methods
on the wsj0-2mix dataset, a well-studied corpus for single-channel
speaker-independent speaker separation, matching the performance
of state-of-the-art mask-based approaches without requiring addi-
tional phase reconstruction steps.

Index Terms— source separation, deep learning, phase estimation,
discrete representation, mask inference

1. INTRODUCTION
The field of speech separation and speech enhancement has wit-
nessed dramatic improvements in performance with the recent ad-
vent of deep learning-based techniques [1–11]. Most of these algo-
rithms rely on the estimation of some sort of time-frequency (T-F)
mask to be applied to the T-F representation of an input mixture
signal, the estimated signal then being resynthesized using some
inverse transform. Let us denote by X = (xt,f ), S = (st,f ),
and N = (nt,f ) the complex-valued time-frequency representa-
tions of a mixture signal, a target source signal, and an interference
signal, respectively at time t in frequency bin f . We also denote
by θt,f = ∠(st,f/xt,f ) the phase difference between the mixture
and the target source. The time-frequency representation is typi-
cally taken to be the short-time Fourier transform (STFT), such that
xt,f = st,f +nt,f . The goal of speech enhancement or separation is
to recover an estimate Ŝ = (ŝt,f ) of the signal S from the mixture
X . We focus here on algorithms that do so by estimating a mask
C = (ct,f ) such that ŝt,f = ct,fxt,f . Note that the interference
signal itself could also be target for separation, such as in the case of
speaker separation.
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Masking is motivated by the sparseness of speech, since the majority
of T-F bins in a mixture of speakers will contain mostly energy from
only one of the speakers. Real-valued masks are therefore typically
constrained to lie between 0 and 1, with 1 indicating time-frequency
bins that contain only the target speaker, and therefore also contain
the correct phase. However this logic does not apply to the T-F bins
that contain significant energy from more than one speaker, and han-
dling such cases leads us back to dealing with phase.
Until recently, getting good estimates of the magnitude was already
difficult enough that improving the phase estimate over the noisy
phase was not seen as a priority. With the advent of recent deep
learning algorithms, the magnitude estimates have improved signifi-
cantly, and the noisy phase has become a limiting factor to the over-
all performance. Because the noisy phases are typically inconsis-
tent with the estimated magnitudes [12, 13], the reconstructed time-
domain signal has a different magnitude spectrogram from the es-
timated one. Further improving the magnitude estimate by making
it closer to the true target magnitude may actually lead to worse re-
sults, in terms of measures such as signal to noise ratio (SNR), if
nothing is done to improve the phases. Limiting the estimates to
the noisy phases thus places a ceiling on the achievable SNR, and
makes magnitude estimation less straightforward. Improving upon
the noisy phase therefore presents an opportunity to do better mag-
nitude estimation as well.
If one optimizes both magnitudes and phase for best signal fidelity
then exploring schemes where the magnitude mask goes beyond 1
becomes a reasonable option. When signals in a mixture are out of
phase with each other they can cancel in a given T-F bin. In this case
the magnitudes of each source are greater than that of the mixture,
and so mask values of greater than 1 are required to accurately esti-
mate the magnitude. This was explored in [14] with the introduction
of a convex softmax activation function which interpolates between
the values 0, 1, 2 to obtain a continuous representation of the inter-
val [0, 2] as the target interval for the magnitude mask, leading to
significantly better performance.
Interpolating between fixed prototypes can be seen as a coarse cod-
ing of the output. We propose to apply this idea to the estimation
of a phase mask or a complex mask. That is, we combine a phase
codebook, or phasebook, with a softmax layer to build various phase
representations, either discrete or continuous; we also propose to
directly model a complex mask without magnitude-phase factoriza-
tion by combining a complex codebook, or combook, with a softmax
layer to build various complex mask representations. These repre-
sentations are flexible and can be incorporated within optimization
frameworks that are regression-based, classification-based, or a com-
bination of both.
Related works: Discrete representations of the phase for source sep-
aration were considered in [15] and [16], within a generative model
based on mixtures of Gaussians. Some works have attempted to
incorporate phase modeling for deep-learning-based source separa-



