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Abstract

The human auditory system has the ability, known as auditory induction, to es-
timate the missing parts of a continuous auditory stream briefly covered by noise
and perceptually resynthesize them. In this article, we formulate this ability as
a model-based spectrogram analysis and clustering problem with missing data,
show how to solve it using an auxiliary function method, and explain how this
method is generally related to the Expectation-Maximization (EM) algorithm
for a certain type of divergence measures called Bregman divergences, thus en-
abling the use of prior distributions on the parameters. We illustrate how our
method can be used to simultaneously analyze a scene and estimate missing
information with two algorithms: the first, based on non-negative matrix fac-
torization (NMF), performs analysis of polyphonic multi-instrumental musical
pieces. Our method allows this algorithm to cope with gaps within the audio
data, estimating the timbre of the instruments and their pitch, and reconstruct-
ing the missing parts. The second, based on a recently introduced technique for
the analysis of complex acoustical scenes called Harmonic-Temporal Clustering
(HTC), enables us to perform robust fundamental frequency estimation from
incomplete speech data.
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1. Introduction

The main goal of Computational Auditory Scene Analysis (CASA) is to en-
able computers to imitate human auditory segregation abilities. CASA has been
an area of intensive research in recent years. Particular attention has been given
to solving the so-called “cocktail party problem”, the computational counterpart
of the “cocktail party effect” (Cherry, 1953; von Helmholtz, 1954), i.e., the abil-
ity of the human auditory system to focus on a single talker within a mixture of
conversations and background noise. This has lead to the development of meth-
ods for multi-pitch estimation, noise canceling, or source separation (Wang and
Brown, 2006). Less emphasis has been put on the computational realization of
another remarkable ability of the human auditory system, auditory induction.
Humans are able, under certain conditions, to estimate the missing parts of a
continuous acoustic stream briefly covered by noise, to perceptually resynthe-
size and clearly hear them (Bregman, 1990; Kashino, 2006; Warren, 1970, 1982).
They are thus able to simultaneously analyze an auditory scene, as in the cock-
tail party effect, in the presence of gaps and to perceive the underlying acoustic
events as if the information inside those gaps had not been missing (whether the
incomplete stimuli are actually reconstructed at low levels in human perception
or not is a different issue, which we shall not address here).

An effective computational counterpart to this ability would have many im-
portant engineering applications, from polyphonic music recording analysis and
restoration to mobile communications robust to both packet-loss and back-
ground noise. Attempts to combine scene analysis on incomplete data and
reconstruction of the missing parts are rare, with the notable exception of Ellis
(1993, 1996). There have been few attempts to address this problem through a
statistical approach.

This article aims at developing such a computational counterpart to audi-
tory induction, by simultaneously performing a decomposition of the magnitude
wavelet spectrogram of an acoustical scene with missing or corrupted samples,
and filling in the gaps into that spectrogram. Various approaches have emerged
recently which attempt to analyze the structure of the spectrogram of an acous-
tical scene (Kameoka et al., 2007; Schmidt and Mørup, 2006; Smaragdis, 2004),
while on the other side gap interpolation techniques have been the subject of re-
search for many years (Achan et al., 2005; Cemgil and Godsill, 2005; Clark and
Atlas, 2008; Esquef and Biscainho, 2006; Godsill and Rayner, 1998; Lu et al.,
2003; Wolfe and Godsill, 2005). However, only few models so far try to deal
with both issues. One example is the framework developed by Reyes-Gomez
et al. (2004) that relies on local regularities of the spectrogram. The framework
that we introduce can use both local and global regularities.

We show here how statistical models that globally model acoustical scenes
can be extended for the analysis of scenes with incomplete data. We first derive
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the method for a general class of distortion functions that measure the good-
ness of fit between the model and the observed data. We then show how, for a
particular class of functions called Bregman divergences (Banerjee et al., 2005;
Bregman, 1967), the method can be interpreted in terms of the Expectation-
Maximization (EM) algorithm, enabling the use of prior distributions on the
parameters, for example to enforce local smoothness or other regularities. To
illustrate the concept, we apply it to the non-negative matrix factor 2D de-
convolution algorithm (NMF2D) (Schmidt and Mørup, 2006), and evaluate its
performance on a polyphonic multi-instrumental musical piece: the proposed
method is able to analyze the scene in spite of the presence of gaps, i.e., it can
estimate the timbre of the instruments, their pitch and the time of their acti-
vation, and separate their contributions from those of other instruments, while
simultaneously reconstructing the missing parts. We finally show how to apply
this method to the Harmonic-Temporal Clustering framework (HTC) (Kameoka
et al., 2007; Le Roux et al., 2007a), and how the obtained algorithm can be used
to perform robust fundamental frequency (F0) estimation of speech on incom-
plete data.

2. Computational Auditory Induction

2.1. Problem setting
We consider the problem of interpolating gaps in audio signals by filling

in the gaps in their magnitude spectrogram. We will not consider here the
reconstruction of the phase: if the magnitude spectrogram can be accurately
reconstructed, other methods could be used to obtain a phase consistent with
it (Griffin and Lim, 1984; Le Roux et al., 2008b). We are interested in using
local and global regularities in the spectrogram to simultaneously analyze the
acoustical scene and fill in gaps that may have occurred into it, or in other words
to perform “audio inpainting” by reconstructing missing regions of the spectro-
gram in the same spirit as what is done in image inpainting (Bertalmio et al.,
2000), where diffusion-based (local) and exemplar-based (global) techniques are
used to restore missing parts of an image (Criminisi et al., 2004).

This is analogous to what is performed by humans in auditory induction,
when for example phonemes deleted from a speech signal and replaced by louder
broadband noise can be perceptually synthesized by the brain and subjectively
heard as if they were present (Bregman, 1990; Kashino, 2006; Warren, 1970,
1982). The auditory induction phenomenon is a striking illustration of the law
of closure of Gestalt psychology, according to which the human perception sys-
tem has a tendency to close “strong” perceptual forms which are incomplete,
such as a circle partially occluded by an irregular form. More generally, it can
be considered as an expression of Mach’s “economy of thought” (Barlow, 2001),
in that it is more rewarding in terms of simplicity of explanation to assume that
some parts are occluded but actually present and need to be reconstructed (ei-
ther at the primitive grouping stage or at higher levels) than to assume that
the stimuli is actually composed of several disconnected parts. The fact that
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auditory induction does not occur if the phonemes are replaced by silence can be
linked to the point made by Bregman (1990) that our perceptual system needs
to be shown that some evidence is missing: humans can indeed see figures with
actual gaps in them, as with no special hint or trigger mechanism, they have no
reason to believe that the “missing” parts are not missing but merely hidden.
The localization of the gaps will thus be considered known in the following.

Most previous methods for gap interpolation focus on a local modeling of the
signal around the gaps. An important corpus of work is for example based on
auto-regressive (AR) modeling, stemming from work by Janssen et al. (1986)
on an AR interpolator which alternately maximizes the likelihood w.r.t. the
missing data and the model parameters, and later extended by Vaseghi and
Rayner (1990) to consider samples which are a pitch period apart, by Rayner
and Godsill (1991) to cope with the tendency of the AR interpolator to lead to
over-smoothed interpolants whose amplitude decreases at the center of the gap,
or by Rajan et al. (1997) to consider time-varying AR processes, among many
others. Apart from AR, sinusoidal modeling (McAulay and Quatieri, 1986) was
also used by Maher (1993) for missing-data interpolation by performing the
interpolation directly on the parameters of the sinusoidal model. More details
and references can be found in Veldhuis (1990) and Godsill and Rayner (1998).

