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ABSTRACT

Over the years, countless algorithms have been proposed to solve
the problem of speech enhancement from a noisy mixture. Many
have succeeded in improving at least parts of the signal, while often
deteriorating others. Based on the assumption that different algo-
rithms are likely to enjoy different qualities and suffer from differ-
ent flaws, we investigate the possibility of combining the strengths
of multiple speech enhancement algorithms, formulating the prob-
lem in an ensemble learning framework. As a first example of such
a system, we consider the prediction of a time-frequency mask ob-
tained from the clean speech, based on the outputs of various al-
gorithms applied on the noisy mixture. We consider several ap-
proaches involving various notions of context and various machine
learning algorithms for classification, in the case of binary masks,
and regression, in the case of continuous masks. We show that com-
bining several algorithms in this way can lead to an improvement in
enhancement performance, while simple averaging or voting tech-
niques fail to do so.

Index Terms— Ensemble learning, Speech enhancement,
Time-frequency mask, Classification, Stacking

1. INTRODUCTION

Speech enhancement methods attempt to improve the quality and
intelligibility of speech that has been degraded by interfering noise
or other processes. One thing that makes this problem difficult is
that the interference can come in many different varieties. To fur-
ther complicate matters, often the operational constraints on com-
putation and latency preclude the use of complex models that can
represent and adapt to many different noise types. As it is difficult
for a simple algorithm to accommodate the variety of conditions,
some assumptions about the statistical properties of the target and
interference signals have to be made. Over the years, many differ-
ent algorithms have been proposed, each having different explicit
or implicit assumptions about the nature of the speech and interfer-
ence [1]. Assuming that the strengths and weaknesses of a set of
algorithms differ, it would be desirable to combine them in a way
that takes advantage of all their strengths.

Ensemble machine learning methods aim at combining differ-
ent models, and exploit the independence of the errors made by each
classifier to reduce the estimation variance, and hence the error rate.
These methods range from simple voting procedures, where the
quantities inferred by each model are averaged together, to stack-
ing, in which a secondary model is trained to perform the combina-
tion in a way that is tuned to training data. An advantage of voting
methods is that they can be applied without consideration of the test
conditions. However, stacking methods can learn more complex
combination functions, potentially leading to better performance.

Ensemble methods have been used extensively in automatic
speech recognition (ASR) to fuse speech recognition hypotheses
of different recognizers via voting procedures such as recognizer
output voting error reduction (ROVER) [2]. Particularly relevant to
our work here are ensemble ASR methods in which the recognizers
differ according to the enhancement or robustness algorithms used
in their front end [3]. A chief advantage of ensemble methods is
that they can build upon a variety of existing algorithms to improve
performance.

To make use of ensemble learning in the speech enhancement
paradigm, we consider a more direct integration of the enhance-
ment algorithms. We compute the time-frequency masking func-
tions that, when applied to the noisy spectrogram, yield the spec-
trum of the enhanced signals. The result of their combination is to
produce an ensemble time-frequency masking function. Here, for
simplicity, we primarily focus on the estimation of binary masking
functions, and only touch upon the estimation of continuous mask-
ing functions. We investigate both simple voting as well as stack-
ing, in which a variety of classification algorithms, such as support
vector machines (SVM) [4], naive Bayes classifiers (NB) [5], deci-
sion trees (DT) [6], and random forests (RF) [7], are used to infer
the binary masking function. Estimation of binary masks for en-
hancement and separation has been considered in a machine learn-
ing context before [8, 9, 10, 11], but not in an ensemble learning
framework.

In experiments with difficult interference conditions, we show
that a combination of several enhancement algorithms using stack-
ing can lead to an improvement in enhancement performance,
whereas simple averaging or voting techniques fail to do so.

2. GENERAL FRAMEWORK

We assume an ensemble of speech enhancement algorithms that are
to be treated as “black boxes” in the sense that we only use the
enhanced signals for combination. It would also be reasonable to
combine enhancement algorithms at the “decision” level using some
internal representations. However, we would like to allow the use
of arbitrary models and avoid the use of heterogeneous features.