tion, such as estimating the phase difference for audio-visual sepa-
ration in [17], and PhaseNet [18] which estimates discretized values
of the target source phase using cross-entropy training. PhaseNet
is close to a particular setup of our framework; however its use
of argmax makes it less amenable to end-to-end training, whereas
our framework has more flexible outputs and cost functions. The
so-called complex ratio mask [19], is another deep learning system
which considers a range of values that are not limited to [0, 1] and
uses a continuous real-imaginary representation, while we here fo-
cus mainly on discrete representations involving a magnitude-phase
factorization or a direct modeling of the complex value (with the real
and imaginary parts considered jointly).
Another, potentially complementary, way to improve the phase is
to use phase reconstruction. Recent works applied phase recon-
struction as a post-processing [11], then as part of the optimization
pipeline [14]. We finally trained the T-F representations used in the
phase reconstruction algorithm [20]. This is the current state-of-the-
art in methods relying on time-frequency representations. Recently,
a version of the TasNet algorithm [21] established a new state-of-the-
art benchmark on the wsj0-2mix dataset, and introduced techniques
that could be adopted in our framework, such as convolution layers
instead of recurrent ones, layer normalization schemes, and the use
of SI-SDR as the objective instead of the L1 waveform approxima-
tion loss that we consider. It is unclear how these techniques would
influence the performance of competing methods, and we shall con-
sider incorporating them in our framework as future work.

2. MASK DESIGN USING DISCRETE REPRESENTATIONS

We propose to rely on discrete values to build representations for a
complex ratio mask, either via its factorization into magnitude and
phase components or directly as a complex value. Each of the mag-
nitude, phase, or complex masks is estimated by combining discrete
values in a scalar codebook, using probabilities obtained with a soft-
max layer.
Consider a scalar codebook of phase values, or phasebook, denoted
by FP = {θ(1), . . . , θ(P )}. At each T-F bin t, f , a network can
estimate a softmax probability vector pφ(θt,f |O) ∈ ∆P−1, where
O denotes the input features, φ the network parameters, and ∆n ={

(t0, . . . , tn) ∈ Rn+1 |
∑n
i=0 ti = 1 and ti ≥ 0 for all i

}
is the

unit n-simplex. We consider several options for using this softmax
layer output vector to build a final output, either as probabilities, to
select the most likely value (argmax) or sample a value (sampling),
or as weights within some interpolation scheme (interpolation):

• argmax: θout
t,f = argmax pφ(θt,f |O), (1)

• sampling: θout
t,f ∼ pφ(θt,f |O), (2)

• interpolation: θout
t,f = ∠

∑
j

pφ(θt,f = θ(j)|O) ejθ
(j)

. (3)

Note that the interpolation in Eq. (3) is performed in the complex
domain and that taking the angle implies a renormalization step; this
interpolation is illustrated in Fig. 1. An advantage of this representa-
tion is that it takes into account phase wrapping, that is, the fact that
any measure of difference between phase values should be consid-
ered modulo 2π. Indeed, with either sampling or argmax selection,
there is no need to introduce a notion of proximity between values;
with the interpolation uniform of Eq. (3), the phase is defined by its
location around the unit circle, varies continuously with the softmax
probabilities, and values such as −π + ε and π − ε for small ε can
be obtained with probabilities close to each other. This would not be
the case if phase was represented directly as a real-valued angle.
We can define similar “magbook” and “combook” representations

Fig. 1. Illustration of the phase interpolation scheme for a uniform
phasebook with 8 elements. Softmax probabilities are displayed via
the surface of each circle.

for the magnitude mask and the complex mask, again interpolating
using a convex sum over the codebook values with the softmax prob-
abilities as weights. For the magnitude, this is an extension of the
classical sigmoid activation function for the case of a fixed magbook
of size 2 with elements {0, 1} (referred to here as uniform magbook
2), and an extension of the convex softmax considered in [14] for the
case of a fixed magbook of size 3 with elements {0, 1, 2} (referred
to here as uniform magbook 3).
In the following, we shall call “phasebook layer” a layer computing
phase values based on the outputs of a softmax layer and a phase-
book via a method such as those above, and similarly for a “mag-
book layer” and a “combook layer”. These layers allow us to de-
fine both discrete and continuous representations which can be in-
volved in both classification-based and regression-based optimiza-
tion frameworks. The continuous representations may lead to more
accurate estimates, or be easier to include within an end-to-end train-
ing scheme. On the other hand, the discrete representations open the
possibility to consider conditional probability relationships across
variables combined with the chain rule, and may also avoid regres-
sion issues, for example where the estimated value is an interpolation
of two values with high probability but itself has low probability.