While previous works on gap interpolation mainly focus on local regularities
and do not attempt to explicitly model and exploit the underlying structure of
the scene, our approach is more global and conceptually closer to missing-feature
approaches to automatic speech recognition (Barker et al., 2005; Cooke et al.,
2001; Raj et al., 2004). Trying to understand speech in the presence of noise can
be considered as a particular type of missing-data scene analysis, in which time-
frequency regions which are dominated by noise are assumed missing. There
as well, the goal is to analyze a scene (recognize its speech content) in spite of
the presence of unreliable data, and high-order knowledge given by the acoustic
and language models can be exploited to estimate the unreliable parts. We shall
refer to the very good reviews by Raj and Stern (2005) and Barker (2006) for
more details on these methods.

Assuming we have at hand a statistical framework which globally models
an acoustical scene, we explain in this article how to use it on scenes with
incomplete data and reconstruct to some extent the missing information. We
present two examples of statistical frameworks which can be used in this context,
Schmidt and Mørup’s NMF2D algorithm (Mørup and Schmidt, 2006; Schmidt
and Mørup, 2006), and the Harmonic-Temporal Clustering framework intro-
duced in Kameoka et al. (2007) and Le Roux et al. (2007a).

2.2. General method and applicability
The general idea is simple: given a statistical model that can be matched

to observed data, we show how it can be used on incomplete data by iterating
between analysis steps and reconstruction steps. Furthermore, if the model
is sufficiently specified so as to describe the underlying data everywhere, it
can be used to reconstruct the missing parts as well. The procedure goes as
follows: during a reconstruction step, the missing data are estimated based on
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the current value of the model; during an analysis step, the model is updated
based on the data completed during the reconstruction step. We show in the
following subsection how this iterative algorithm can be interpreted as using an
auxiliary function method to optimize the fitting of the statistical model on the
regions where data were actually observed.

Situations in which such an incomplete data framework needs to be used are
quite varied. One can cite for example situations where a portion of the power
spectrogram

1. is lost, for example after a packet loss during a network communication,
2. has been discarded, for example by a binary mask designed to suppress

noise or select a particular speaker inside an acoustical scene,
3. or is simply not observed, for example because it lies outside the observed

frequency band or the time interval of analysis.

The method we introduce can be used in general to match a statistical model
to incomplete data based on the fitting on observed regions even if the origi-
nal optimization algorithm was designed to be effective only on complete data,
such as Gaussian fitting for example. For reconstruction purposes, however,
an important point to ensure is that the statistical model has sufficient “pre-
diction power” to interpolate the missing parts. The capacity to reconstruct
the missing-data regions will indeed depend on the design of the model, and
especially on the constraints introduced: the only guaranty is to obtain, on the
whole domain, a complete model which fits the data were they were observed.
If the model is designed in such a way that it inherently encompasses the same
regularities as the data that it is supposed to fit, then we can expect that what
can be inferred on the missing data, based on these regularities, from the ob-
served parts of the data will naturally be reconstructed by the model in the
course of the optimization.

For example, models which enforce continuity constraints would ensure a
reconstruction with smooth transitions over the missing-data regions. Decom-
position models, such as NMF2D, which use information from the whole domain
to build a lower-dimensional representation of the acoustical scene, will ensure a
reconstruction that conforms to the underlying representation. We will show in
particular in Section 4 how incomplete polyphonic music scenes can be analyzed
with NMF2D on the basis of information on the spectro-temporal envelopes of
the notes of each instrument gathered from the non-missing portions of the
music. Similarly, a model such as HTC, through the use of relevant prior distri-
butions, will lead to reconstructions that are inherently guaranteed to respect
Bregman’s grouping cues (Bregman, 1990; Kameoka, 2007). We will show in
Section 6 in particular that the continuity constraint on the pitch contour of the
HTC model enables us to perform robust F0 estimation on incomplete speech
data.

2.3. Auxiliary function method
Suppose one wants to fit a parametric distribution to an observed contour

which is incomplete, in the sense that its values are only known on a subset
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I ⊂ D ⊆ Rn, where D is the domain of definition of the problem of interest.
Suppose also that if the data were complete, the fitting could be performed
(e.g., Gaussian distribution fitting, etc.). Then we show that using an iterative
procedure based on the auxiliary function method, the fitting to the incomplete
data can also be performed.

Let f be the observed contour, and g(·;Θ) a model parameterized by Θ
such that the fitting of this model to an observed contour defined on the whole
domain D can be performed.

We consider a distortion function d : S × S → [0,+∞) where S ⊆ Rn, such
that d(x, y) ≥ 0,∀x, y ∈ S and equality holds if and only if x = y. As this
function d is not required to respect the triangle inequality, it is not necessarily
a metric. For such a distortion function, we can introduce a measure of the
distance between the observed data and the model by integrating d between f
and g(·;Θ) on the subset I:

L(Θ) =
∫
I

d(f(x), g(x;Θ)) dx. (1)

In this kind of situation, it is often preferable, instead of defining an “in-
complete model” whose estimation may be cumbersome, to try to fall back on a
complete data estimation problem. This is what we do here by introducing an
auxiliary function. For any function h taking values in S and defined on D \ I,
let us define

L+(Θ, h) = L(Θ) +
∫
D\I

d(h(x), g(x;Θ)) dx. (2)

As the second term on the right-hand side is itself derived from the distortion
measure, it is non-negative, and thus

L(Θ) ≤ L+(Θ, h), ∀h. (3)

Moreover, there is equality in the inequality for h = g(·;Θ).
The minimization procedure can now be described as follows. After initial-

izing Θ for example by performing the distribution fitting on the observed data
completed by 0 on D \ I, one then iteratively performs the following updates:

Step 1 Estimate h such that L(Θ) = L+(Θ, h):

ĥ = g(·;Θ). (4)

Step 2 Update Θ with ĥ fixed:

Θ̂ = argmin
Θ

L+(Θ, ĥ). (5)

The optimization process is illustrated in Fig. 1.
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L+(Θ, h)

L+(Θ, ĥ)

L+(Θ̂, ĥ)

L(Θ)

L(Θ̂)

Step 2

Step 1

Figure 1: Optimization through the iterative procedure. During the step 1, the auxiliary
parameter h is updated to ĥ so that L(Θ) = L+(Θ, ĥ). Then, during the step 2, L+(Θ, ĥ) is

optimized w.r.t. Θ, ensuring that L(Θ̂) ≤ L+(Θ̂, ĥ) < L+(Θ, ĥ) = L(Θ). The minimization
of L(Θ) can thus be performed through the minimization of the auxiliary function L+(Θ, h)
alternately w.r.t. h and Θ.

3. Probabilistic interpretation for Bregman divergences

We investigate in this section the probabilistic interpretation of the auxiliary
function framework introduced above in the particular case where the distortion
function is a Bregman divergence.

3.1. Relation between Bregman divergence-based optimization and Maximum-
Likelihood estimation

We follow Banerjee et al. (2005) and Grünwald (2007) to give a brief overview
of the concepts of exponential family and Bregman divergence and to present
the relation between them. As a complete presentation would take us too far
from the purpose of the present discussion, we shall refer to them for more
details and for rigorous derivations. We tried however to keep this article as
self-contained as possible.

Exponential families form a group of probability distributions which com-
prise many common families of probability distributions such as the normal,
gamma, Dirichlet, binomial and Poisson distributions, among others. They are
defined as follows.

Definition 1. Let Λ be an open convex subset of Rd and letM = {Pβ | β ∈ Λ}
be a family of probability distributions on a sample space X . M is an exponential
family if there exist a function ζ = (ζ1, . . . , ζd) : X → Rd and a non-negative
function r : X → [0,+∞) such that, for all β ∈ Λ,

Pψ,β(X) , e⟨β;ζ(X)⟩−ψ(β)r(X), (6)
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where ⟨β; ζ(X)⟩ is the inner product between β and ζ(X), and

ψ(β) = log
∫
X

exp(⟨β; ζ(x)⟩)r(x) dx < +∞.