We thus perform the combination in a domain that is indepen-
dent of the particular formulation of each enhancement algorithm.
A good choice for such a domain is the short-time power spectrum,
which is widely used in signal processing because of its relative
insensitivity to phase and its ability to reveal time and frequency
patterns in the signal. Regardless of the internal representation they
use, speech enhancement algorithms take as input a noisy signal
y[t] in the time domain and transform it to an enhanced estimate
x̂[t] of the clean signal. In the short-time power spectrum domain,
this enhancement process can be approximated as applying a time-
frequency masking function to the spectrogram of the noisy input
signal. If the optimal masking function were known, the speech sig-
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Figure 1: Overview of the framework.

nal could be reconstructed almost perfectly by applying the mask-
ing function to the noisy power spectrum and inverting the repre-
sentation. Our method is thus to combine time-frequency masking
functions obtained from the enhancement algorithms, in order to es-
timate an optimal masking function to better reconstruct the speech.

For a given enhancement algorithm j in our ensemble, we de-
fine an equivalent continuous masking function, w

(j)
n,f , for time

frame n and frequency f . We also formulate a target masking func-
tion w∗

n,f as that which transforms the noisy spectrum into the clean
spectrum. For simplicity, the masking functions can be approxi-
mated as binary masking functions, m(j)

n,f , and m∗
n,f .

The binary target mask m∗
n,f is convenient in that the ensemble

inference problem can be posed as binary classification, where a
classifier computes a binary mask estimate m̂n,f using as input the
masking functions {w(1)

n,f , ..., w
(J)
n,f}, or their binary counterparts,

derived from each of the enhancement algorithms.
Simple voting or averaging procedures on the input signals or

their masking functions could be used, but here we also investigate
stacking approaches in which the method of combination is learned
from training data. In the context of stacking, we can also consider
the temporal and frequency context in the neighborhood of each
masking function value to be estimated.

Once the combined mask is inferred, it can be applied to the
noisy signal spectrum, and combined with noisy phases to pro-
duce the estimated speech signal, x̂[t], via an inverse transform such
as the overlap-add procedure for the short-time Fourier transforms
(STFT). The overall system architecture is shown in Fig. 1.

3. TARGETS

Time-frequency masking functions estimated from the noisy mix-
ture have often been used as a means to perform source separation
or speech enhancement [12]. Time-frequency masks apply a weight
to each bin of a time-frequency representation of the acoustic in-
put, such as cochleograms, short-time Fourier transforms, wavelet
transforms, and so on, to emphasize regions which are dominated
by the target source and suppress regions which are dominated by
other sources. The weight values can be either binary or continuous.
Continuous values can be interpreted as the energy ratio between the
target and the mixture, as in a Wiener filter, or as the probability that
the corresponding bin belongs to the target source.

Restricting the mask to take only binary values has been shown
to be a reasonable proxy for the optimal masking function in gen-
eral conditions [13]. Binary masks have the disadvantage that they
cannot account for cancellation effects and may introduce strong ar-
tifacts depending on the interfering noise. However, advantages in

our setting include the ease of estimation of the two possible values
instead of a continuum, as well as their potential for computational
savings. We thus here mainly focus on the binarized continuous
mask obtained from the clean speech as the target for our method,
and only touch upon the use of continuous masks in a regression
framework.

4. INPUTS

As mentioned above, each enhancement algorithm may be process-
ing the noisy input signal in various domains, whether directly in the
time domain or more likely in some time-frequency representation
such as the STFT or a Gammatone-based transform, with various
filterbank settings. Instead of directly attempting to combine these
inner representations, we choose here to use the final outputs, the
enhanced time-domain signals x̂(j), j = 1, . . . , J . This enables us
to consider any speech enhancement algorithm as a potential input
to our system, regardless of its implementational details.

From these enhanced signals, we could consider deriving any
type of features for combination. For convenience and simplic-
ity, we consider here re-analysing all enhanced signals using the
same common time-frequency representation used to derive the tar-
get. This enables us to have a direct correspondence between the
time-frequency bins of the input features and those of the target.

To avoid feature-scaling issues, we do not directly use features
such as the power spectrogram or log-power spectrogram, but define
an equivalent continuous mask w(j) for each algorithm as the ratio
of the power spectrogram of the enhanced signal X̂(j) to that of the
noisy mixture Y :

w
(j)
n,f = X̂

(j)
n,f/Yn,f , (1)

and similarly for w∗
n,f . This approximates each algorithm as a

reweighting method in a common time-frequency representation.
Finally, we also derive binary mask features m(j) from the con-

tinuous masks: m(j)
n,f = [w

(j)
n,f > 0.5], and m∗

n,f = [w∗
n,f > 0.5],

where [a > b] = 1 if a > b and 0 otherwise. The motivation for
considering binary masks as inputs is two-fold: they may lead to
more robust estimators; and their use can reduce the computational
cost with regard to the continuous masks, for example with support
vector machines and decision trees.