3. PHASEBOOK WITH ARGMAX

To get an idea of the potential benefits of better phase modeling, we
consider the argmax scheme for the phase mask, in which the system
attempts to select the best codebook value at each T-F bin, and study
the performance in oracle settings.
Given a phasebook FP = {θ(1), . . . , θ(P )}, the goal of our system
is to estimate at each T-F bin (t, f) the codebook index jt,f such
that jt,f = argminj |mt,fe

jθ(j)xt,f − st,f |2, where mt,f is some
estimate for the magnitude of the mask. The estimation is in fact
independent of the magnitude mask value:

jt,f = argmin
j

cos(θ(j) − ∠(st,f/xt,f )). (4)

We compare the performance of various oracle magnitude masks
combined with the noisy phase, the true phase, and oracle quan-
tized phases using uniform phasebooks with P = 2, . . . , 10 ele-
ments, whose values equally partition the unit circle: Funiform

P =

{0, . . . , 2pπ
P
, . . . , 2(P−1)π

P
}. The oracle phases are obtained by se-

lecting the best element in a phasebook according to Eq. 4. Per-
formance is measured on the full wsj0-2mix evaluation set [6] us-
ing the scale-invariant signal-to-distortion ratio (SI-SDR) between
the target speech and estimate [22]. We investigate the most popu-
lar magnitude masks, whose oracle performance when paired with
the noisy phase was compared in [4]: ideal amplitude mask (IAM:
aIAM = |s|

|x| ), here also considering its truncations to various thresh-
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Fig. 2. Speech SI-SDR for truncated IAM and various classical
masks with quantized phase difference for various phasebook sizes.

olds Rmax, phase sensitive filter (PSF: aPSF = cos(θ) |s||x| ), and its
truncated version to [0, 1] (TPSF), ideal binary mask (IBM: aIBM =
δ(|s| > |n|)), ideal ratio mask (IRM: aIRM = |s|

/
(|s|+ |n|)), and

Wiener-filter-like mask (WF: aWF = |s|2
/

(|s|2 + |n|2)). All these
masks are real-valued, and only modify the magnitude of the mix-
ture, and thus all masks do better with the true phase than with
the noisy phase (except for PSF, which allows negative magnitudes
which accommodate phase reversals in the noisy phase). The results
are shown in Fig. 2.
We first notice that, apart from the unrestricted phase-sensitive mask,
PSF, all masks lead to results under 15 dB when paired with the
noisy phase. This confirms that the noisy phase drastically limits
performance. As soon as a slightly better estimate of the phase is
considered, performance significantly increases, especially for the
IAM masks that consider magnitude ratio values above 1. For phases
other than the noisy phase, we notice a very big jump in perfor-
mance when allowing the truncation ratio to go from a classical
value Rmax = 1 to an only slightly larger value Rmax = 1.5. In-
terestingly, very small codebook sizes already lead to high oracle
performance, e.g., P = 4. In non-oracle conditions, of course, we
need to find the right balance between upper-bound performance and
classification accuracy.

4. OBJECTIVE FUNCTIONS

We consider the above representations as layers within a deep learn-
ing model for source separation, and we need to optimize the pa-
rameters φ of the model under some objective function. We note
that the codebook themselves can be considered fixed (to uniform or
pre-trained values), or optimized jointly with the rest of the network.
For magnitude masks we consider a fixed uniform magbook with 3
elements {0, 1, 2} corresponding to the convex softmax activation
proposed in [14]. We consider two types of training frameworks:
train a phasebook layer for best phase accuracy using cross-entropy,
after training the rest of the network separately using an objective
involving the magnitude; use a phasebook or combook layer to ob-
tain a complex mask estimate, and train the whole network jointly
for best waveform domain reconstruction.
Cross-entropy on the phase: Let jref denote the reference values
for the phase mask, which are the corresponding reference codebook
indices obtained using Eq. (4). We can define an objective function
based on the cross-entropy against the oracle codebook assignments
for the softmax layer outputs of the phasebook layer as:

LCE-phase(φ) = −
∑
t,f

∑
j

δ(j, jreft,f ) log pφ(θt,f = θ(j)|O). (5)

magbook phasebook

Fig. 3. Chimera++ network with phasebook-magbook MI head.