An exponential family defined in terms of a function ζ = (ζ1, . . . , ζd) is called a
regular exponential family if the representation (6) is minimal, i.e., there exists
no α0, α1, . . . , αd ∈ Rd+1\{0} such that for all x with r(x) > 0,

∑d
j=1 αjζj(x) =

α0.

As an example, we consider the family of Poisson distributions {Pθ | θ ∈
(0,+∞)} on the sample space X = N defined as Pθ(x) = 1

x!e
−θθx. We see that it

is an exponential family, with β = log θ, ζ(X) = X, ψ(β) = eβ , and r(x) = 1/x!.
The function ζ is not always the identity function as in the Poisson case, as can
be seen with the family of normal distributions {fµ,σ2 | (µ, σ2) ∈ R× [0,+∞)}

with fµ,σ2(x) = 1√
2πσ2 e

− (x−µ)2

2σ2 , which can be seen to be an exponential family

by setting β = (µ/σ2,−1/(2σ2)), ζ(X) = (X,X2) and r(x) = 1/
√

2π.
It can be shown (Banerjee et al., 2005; Grünwald, 2007) that exponential

families can actually be parameterized by the mean value µ(β) = E(ζ(X)) of
ζ(X). If we let Λmean , {µ | ∃β ∈ Λ such that µ(β) = µ}, then µ(·) is a 1-to-1
mapping from Λ to Λmean. Moreover, there exists a function ϕ : Λmean → R
such that for all β ∈ Λ and for all µ ∈ Λmean such that µ = µ(β),

ϕ(µ) + ψ(β) = ⟨β;µ⟩, (7)

from which one can deduce in particular that β(µ) = ∇ϕ(µ). Altogether, by
noticing that

⟨β; ζ(X)⟩ − ψ(β) = ⟨β;µ⟩ − ψ(β) + ⟨β; ζ(X)− µ⟩
= ϕ(µ) + ⟨∇ϕ(µ); ζ(X)− µ⟩, (8)

Pψ,β can be rewritten parameterized by µ = µ(β), leading to the so-called
mean-value parameterization of the exponential family:

Pϕ,µ(X) , Pψ,β(µ)(X) = eϕ(µ)−⟨∇ϕ(µ);ζ(X)−µ⟩r(X). (9)

We will call µ the expectation parameter of the exponential family, which will
be denoted by Fϕ.

We are now ready to introduce the concept of Bregman divergence and to
derive its relation with the exponential families.

Definition 2. Let ϕ : S → R be a strictly convex function defined on an open
convex set S ⊆ Rd such that ϕ is differentiable on S. The Bregman divergence
dϕ : S × S → [0,+∞) is defined as

dϕ(x, y) = ϕ(x)− ϕ(y)− ⟨x− y;∇ϕ(y)⟩,

where ∇ϕ(y) is the gradient vector of ϕ evaluated at y.
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Bregman divergences include a large number of useful loss functions such
as squared loss, KL-divergence, logistic loss, Mahalanobis distance, Itakura-
Saito distance, and the I-divergence. They verify a non-negativity property:
dϕ(x, y) ≥ 0,∀x, y ∈ S, and equality holds if and only if x = y.

Banerjee et al. (2005) showed that the following informal derivation can be
rigorously justified for a wide subclass of Bregman divergences, which includes
in particular all the loss functions cited above.

If Pϕ,µ is the probability density function of the regular exponential family
Fϕ (in its mean-value parameterization) associated to the function ϕ defining
the Bregman divergence dϕ, from (9) we have,

Pϕ,µ(x) = eϕ(µ)+⟨∇ϕ(µ);ζ(x)−µ⟩r(x)

= e−dϕ(ζ(x),µ)+ϕ(ζ(x))r(x)

and eventually
Pϕ,µ(x) = e−dϕ(ζ(x),µ)bϕ(x) (10)

where bϕ(x) = eϕ(ζ(x))r(x). This relation holds for all x ∈ dom(ϕ), which can
be shown (Banerjee et al., 2005) to include the set of all the instances that
can be drawn from the distribution Pϕ,µ. However, one must be careful when
using this relation in certain cases where the inclusion is strict, in particular
when the support of the carrier r(x) is strictly smaller than dom(ϕ). Indeed,
for all x outside that support, Eq. (10) is verified as both members are equal to
zero, but it is not informative on the relation between Pϕ,µ(x) and dϕ(ζ(x), µ)
as the right-hand side member is zero only because bϕ(x) is. This is what
happens for example for the I-divergence (with ϕ(µ) = µ logµ − µ) for which
dom(ϕ) = R+ (extending the definition of ϕ for µ = 0). The corresponding
exponential family is the Poisson family, for which the set of instances and the
support of the carrier are only N.

The relation (10) builds a bridge between optimization based on Bregman
divergences and Maximum-Likelihood (ML) estimation with exponential fami-
lies. As distribution-fitting problems usually involve only a first-order statistic,
we will focus on the case ζ(X) = X. Trying to fit a model g(·;Θ), defined on a
domain D with parameter Θ, to an observed distribution f with a measure of
distance between the two based on a Bregman divergence dϕ then amounts to
looking for Θ minimizing

∫
D
dϕ(f(x), g(x;Θ)) dx. But according to (10), this

is equivalent (up to some precautions which may have to be taken because of
the misfit between the domains of definition of the Bregman divergence and
the exponential family evoked above) to maximizing w.r.t. Θ the log-likelihood∫
D
Pϕ,g(x;Θ)(f(x)) dx where the observed data points f(x) at point x are as-

sumed to have been independently generated from Pϕ,g(x;Θ).

3.2. Relation to the EM algorithm
As we showed above, optimization based on a Bregman divergence corre-

sponds to an ML problem in which the data are supposed to have been gener-
ated independently from probability distributions of an associated exponential
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family with expectation parameters g(x,Θ). We investigate here the relation be-
tween the application of the EM algorithm to this ML problem and the auxiliary
function framework of Section 2.3, in the particular case where the distortion
function is a Bregman divergence dϕ such that the associated exponential family
Fϕ verifies ζ(X) = X.

The EM algorithm is based on the derivation of a so-called Q-function,
which is classically obtained by considering the expectation of the log-likelihood
logP (f |Θ) of the observed data f against the conditional probability of the un-
observed data h with respect to the observed data and the model with parameter
Θ̄:

logP (f |Θ) = E(logP (f |Θ))
P (h|f, ¯Θ)

= E(logP (f, h|Θ))
P (h|f, ¯Θ)

− E(logP (h|f,Θ))
P (h|f, ¯Θ)

= Q(Θ, Θ̄)−H(Θ, Θ̄), (11)

where the functions Q and H were defined in the obvious way from the previous
line. One notices through Jensen’s inequality that

∀Θ,H(Θ, Θ̄) ≤ H(Θ̄, Θ̄),

such that if one can update Θ such thatQ(Θ, Θ̄) > Q(Θ̄, Θ̄), then logP (f |Θ) >
logP (f |Θ̄).

In the problem we consider, we can show that there is actually a correspon-
dence between the Q-function and the auxiliary function L+ that we introduced
in Section 2.3. The computations of Appendix Appendix A indeed lead to the
following relation:

Q(Θ, Θ̄) = −L+(Θ, g(x; Θ̄)) + C(f, Θ̄), (12)

where C(f, Θ̄) does not depend on Θ. Computing the Q-function, i.e., the
E-step of the EM algorithm, corresponds to computing the auxiliary function,
which is done by replacing the unknown data by the model at the current step.
Maximizing the Q-function w.r.t. Θ, i.e., the M-step of the EM algorithm,
corresponds to minimizing the auxiliary function w.r.t. Θ. This shows how
to derive the auxiliary function in an EM point of view, and enables us for
example to consider prior distributions on the parameters and perform a MAP
estimation.