5. INFERENCE ALGORITHMS

5.1. Voting

Voting or averaging is an ensemble combination strategy that sim-
ply combines outputs of the models by taking an average of their
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values. In the case of classification, the output is usually the mode
of the distribution over classes, whereas in regression, the output
would be the mean or some other average of the output values. Un-
certainty within each model can also be considered, but here since
we derive the mask values from an ensemble of arbitrary enhance-
ment methods, we do not consider the uncertainty within each en-
hancement algorithm.

In voting, continuous or binary mask values for all algorithms
at time-frequency bin (n, f) are used to estimate the target mask
(either w∗

n,f or m∗
n,f ) at the same bin. The input feature vectors are

thus typically zn,f = (w
(1)
n,f , ..., w

(J)
n,f )T for the continuous masks

and zn,f = (m
(1)
n,f , ...,m

(J)
n,f )T for the binary masks.

For the continuous masking function inputs, we consider the
mean of the masking values as a continuous mask estimate, which
corresponds to averaging the original power spectrum estimates.
We also consider the median in a similar way.

For the binary masking function inputs, voting considers the
mode of the masking value distribution:

m̂voting
n,f = [

1

J

∑
m

(j)
n,f > 0.5]. (2)

Since there are no learned parameters, voting methods cannot
over-fit the training data. To the extent that the masking values make
uncorrelated errors, then voting and averaging procedures tend to
recover from these errors. In other words, the variance across clas-
sifiers can be reduced by the voting procedure. However, whenever
the errors are correlated, the averaging just reinforces the errors, so
the classifier can remain biased.

5.2. Stacking

Stacking is an ensemble learning strategy in which multiple esti-
mation algorithms for the same task are used as input into a final
algorithm that is trained on data to combine their results. This pro-
cedure can reduce the bias even when the outputs of the ensemble
are correlated; however, the learning may also over-fit the training
data. The case of binary mask targets allows us to use simple binary
classifiers to produce mask estimates. One can also use different
forms of regression to produce continuous mask estimates, but here
we mainly focus on a classification-based approach. We investi-
gated a variety of classifiers, such as SVM, NB, DT, and RF.

We here consider separate classifiers Cf
Θf for each frequency f ,

with parameters Θf . At each frame n, given an input vector in,f ,
the classifier produces a mask estimate m̂n,f = Cf

Θf (in,f ). We
first learn the parameters Θf so that they minimize a loss function
L with respect to the target mask m∗

n,f on training data T :

Θ̄f = argmin
Θf

L[(Cf
Θf (in,f ),m∗

n,f ), n ∈ T ], ∀f. (3)

At test time, we estimate the mask using the learned parameters Θ̄f :

m̂n,f = Cf
Θ̄f (in,f ), ∀n, f. (4)

The loss function L is determined by the classifier type.
In the framework of stacking, we can consider including time

and/or frequency context information into the input feature vectors.
Here, we extend the features in the time direction by c(n) frames to
the left and to the right, and in the frequency direction by c(f) fre-
quency bins below and above. The input feature vector to estimate
m∗

n,f thus consists of the concatenation of time-frequency patches

with (2c(n) + 1)× (2c(f) + 1) elements in the neighborhood of the
bin (n, f) for each algorithm. The boundary cases in both direc-
tions are handled appropriately.

6. EVALUATION

6.1. Setup

We used audio data from the medium vocabulary task (Track
2) of the 2nd CHiME Speech Separation and Recognition Chal-
lenge [14]. The speech is taken from the Wall Street Journal (WSJ0)
5k vocabulary read speech corpus, and convolved with binaural
room impulse responses before mixing with binaural recordings of
a noisy domestic environment. The RT60 of the room is 300 ms.
The noise excerpts are selected as to obtain input signal-to-noise ra-
tio (SNR) ranges of −6, −3, 0, 3, 6, and 9 dB without rescaling.
Noises are highly non-stationary, such as speech by other speakers,
home noises, or music, making the denoising task very challenging.

As we need parallel data to train our system as well as to eval-
uate its enhancement performance, we randomly sample utterances
across all input SNRs from the development set data (si_dt_05),
for which scaled reverberated clean speech data are provided on top
of the noisy mixture data, to build a training set of 100 utterances
with random input SNR, and an evaluation set of 600 utterances,
100 for each input SNR.