When using these training objectives, either sampling or argmax in-
ference seem most appropriate for use at test time.
Time-domain objectives: Here we consider training the mask es-
timation networks end-to-end using a time-domain loss on the re-
sulting signal, as proposed in [14]. That is, we use a waveform ap-
proximation (WA) objective defined on the time-domain signal ŝ[l]
reconstructed by inverse STFT from the masked mixture, using L1

as distance. We also consider training through an unfolded phase
reconstruction algorithm such as multiple input spectrogram inver-
sion (MISI) [23], using the WA objective on the reconstructed time-
domain signal ŝ(K)[l] after K iterations.

5. EXPERIMENTAL VALIDATION
We validate the proposed algorithms on the publicly available wsj0-
2mix corpus [6], which is widely used for speaker-independent
speech separation. It contains 20,000, 5,000 and 3,000 two-speaker
mixtures in its 30 h training, 10 h validation, and 5 h test sets, re-
spectively. The validation speakers are seen during training, while
those in the test set are completely unseen. Sampling rate is 8 kHz.

5.1. Chimera++ network with phasebook-magbook MI head

Our system is based on the state-of-the-art chimera++ network [14],
which combines within a multi-task learning framework a deep clus-
tering head outputting a D-dimensional embedding for each T-F bin
(D = 20 here), and a mask-inference (MI) head with convex soft-
max output which predicts a magnitude mask with values in [0, 2],
here generalized to a magbook layer. T-F analysis and network train-
ing parameters are the same as in [14].
We also add a phasebook layer as a new head at the output of the
final BLSTM layer, as shown in Fig. 3. The final complex mask is
obtained by combining the outputs of the magbook and phasebook
layers as ĉt,f = m̂t,fejθ̂t,f , and then multiplied with the complex
mixture to obtain a complex T-F representation ŝt,f of the target es-
timate. We still refer to the branch of the network used in computing
the final output as the MI head, which now predicts a complex mask.

5.2. Training and inference schemes for phasebook

In this experiment, we start by pre-training chimera++ networks sim-
ilarly to [14], i.e., with a uniform magbook 3 layer as MI head.
For each of the magnitude spectrum approximation (MSA), phase-
sensitive spectrum approximation (PSA), and WA losses as MI ob-
jective, we train such a network from scratch within the multi-task



Table 1. SI-SDR (dB) on the wsj0-2mix test set for various training
paradigms from various pre-trained magnitude estimation networks.

Network Joint mag. Mag. pretraining
Phase estimate Objective training MSA PSA WA
Noisy - 5 10.5 11.1 11.8
Uniform phasebook 8 argmax CE 5 10.7 11.1 11.8
Uniform phasebook 8 interp. WA 5 11.2 11.1 12.0
Uniform phasebook 8 interp. WA X 12.2 12.4 12.4
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Fig. 4. Jointly trained combooks for C ∈ {4, 8, 12} for chimera++
training followed by MI fine-tuning with WA objective.

learning setting involving the deep clustering and MI objectives, then
discard the deep clustering head and fine-tune the MI head only.
We then add a uniform phasebook 8 layer in the MI head (P = 8
led to best results in preliminary experiments), and we consider: (1)
training only the phasebook layer with the rest of the network fixed,
with the cross-entropy loss LCE-phase, and using the argmax scheme
in Eq. 1 at inference time; (2) training only the phasebook layer with
the rest of the network fixed, with the WA loss, using interpolation
in Eq. (3) to compute the phase; and (3) training the whole network
with the WA loss, again with phase interpolation.
Results are shown in Table 1 in terms of scale-invariant SDR (dB)
[22] on the wsj0-2mix test set. The CE objective only provides SI-
SDR improvements for networks pre-trained with the phase-unaware
MSA objective, and is generally outperformed by the WA objec-
tive. This makes sense, as MSA-based magnitude estimates are
likely closer to the true magnitude than those obtained with PSA and
WA, which try to compensate for errors in the noisy phase; once the
phasebook layer fixes these errors, which it learns to do without con-
sidering the interaction with the magnitude in the CE case, the com-
pensation performed by the magnitude estimate may become extra-
neous or even detrimental. When training the phasebook layer with
WA objective, the largest improvement is again observed for MSA.
Finally, when allowing joint training of the magbook layer, all pre-
training objectives attain their best performance, with PSA and WA
obtaining slightly larger values than MSA. Overall, the WA objec-
tive with interpolation appears the most robust, both for pretraining
and training. We thus focus on this configuration going forward.