3.3. Remark on the limitations of this interpretation
We showed that the auxiliary function method in Section 2.3 could be derived

through the EM algorithm in the special case of the function d being a Bregman
divergence dϕ such that the associated exponential family verifies ζ(X) = X.
We shall note however that one has to pay attention to the support of the
probability distributions of the exponential family. Indeed, as noted earlier, it
may happen that these distributions have a smaller support than the original
set on which the Bregman divergence is defined. This is for example the case
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for the I-divergence, which is defined on R+ but is associated to the Poisson
distribution, whose support is N. The formulation presented in Section 2.3 is
thus more general than its EM counterpart, although it does not justify the use
of penalty functions as prior distributions on the parameters. In the particular
case of the I-divergence, it is actually possible to justify the use of the ML
interpretation with real data (Le Roux et al., 2008a).

4. Missing-data non-negative matrix factor 2D deconvolution

4.1. Overview of the original algorithm
The NMF2D algorithm is an extension of Smaragdis’s non-negative matrix

factor deconvolution (NMFD) (Smaragdis, 2004), itself an extension of the orig-
inal non-negative matrix factorization (NMF) (Lee and Seung, 1999). NMF is a
general tool which attempts to decompose a non-negative matrix V ∈ R≥0,M×N

in the product of two usually lower-rank non-negative matrices W ∈ R≥0,M×R

and H ∈ R≥0,R×N ,
V ≈WH. (13)

In applications to audio, the matrix V to decompose is usually the magnitude
or power spectrogram of the observed signal. The horizontal and vertical di-
mensions of the matrices then respectively represent time and frequency (or
log-frequency), and the non-negative factorization of V is expected to lead to a
decomposition of the spectrogram in spectral templates W and their activations
H. The assumption behind this decomposition is that the spectrogram of an
acoustical scene can be modeled as the repetition through time of characteristic
spectral templates with varying amplitudes, the shape of these templates being
time-invariant, i.e., invariant with the time at which they appear. NMFD ex-
tends NMF by introducing a convolution in the time direction, and looks for a
decomposition of V as

V ≈ Λ =
∑
τ

W τ
→τ
H (14)

where each W τ is a set of bases and →τ denotes the right-shift operator which
moves each element in a matrix τ columns to the right, e.g.,

A =

 1 2 3
4 5 6
7 8 9

 ,
→1

A =

 0 1 2
0 4 5
0 7 8

 .

NMFD thus also enables the representation of time structure in the extracted
templates W , as, for each k, the set Wk = (W τ

m,k)m,τ of k-th columns of all
W τ can be considered as a spectro-temporal template whose activation is deter-
mined by the k-th row of H. NMF2D generalizes this approach to the frequency
direction through a 2D convolution. Using a log-frequency spectrogram and as-
suming that the spectral patterns to be modeled are roughly pitch-invariant,
i.e., that the spectral patterns of similar sounds differing only by their pitch are
approximately equal up to a shift on the frequency axis, NMF2D can account
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for the repetition of a similar spectro-temporal structure at various instants and
with various frequency shifts as the convolution of a single spectro-temporal tem-
plate with the information on the time and height of its activations. Concretely,
the NMF2D model is

V ≈ Λ =
∑
τ

∑
ϕ

↓ϕ
W τ

→τ
Hϕ (15)

where Hϕ is a set of activations such that the k-th row of Hϕ corresponds
to the activations of the k-th spectro-temporal template Wk pitch-shifted by
ϕ frequency bins down, and ↓ ϕ denotes the down-shift operator which moves
each element in a matrix ϕ lines down. Up-shift and left-shift operators can
be introduced in the same way. Applying NMF, NMFD or NMF2D to audio
signals implies making a sparseness assumption on the signal, as the additivity
of magnitudes in the spectral domain is only true if the underlying components
of the signal are sparse enough to minimize overlaps.

Lee and Seung (1999) introduced efficient algorithms for computing the NMF
of a matrix V based on both the least-squares error and the I-divergence, which
have been extended by Smaragdis for NMFD (Smaragdis, 2004) and Schmidt
and Mørup for NMF2D (Mørup and Schmidt, 2006; Schmidt and Mørup, 2006).
These algorithms are based on multiplicative updates. If Λ is defined as in (15),
we define the objective function as J (W,H|V ) = 1

2∥V − Λ∥2F for the least-
squares error, where ∥ · ∥F denotes the Frobenius norm (sum of the squares of
all the elements), or J (W,H|V ) =

∑
m,n Vm,n log

(
Vm,n

Λm,n

)
− (Vm,n − Λm,n) for

the I-divergence. For the least-squares error, the updates can be written as

W τ ←W τ ⊙
∑
ϕ

↑ϕ
V
→τ
Hϕ
⊤

∑
ϕ

↑ϕ
Λ
→τ
Hϕ
⊤
, Hϕ ← Hϕ ⊙

∑
τ

↓ϕ
W τ
⊤←τ
V∑

τ

↓ϕ
W τ
⊤←τ

Λ
, (16)

while for the I-divergence they become

W τ ←W τ ⊙
∑
ϕ

↑ϕ(
V
Λ

) →τ
Hϕ
⊤

∑
ϕ 1

→τ
Hϕ
⊤ , Hϕ ← Hϕ ⊙

∑
τ

↓ϕ
W τ
⊤ ←τ(

V
Λ

)
∑
τ

↓ϕ
W τ
⊤

1
, (17)

where ⊙ denotes the Hadamard product, i.e., element-wise matrix multiplica-
tion, matrix divisions are also performed element-wise, ⊤ denotes the matrix
transposition and 1 denotes a M ×N matrix with all its elements set to 1.

4.2. Sparseness as a key to global structure extraction
As pointed out by Mørup and Schmidt (2006), there is an intrinsic ambiguity

in the decomposition (15): the structure of a factor in H can to some extent
be put into the signature of the same factor in W and vice versa. One way to
alleviate this ambiguity is to impose sparseness on H, thus forcing the structure
to go into W . In the case of spectrograms with missing regions, this becomes
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even more critical if one expects to retrieve a “meaningful” reconstruction of the
missing parts, and sparseness becomes compulsory, as can be clearly seen in the
particular case where some time frames are completely missing: indeed, without
a sparseness term on the activations, assuming that the spectral envelopes were
time- and pitch-invariant (which is only approximately true), a perfect recon-
struction of the spectrogram with gaps could be obtained with a single frame
representing the instantaneous spectral envelope template in W modulated by
the power envelope in the time direction (gaps included) in H. If sparseness
of H is enforced, then typical spectro-temporal templates would be learnt in
W , and seeing only a part of those templates in the incomplete spectrogram
would give us information on their activations’ time, pitch and strength, which
in turn would enable us to reconstruct the unseen parts. The role of sparseness
is thus to ensure that global and recurring structures are extracted and used
throughout the spectrogram, and it will be the key that will enable us to fill in
the gaps in the underlying acoustical scene, assuming the scene is characterized
by the same kind of regularity.