The sampling rate was 16 kHz. The common time-frequency
representation for the target and all enhancement output signals was
obtained using the short-time Fourier transform with a frame length
of 640 samples, 50% overlap and a sine window for analysis and
re-synthesis.

Performance was evaluated in terms of averaged signal-to-
distortion ratio (SDR), using the bss_eval toolbox [15]. The
SDR averaged over the noisy mixtures was 1.85 dB. Resynthesizing
the clean speech from its equivalent continuous mask w∗ led to an
average SDR of 17.54 dB, and the binarized continuous mask m∗

led to 17.01 dB, which represents the ideal performance that could
be expected from this implementation of our method.

We considered the following speech enhancement algorithms,
which constitute a varied set of techniques, including state-of-the-
art methods: vector-Taylor series (VTS) [16], indirect VTS [17],
OMLSA-IMCRA [18], as well as implementations of the classical
MMSE and log-MMSE algorithms taken from [1]. Results for these
input algorithms are shown in Table 1. CMask and BMask denote
the result of applying respectively the equivalent continuous mask
and its binarized version to the noisy complex spectrum, and resyn-
thesizing to the time domain. The continuous mask was truncated
to values between 0 and 1. Note that, differing from [17], VTS and
OMLSA performed better than indirect VTS on this data.

6.2. Results

We first investigate the performance of averaging on the input con-
tinuous masks, both using mean and median, and of voting on the
binarized masks. As shown in Table 2, none of these methods led to
improvements compared to the input algorithms, the performance
actually decreasing with respect to the best ones. While voting in
particular is known to help when combining complex systems such
as in ASR, the poor performance here could be due to the fact that
the combination is impacted by the poorly performing algorithms
in a direct way, while processing by complex systems may still lead
to interesting hypotheses prior to combination.
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Table 1: SDR (dB) for each input speech enhancement algorithm

SDR OMLSA logMMSE MMSE indirectVTS VTS
Original 5.20 2.93 2.96 4.32 1.61∗
CMask 5.22 2.90 2.95 4.40 5.61
BMask 5.03 2.68 2.71 4.41 5.37
∗VTS did not use the truncation explained in [17].

Table 2: SDR (dB) for averaging and voting methods

Mean Median Voting
SDR 3.94 4.42 4.76

We now turn to ensemble learning methods. First, Table 3 in-
vestigates the performance of each classifier (linear SVM [19], DT:
decision tree, RF: random forest, NB: naive Bayes) under the sim-
ple experimental condition “B→ B”, i.e., where both input features
and output targets are binary masks. In this preliminary experiment,
we did not attempt to tune the regularization parameters of the clas-
sifiers. Every approach was comparable to or outperformed the best
performing single speech enhancement algorithm, here VTS. Al-
though the random forest achieved the best performance (SDR =
5.92 dB) without considering time-frequency contexts, adding them
did not seem to improve performance for DT, RF and NB. As it also
drastically increased computational cost for RF and NB, we did not
consider large contexts for these classifiers. On the other hand, we
found that the performance of SVM improved consistently when
the feature dimensionality increased by considering contexts. This
is reasonable, since SVM can make use of redundant features to set
accurate and robust classification bounds, while the other classifiers
face over-training problems. Based on the results of Table 3, the
subsequent experiments focus on SVM classifier results using the
whole frame as frequency context in the input features.

Table 4 compares the SVM results with binary masks (B →
B) and continuous masks (C → B) as features to estimate binary
masks. We also estimated continuous masks in the output by us-
ing support vector regression with continuous mask features (C→
C). Table 4 shows that the continuous feature case outperformed the
binary feature case by up to 1.32 dB, which indicates that the con-
tinuous values are informative features to combine speech enhance-
ment algorithms. The result of the continuous mask estimation did
not outperform that of the binary mask estimation in this setting,
although other regression methods may lead to better results.

Finally, we scaled up the experiments by increasing the size of
the training data (100 → 1260 utterances), as shown in Table 4.
We finally obtained 7.97 dB, which improved from the best single
system (VTS) by 2.36 dB, and from the voting method by 3.21 dB.
This confirms the effectiveness of our system combination approach
based on ensemble learning.

7. CONCLUSION

We presented an ensemble learning approach to speech enhance-
ment. By learning how to combine the outputs of multiple enhance-
ment algorithms, we were able to significantly outperform the orig-
inal algorithms. Future work will investigate further the use of re-
gression to estimate continuous masking functions, as well as the
influence of the proposed system on ASR performance.
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