5.3. Combook

We have so far considered factorized representations of the complex
mask as a product of magnitude and phase masks. We now consider
modeling it directly using a codebook of complex values. We train
Chimera++ networks where the magnitude mask estimation layer is
replaced by a complex mask estimation layer consisting of a soft-
max layer used to interpolate values of a combook. The networks
are trained from scratch with both deep clustering and WA objec-
tives, then fine-tuned with WA objective only. Examples of learned
combooks are shown in Fig. 4 for C ∈ {4, 8, 12}. Interestingly, for
small sizes such as C ∈ {4, 8}, the combook layer does not take ad-
vantage of non-real values, focusing first on covering negative values
(for phase inversion), 0, and positive values. With C = 12, we do

Table 2. SI-SDR improvement (dB) on the wsj0-2mix test set for
various phasebook and combook sizes.

Codebook SI-SDR (dB)
Jointly trained combook 4 12.1
Jointly trained combook 8 12.1
Jointly trained combook 12 12.6
Uniform magbook 3 w/ uniform phasebook 4 12.3
Uniform magbook 3 w/ uniform phasebook 8 12.4
Uniform magbook 3 w/ uniform phasebook 12 12.2

Table 3. SI-SDR improvement (dB) of recent systems on wsj0-2mix.
MISI SI-SDR

Approach Iterations [dB]
Chimera++ [11] 0 11.2

5 11.5
Uniform magbook 3 w/ noisy phase [14] 0 11.8

5 12.6
Unfolded MISI with learned untied transforms [20] 0 12.2

5 12.8
Uniform magbook 3 w/ uniform phasebook 8 0 12.4

5 12.6
Jointly trained combook 12 0 12.6

5 12.6

observe non-real values. However, the network appears inefficient in
its usage of available values, learning seemingly redundant values.
Table 2 compares SI-SDR results for combooks of various sizes (per-
formance did not further improve for c > 12), in addition to differ-
ent uniformly spaced magbook and phasebook configurations. In the
current setup, the ability of the combook layer to estimate a complex
mask via a single network layer works slightly better than estimating
magnitude and phase via separate layers.

5.4. Training through unfolded MISI

Following [14], for the best phasebook and combook networks, we
add an unfolded MISI network with K iterations at the output of
the MI head, and train using the WA-MISI-K loss function. Table 3
compares these systems with three recently proposed approaches:
Chimera++ with noisy phase and MISI phase reconstruction as post-
processing only [11]; Chimera++ trained through unfolded MISI
phase reconstruction [14], equivalent to a uniform magbook 3 with
noisy phase as initial phase; and Chimera++ with unfolded phase
reconstruction with learned transforms replacing STFT and iSTFT
at each layer [20]. The jointly trained combook 12 system obtains
the best performance when no MISI iteration is performed, at 12.6
dB, beating the previous state-of-the-art 12.2 dB which involves fur-
ther learning a transform replacing the final iSTFT [20]. If we allow
ourselves 5 MISI iterations, all proposed systems reach 12.6 dB, but
they are slightly outperformed by the system which learns replace-
ments for the STFT/iSTFT transforms, with 12.8 dB. We shall leave
it to future work to combine such transform learning with our pro-
posed systems.

6. CONCLUSION AND FUTURE WORKS

We showed that both a combook layer and a combination of mag-
book and phasebook layers within an end-to-end framework can
significantly improve performance of single-channel multi-speaker
speech separation, especially reducing the need for further phase re-
construction. Future work will explore training through the argmax
phasebook scheme, with the goal of introducing conditional proba-
bility relationships between T-F bins.
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