A sparseness-promoting penalty function can be added to the NMF2D ob-
jective function, in the form of the Lp (quasi-)norm, for 0 < p < 2, of the matrix
H, or of this quantity raised to the power p (Kameoka et al., 2009; Mørup and
Schmidt, 2006). Concretely, we define here a new objective function as

Js(W,H|V ) = J (W,H|V ) + λ
∑
ϕ,m,n

|Hϕ
m,n|p. (18)

The update equations for the minimization of this objective function can be
obtained similarly to the ones without the sparseness term through an auxiliary
function approach (Lee and Seung, 2001), the sparseness term being dealt with
in the same way as in Kameoka et al. (2009) for sparseness-based NMF and
complex NMF. Although we shall skip here the derivation, the updates for H
become

Hϕ ← Hϕ ⊙
∑
τ

↓ϕ
W τ
⊤←τ
V∑

τ

↓ϕ
W τ
⊤←τ

Λ + λpHϕ•(p−1)

(least-squares error) (19)

Hϕ ← Hϕ ⊙
∑
τ

↓ϕ
W τ
⊤ ←τ(

V
Λ

)
∑
τ

↓ϕ
W τ
⊤

1 + λpHϕ•(p−1)

(I-divergence) (20)

where Hϕ•(p−1) denotes the matrix Hϕ with all elements raised to the power
(p − 1). To take care of the fact that the sparseness term could be made ar-
bitrarily small by scaling down H and correspondingly scaling up W , leaving
J (W,H|V ) unchanged, a unit-norm constraint is introduced on W . This con-
straint could be introduced in the update equations using Lagrange multipliers:
in the I-divergence case and using L1-norm normalization, this would simply
amount to rescaling W and H appropriately afterwards, while for L2-norm
normalization as well as in the least-squares case, as an analytical solution can-
not be obtained, one would need to resort to numerical computations. Here,
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we shall use instead update equations for W which are derived in Mørup and
Schmidt (2006) by replacing each Wk by Wk/∥Wk∥F in the definition of the
objective function, for both the least-squares and I-divergence cases. This idea
was first investigated by Eggert and Körner (2004) for sparse NMF based on
least-squares minimization. Although the convergence of these updates is not
proven, it is conjectured and has been observed on extensive tests (Eggert and
Körner, 2004; Mørup and Schmidt, 2006). We reproduce here the updates for
the sake of completeness:

W τ ←W τ ⊙
∑
ϕ

(↑ϕ
V
→τ
Hϕ
⊤

+W τ diag(
∑
τ ′ 1((

↑ϕ
λ
→τ ′

Hϕ
⊤

)⊙W τ ′
))
)

∑
ϕ

(↑ϕ
Λ
→τ
Hϕ
⊤

+W τ diag(
∑
τ ′ 1((

↑ϕ
V
→τ ′

Hϕ
⊤

)⊙W τ ′))
) , (least-sq.)

(21)

W τ ←W τ ⊙
∑
ϕ

( ↑ϕ(
V
Λ

) →τ
Hϕ
⊤

+W τ diag(
∑
τ ′ 1((1

→τ ′

Hϕ
⊤

)⊙W τ ′
))
)

∑
ϕ

(
1
→τ
Hϕ
⊤

+W τ diag(
∑
τ ′ 1((

↑ϕ(
V
Λ

) →τ ′

Hϕ
⊤

)⊙W τ ′))
) , (I-div.)

(22)

where diag denotes a diagonal matrix whose elements are given by the argument.
W is normalized at the beginning of each step, before performing the updates
for H and W .

4.3. Use of prior distributions
The NMF framework can be considered in a Bayesian way based on the

correspondence between Bregman divergence-based optimization and ML esti-
mation either for the least-squares error or the I-divergence. Indeed, the NMF
objective function can be converted into a log-likelihood (Lee and Seung, 1999;
Sajda et al., 2003), to which prior constraints on the parameters can further be
added (Cemgil, 2008; Févotte et al., 2009).

Sparseness terms evoked above involving Lp (quasi-)norms of H can be con-
sidered as such, corresponding in general to generalized Gaussian process priors,
and the Laplace distribution for p = 1. But one can also introduce Markovian
constraints on the parameters to ensure smooth solutions. Using Gamma chains
on the coefficients of W and H in the time direction, one can show that an-
alytical update equations can still be obtained and the objective function can
be optimized based on the Expectation-Constrained Maximization (ECM) al-
gorithm (Meng and Rubin, 1993).

As explained in Section 3, the auxiliary function method we propose can be
interpreted in an EM point of view in the special case of Bregman divergences.
The use of prior distributions on the parameters will thus be justified as well for
the missing-data version of the NMF2D algorithm, which we describe in more
details in the next section, and local convergence will be guaranteed.
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4.4. NMF2D on incomplete spectrograms
We consider the wavelet magnitude spectrogram of an acoustical scene rep-

resented as a non-negative matrix Vm,n, defined on a domain of definition
D = [[1,M ]] × [[1, N ]] (corresponding for example to the time-frequency region
{x, t ∈ R | Ω0 6 x 6 Ω1, T0 6 t 6 T0 +T}, sampled in time and frequency). We
assume in general that the spectro-temporal patterns to be modeled are roughly
pitch-invariant, and that the signals are sparse enough such that the additivity
assumption on the magnitude spectrograms holds.

We assume that some regions of the magnitude spectrogram are degraded
or missing and are interested in performing simultaneously an analysis of this
acoustical scene with the NMF2D algorithm despite the presence of gaps, and
a reconstruction of the missing parts.

Even if the data matrix V is incomplete, i.e., if the values Vm,n are missing or
considered not reliable for some indices (m,n) ∈ J ⊂ D, due to the fact that the
NMF2D update equations (as well as the NMF and NMFD update equations)
are in fact multiplicative versions of a gradient update, it would actually be
possible to still perform the minimization of the distance taken over the observed
data by computing the gradient of this restricted objective function, in the same
way as was done in Virtanen et al. (2008) for NMF. However, the formulation
of the update equations would then become more intricate and less obvious
to interpret, and, although the updates could be originally computed simply
and efficiently using FFT thanks to their convolutive nature, their missing-
data version would require an additional trick in order to compute them in
the same way (concretely, setting to zero the values of the term against which
H or W are convolved in the denominators of (16) and (17) where data is
actually missing before computing their FFT). In any case, using the method
introduced in Section 2 is cleaner and easier to interpret, more systematic and
general. Finally, the simplicity and ease of interpretation of NMF2D make it a
good example to illustrate the general principle we presented.

Applying the method introduced in Section 2.3 to NMF2D leads to the
following algorithm, which can be used to analyze incomplete spectrograms,
with both objective functions:

Step 1 V
(p+1)
m,n =

{
Λ(p)
m,n if (m,n) ∈ J

Vm,n if (m,n) /∈ J

Step 2 Update W through (16) or (17) and H through (19) or (20)

We note that recent work by Smaragdis et al. (2009) can be considered as
another illustration of our framework. It is based on a spectrogram model which
is very close to NMF. In the same way as we present here, this work relies on
the EM algorithm to estimate the parameters on incomplete data, and it is thus
very similar to our NMF2D example. As mentioned above for the NMF2D il-
lustration, the optimization could have been solved with multiplicative updates
as well, although the EM interpretation is more general and elegant. Several
applications to the reconstruction of missing audio data are considered there,
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investigating in particular the use of separate training data to improve the es-
timation of the bases, which we did not consider here. Irregular repartitions of
the missing data are also considered, while we focus here on situations where
some frames are entirely missing: such situations exploit the convolutive nature
of the NMF2D model, relying on the time structure of the bases or on informa-
tion from other notes appearing at different pitches, and are thus appropriate
to illustrate our framework.

5. Examples of application of missing-data NMF2D

5.1. Toy example: reconstructing a 2D image
We first tested our algorithm on simulated data used in Mørup and Schmidt

(2006). The data, shown in Fig. 2 (a), were created with W consisting of one
cross in the first factor and one circle in the second, convolved with H given in
the top of the figure to yield the full data matrix V . The NMF2D algorithm
was used in the same conditions as in Mørup and Schmidt (2006), with τ =
{0, . . . , 16}, ϕ = {0, . . . , 16} and an L1-norm sparseness penalty with coefficient
1 for the least-squares algorithm and 0.001 for the I-divergence algorithm. The
circle and cross templates span roughly 15 frames in both horizontal and vertical
directions, while the whole data is 200 frames wide. To construct the incomplete
data, we erased 3 frames horizontally and 2 frames every 10 frames vertically, as
shown in Fig. 2 (b). Note that none of the occurrences of the structures (circle
and cross) is fully available. However, in this ideal case where the original
data is a strict convolution of the templates, the proposed algorithm is able
to extract the original templates and their occurrences and to reconstruct the
original data, as can be seen in Fig. 2 (c) (least-squares update equations) and
Fig. 2 (d) (I-divergence update equations). This shows that the reconstruction
is based on global features of the data learnt by gathering information from the
whole domain.

5.2. Audio example: reconstructing gaps in a sound
5.2.1. Experimental setting

For auditory restoration experiments, contrary to what is done in Schmidt
and Mørup (2006), we did not use the short-time Fourier transform afterwards
converted into a log-frequency magnitude spectrogram, but a wavelet transform,
which directly gives a log-frequency spectrogram. More precisely, the magnitude
spectrogram was calculated from the input signals digitized at a 16 kHz sampling
rate using a Gabor wavelet transform with a time resolution of 16 ms for the
lowest frequency subband. Higher subbands were downsampled to match the
lowest subband resolution. The frequency range extended from 50 Hz to 8 kHz
and was covered by 200 channels, for a frequency resolution of 44 cent.

We used a 4.8 s piece of computer generated polyphonic music containing a
trumpet and a piano, already used in Schmidt and Mørup (2006). Its spectro-
gram can be seen in Fig. 3 (a). The incomplete waveform was built by erasing
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(a) Original simulated data.

(b) Truncated data with truncated regions in black.

φ
φ

τ τ

(c) Reconstruction using least-squares.

φ
φ

τ τ

(d) Reconstruction using the I-divergence.

Figure 2: NMF2D with missing data on a toy problem. (a) Original simulated data. W
consists of one cross in the first factor and one circle in the second. They are convolved
with H given in the top of the figure to yield the full data matrix V . (b) Truncated data.
The truncated areas are indicated in black. (c) Estimated factors and reconstructed image
using the least-squares algorithm. (d) Estimated factors and reconstructed image using the
I-divergence algorithm.
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80 ms of signal every 416 ms, leading to a signal with about 20 % of data
missing. Its spectrogram is shown in Fig. 3 (b).

The mask indicating the region J to inpaint was built according to the erased
portions of the waveform. With a Gabor wavelet transform, the influence of a
local modification of the signal theoretically spans the whole interval. However,
as the windows are Gaussian, one can consider that the influence becomes almost
null further than about three times the standard deviation. This standard
deviation is inversely proportional with the frequency, and the influence should
thus be considered to span a longer interval for lower frequencies. Although
it leaves some unreliable portions of the spectrogram out of the mask in the
lower frequencies, for simplicity, we did not consider here this dependence on
frequency, and simply considered unreliable, for each 80 ms portion of waveform
erased, 6 whole spectrogram frames (corresponding to about 96 ms of signal in
the highest frequencies). The incomplete spectrogram is shown in Fig. 3 (c),
with areas to inpaint in black.

The NMF2D parameters were as follows. As in Schmidt and Mørup (2006),
we used two factors, d = 2, since we are analyzing a scene with two instruments,
and the number of convolutive components in pitch was set to ϕ = {0, . . . , 11},
as the pitch of the notes in the data spans three whole notes. For the convolutive
components in time, we used empirically τ = {0, . . . , 31}, for a time range of
about 500 ms, thus roughly spanning the length of the eighth notes in the music
sample. The I-divergence was used as the distortion measure, and the L1 norm
as the sparseness term with the coefficient λ set to 0.001. The algorithm was
ran for 100 iterations.

5.2.2. Results and discussion
To evaluate the reconstruction accuracy of the spectrogram, we use two

measures: Signal to Noise Ratio (SNR), defined as 10 log10(||Ŝ − S||2/||S||2)
where S denotes the reference magnitude spectrogram and Ŝ the reconstructed
magnitude spectrogram, and Segmental SNR (SSNR), computed as the median
of the individual SNRs of all the frames. We note that computing the SNR
directly on the magnitude spectrogram amounts to assuming that the phase
is perfectly reconstructed. The results are summarized in Table 1, where “in”
refers to the measure computed inside the gaps (the inpainted part), “out” to
the measure computed outside the gaps (the part more classically reconstructed
based on observed data), “M” refers to the proposed Missing-data NMF2D, “O”
to the original NMF2D on the whole data with missing data (if any) assumed to
be zero, “C” to the magnitude spectrogram of the complete waveform, and “I”
to the one of the incomplete waveform. Finally, “WX” refers to the spectrogram
reconstructed by applying algorithm W on spectrogram X, and “Y/Z” to the
comparison of spectrogram Y with spectrogram Z as a reference. For example,
the SNR of “MI/C” is the SNR of the spectrogram reconstructed using our
missing-data approach on the spectrogram of the incomplete data w.r.t. the
spectrogram of the full waveform.

The OC spectrogram is the spectrogram reconstructed by the original method
applied to the complete spectrogram C. Comparing it to the complete spectro-
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Table 1: Results of the reconstruction experiment. “in” and “out” refer to the measures
computed inside and outside the gaps, respectively; “M” refers to the proposed Missing-data
NMF2D, “O” to the original NMF2D on the whole data with missing data (if any) assumed
to be zero, “C” to the magnitude spectrogram of the complete waveform, and “I” to that of
the incomplete waveform. Finally, “WX” refers to the spectrogram reconstructed by apply-
ing algorithm W on spectrogram X, and “Y/Z” to the comparison of spectrogram Y with
spectrogram Z as a reference.

SNR SSNR
in out in out

OC / C 13.2 13.1 12.6 12.4
I / C 2.5 21.3 2.7 28.2

OI / C 4.3 10.6 4.1 10.1
OI / I 5.8 10.8 7.3 10.5

MI / C 10.6 13.1 10.5 12.1
MI / I -3.8 13.1 3.3 12.1

gram (OC/C results) thus gives us the modeling accuracy of NMF2D in ideal
conditions, and a reference on the performance that we should aim for when
trying to analyze the incomplete scene and to reconstruct its missing parts. On
the other hand, comparing the spectrogram I of the incomplete waveform to
that of the complete waveform inside the gaps (I/C “in” results) indicates the
starting point before any reconstruction is done. Let us now look at the per-
formance of the original NMF2D applied to the spectrogram of the incomplete
waveform, under the crude assumption that data in the gaps are equal to zero.
Comparing the reconstructed spectrogram OI to either that of the complete
waveform (OI/C) or the incomplete waveform (OI/I) shows first that a bias is
introduced even in the reconstruction of the observed data (“out”), and second
that, as expected, the missing data are not reconstructed (OI/C “in”). We fi-
nally look at the performance of the proposed missing-data NMF2D also applied
to the spectrogram of the incomplete waveform. Comparing the reconstructed
spectrogram MI to that of the incomplete waveform (MI/I), we see that the
proposed algorithm correctly performs its task of reconstructing the observed
data (“out”). This result is important in itself as it shows that the proposed
framework enables NMF2D, designed for complete data, to be used on incom-
plete data without decrease of the performance measured on the observed part
of the data, in particular without letting the missing regions introduce a bias in
the analysis of the observed regions. One could actually think of applications
for which reconstruction of the missing parts may be unnecessary, for example if
only the spectro-temporal templates or their activations themselves are desired.
Comparing now MI to the spectrogram of the complete waveform (MI/C), we
see that the formerly erased regions (“in”) are correctly inpainted, with a great
improvement over the incomplete spectrogram, as seen earlier with the I/C re-
sults, and that our method performs closely to NMF2D applied on the complete
spectrogram, as we saw above with the OC/C results.

Graphical results are shown in Fig. 3 (d), (e), (f), where one can see in
particular that the acoustical scene analysis (i.e., the learning of a spectro-

19



Time (s)

F
r
e
q
u
e
n
c
y
 
(
H
z
)

0 1.2 2.4 3.6 4.8

8000

3200

1600

800

400

200

100

50

(a) Spectrogram of the
original waveform.
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(b) Spectrogram of the
truncated waveform.
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(c) Truncated spectrogram with
areas to inpaint in black.
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(d) Spectrogram reconstructed
using the I-divergence.
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(e) Reconstructed and separated
spectrogram of the piano part.
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(f) Reconstructed and separated
spectrogram of the trumpet part.

Figure 3: NMF2D with missing data on the spectrogram of a truncated waveform. (a) Spec-
trogram of the original waveform (a mixture of piano and trumpet sounds). (b) Spectrogram
of the truncated waveform. (c) Truncated spectrogram, with truncated regions indicated in
black. (d) Estimated factors and reconstructed spectrogram using the I-divergence algorithm.
(e) Reconstructed and separated spectrogram of the piano part. (f) Reconstructed and sepa-
rated spectrogram of the trumpet part.

temporal template for each instrument and the estimation of the pitch and onset
time of each note) is performed correctly, and that blind source separation is
also performed in spite of the presence of gaps.

Here again, it is interesting to note that the missing information is not re-
constructed from the neighboring parts as in classical interpolation techniques,
but indirectly from similar patterns in other regions of the spectrograms, using
the local information mainly to determine what similar patterns to use in the
reconstruction. Although one may think that in this particular simple exam-
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ple, where pitches are flat and spectral envelopes rather steady, interpolation
techniques could be used as well, it is important to note that such techniques
are helpless when higher-order structure is necessary to reconstruct the missing
regions: this is for example the case when these regions include the beginning
or the end of a note and typical note length is thus a crucial key, when a com-
plete harmonic is missing and needs to be reconstructed by inferring it from
the typical spectro-temporal envelope and the strength of the current note, or
in general when the missing information is too complex to be inferred from
the neighboring parts only. One can relate this behavior of our model to the
phonemic illusion phenomenon mentioned earlier, where humans arguably also
use higher-order models (e.g., language models, production models) to infer the
missing phonemes.

6. Missing-data Harmonic-Temporal Clustering

The Harmonic-Temporal Clustering framework attempts to perform the
analysis of an acoustical scene by modeling its power spectrogram as a con-
strained Gaussian mixture model. It has been introduced by Kameoka et al.
(2007) for music signals and later extended to signals with continuously varying
pitch such as speech by Le Roux et al. (2007a). We explain here how it can be
further extended to deal with acoustical scenes with incomplete data, and how
the inherent continuity constraint on the fundamental frequency contour im-
posed by the use of cubic spline functions and an extra Markovian prior enables
us to perform robust F0 estimation on incomplete speech data.

6.1. Overview of the HTC model
Consider the wavelet power spectrum W (x, t) of a signal recorded from an

acoustical scene, defined on a domain of definition D = {x, t ∈ R | Ω0 6 x6
Ω1, T0 6 t6T0 + T}. The problem considered is to approximate the power spec-
trum as well as possible as the sum of K parametric source models qk(x, t;Θ)
modeling the power spectrum of K “objects” each with its own F0 contour
µk(t) and its own harmonic-temporal structure. As described in Kameoka et al.
(2007) and Le Roux et al. (2007a), the source models qk(x, t;Θ) are expressed
as a Gaussian Mixture Model (GMM) with constraints on the characteristics of
the kernel distributions: supposing that there is harmonicity with N partials
modeled in the frequency direction, and that the power envelope is described
using Y kernel functions in the time direction, we can rewrite each source model
in the form

qk(x, t;Θ) =
N∑
n=1

Y−1∑
y=0

Skny(x, t;Θ), (23)

where Θ is the set of all parameters and with kernel densities Skny(x, t;Θ)
which are assumed to have the following shape:

Skny(x, t;Θ) , wkvknukny
2πσkϕk

e
− (x−µk(t)−log n)2

2σ2
k

− (t−τk−yϕk)2

2ϕ2
k , (24)
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(b) Cross-section of qk(x, t;Θ) at constant time
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Figure 4: Graphical representation of an HTC source model. Fig. (a) shows the time-
frequency profile of the model, while Fig. (b) shows a cross-section of the model at constant
time and Fig. (c) the evolution in time of the power envelope function. The harmonic struc-
ture of the model can be seen in Fig. (b), and the approximation of the power envelope in the
time direction as a sum of Gaussian kernels can be seen in Fig. (c).

where the weight parameters wk, vkn and ukny are normalized such that
∑
k wk =

1,
∑
n vkn = 1,∀k and

∑
y ukny = 1,∀k, n. The parameter τk gives the onset

time of the source model qk, wk its energy, vkn the ratio of energy inside its
n-th partial, and the parameters ukny together with the duration paramater ϕk
determine the shape of the temporal envelope of this n-th partial. A graphical
representation of an HTC source model qk(x, t;Θ) can be seen in Fig. 4. The F0

contours µk(t) can be expressed using piece-wise flat functions or cubic spline
functions according to the signal to be modeled.

The goal is to minimize the difference between W (x, t) and Q(x, t;Θ) =∑K
k=1 qk(x, t;Θ) according to a certain criterion. We use the I-divergence

(Csiszár, 1975) as a classical way to measure the distance between two non-
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negative distributions:

I(W |Q(Θ)) ,
∫∫

D

(
W (x, t) log

W (x, t)
Q(x, t;Θ)

−
(
W (x, t)−Q(x, t;Θ)

))
dx dt,

(25)
and we are thus looking for Θopt = argminΘ I(W |Q(Θ)).

6.2. Formulation of the model on incomplete data
The optimization process in HTC (Kameoka et al., 2007; Le Roux et al.,

2007a) is nothing else than the fitting of a model (in particular a constrained
Gaussian mixture model) to an observed distribution (the wavelet power spec-
trum of an acoustical scene), using the I-divergence as a measure of the goodness
of fit.

If some parts of the power spectrum are missing or corrupted, or if some
parts of the HTC model are partially or entirely lying outside the boundaries
of the spectrogram (for example if some harmonics of the model are above the
maximum frequency and a prior is used to link the powers of the harmonics,
fitting the upper harmonics to zero will bias the optimization), the estimation
of the HTC model must be performed under an incomplete-data framework,
as in Section 2.3. In the same way as we showed there, optimization can be
performed in an iterative way by using the values of the model at the previous
step as an estimation of the unobserved data. In the case of HTC, this results
in a hierarchical algorithm with two levels. At the upper level is the iterative
algorithm described above. At the lower level, inside the step 2 of the upper
level, the EM algorithm is used as in the classical formulation of the HTC
optimization. Let W be the observed part of the spectrogram and I ⊂ D its
domain of definition. The objective function to minimize here is the same as (25)
but restricted to the domain where the spectrogram is observed:

I(W,Q(Θ)) ,
∫∫

I

(
W (x, t) log

W (x, t)
Q(x, t;Θ)

−
(
W (x, t)−Q(x, t;Θ)

))
dx dt.

(26)
We define the auxiliary function as

I+(W,V,Q(Θ)) ,

I(W,Q(Θ)) +
∫∫

D\I

(
V (x, t) log

V (x, t)
Q(x, t;Θ)

−
(
V (x, t)−Q(x, t;Θ)

))
dx dt.

(27)

Then membership functions m can be further introduced as in the classical
formulation of HTC to build the final auxiliary function I++(W,V,Q(Θ),m).
These membership functions are non-negative and sum up to 1 for each (x, t):∑
k,n,ymkny(x, t) = 1. If we note

Z(x, t) =
{
W (x, t) if (x, t) ∈ I
V (x, t) if (x, t) ∈ D \ I
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we define

I++(W,V,Q(Θ),m) ,∫∫
D

( ∑
k,n,y

mkny(x, t)Z(x, t) log
Skny(x, t;Θ)

mkny(x, t)Z(x, t)

−
(
Z(x, t)−Q(x, t;Θ)

))
dx dt. (28)

Using the concavity of the logarithm, one can see that

I+(W,V,Q(Θ)) ≤ I++(W,V,Q(Θ),m) (29)

with equality for

m̂kny(x, t) =
Skny(x, t;Θ)

K∑
k=1

N∑
n=1

Y−1∑
y=0

Skny(x, t;Θ)

. (30)

Altogether, the optimization process can be formulated as follows.

Step 1 Estimate V such that I(W,Q(Θ)) = I+(W,V,Θ):

V̂ (x, t) = Q(x, t;Θ),∀(x, t) ∈ D \ I. (31)

Step 2 Update Θ with V̂ fixed:

Θ̂ = argmin
Θ

I+(W, V̂ ,Θ). (32)

To do so, perform one iteration of the classical formulation of HTC:

E-Step

m̂kny(x, t) =
Skny(x, t;Θ)

K∑
k=1

N∑
n=1

Y−1∑
y=0

Skny(x, t;Θ)

, (33)

M-Step
Θ̂ = argmin

Θ

(
I++(W, V̂ ,Θ, m̂)− logP (Θ)

)
(34)

where P (Θ) is a prior distribution on the parameters.
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6.3. Optimization of the model
Analytical update equations for the M-step are derived in Kameoka et al.

(2007) and Le Roux et al. (2007a). However, when the F0 contour is modeled
using cubic spline functions, which is relevant for speech or musical instru-
ments whose pitch can vary continuously, the spline parameters were updated
in Le Roux et al. (2007a) not globally but one after the other. The correspond-
ing optimization procedure, called the Expectation-Constrained Maximization
algorithm (ECM) (Meng and Rubin, 1993), does not ensure the minimization
in the M-step but nonetheless guarantees the decrease of the objective function.
This spline parameter update was thus not optimal but yet led to very good
results in F0 estimation accuracy. However, it suffered from some instability
problems in long regions with low harmonic energy (silence or unvoiced parts
of speech for example). When dealing with missing-data problems, such issues
become critical, and we thus need to use better update equations for the spline
parameters, briefly introduced in Le Roux et al. (2007b) and which we present in
detail in Appendix Appendix B. Contrary to the update equations previously
described in Le Roux et al. (2007a), the ones presented here are global analyt-
ical update equations which lead to the minimum of the auxiliary function in
the M-step. They ensure a greater stability of the spline model and a better F0

estimation accuracy, as shown in the next section.

7. F0 estimation on incomplete data with HTC

7.1. Importance of F0 estimation accuracy
Ensuring a very good accuracy for the F0 estimation is not only important

as a necessary step for computational auditory induction by HTC, but it is
also in itself a primary issue. Indeed, being able to estimate the F0 accurately
is important as well for some previous audio interpolation methods such as
Maher’s sinusoidal model based method (Maher, 1994), in which the harmonics
before and after the gap need to be linked, or Vaseghi and Rayner’s extended
AR model (Vaseghi and Rayner, 1990), which takes advantage of the long-term
correlation structure of the signals by introducing extra predictor parameters
around the pitch period.

7.2. Relevance of HTC’s F0 contour model
When applied to speech, HTC is based on a spline F0 contour. A Markovian

prior, presented in Appendix Appendix B, is used on the parameters of the
contour to ensure that it will not move too abruptly. This Markovian prior
penalizes the deviation of a spline parameter from the linear interpolation of
its neighbors. Altogether, HTC’s F0 contour model is somewhere between a
spline interpolation and a linear interpolation, depending on the strength of the
matching between the HTC source model and the observed data.

Attempting to use this model for reconstruction of incomplete data implies
that the F0 contour inside the gap is close to an interpolation based on the values
of the contour outside the gap. To confirm the relevance of this interpolation,
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we thus need to ensure that, assuming that the F0 estimation on complete parts
of the data is accurately performed, the F0 of the missing parts of the data is
accurately performed as well.

We thus evaluated as a preliminary experiment the accuracy of the F0 con-
tour obtained by interpolating the reference F0 values outside the gaps on the
whole interval using both natural splines and linear interpolation. This can be
considered as an evaluation of what can be expected by HTC.

We then conducted experiments to confirm the accuracy of the proposed
method for F0 estimation. The goal here was first to confirm that the new spline
update equations indeed outperform the former update equations on single-
speaker F0 estimation in clean environment for complete data, then to evaluate
the F0 accuracy with parts of the data missing.

7.3. Experimental setting
The general conditions of the experiments were exactly the same as in

Le Roux et al. (2007a), and we shall briefly review them here, all the details
being given there.

We used a database of speech recorded together with a laryngograph sig-
nal (Bagshaw et al., 1993), consisting of one male and one female speaker who
each spoke 50 English sentences for a total of 5 min and 37 s of speech, for
the purpose of evaluation of F0-estimation algorithms. The power spectrum
W (x, t) was calculated from an input signal digitized at a 16 kHz sampling rate
(the original data of the database was converted from 20 kHz to 16 kHz) us-
ing a Gabor wavelet transform with a time resolution of 16 ms for the lowest
frequency subband. Higher subbands were downsampled to match the lowest
subband resolution. The lower bound of the frequency range and the frequency
resolution were respectively 50 Hz and 14 cent. The spline contour was initially
flat and set to 132 Hz for the male speaker and 296 Hz for the female speaker.
The length of the interpolation intervals was fixed to 4 frames. For HTC, we
used K = 10 source models, each of them with N = 10 harmonics. We used as
ground truth the F0 estimates and the reliability mask derived by de Cheveigné
and Kawahara (2002). As the spline function gives an analytical expression for
the F0 contour, we compare our result with the reference values at a sampling
rate of 20 kHz although all the analysis was performed with a time resolution of
16 ms. Deviations over 20 % from the reference were deemed to be gross errors.

For the incomplete data, we prepared four sets of data by replacing segments
of the utterances of different lengths by silence. The sets are prepared such that
approximately 20 % of the data is lost, erasing segments of length L ms every
5L ms of data (the obtained utterances would then be successions of L ms of
silence, 4L ms of speech, L ms of silence, etc.). The four lengths we selected
are 25 ms, 50 ms, 75 ms and 100 ms, and the corresponding data sets are
denoted by Erase-25ms, Erase-50ms, Erase-75ms and Erase-100ms respectively.
For example, the utterances in Erase-50ms were produced by erasing 50 ms
every 250 ms of data, leading to utterances which are successions of 50 ms of
silence, 200 ms of speech, 50 ms of silence, etc. We shall note that gaps from
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Table 2: Gross error rates (%) for F0 interpolation inside the gaps based on reference F0

Data set Cubic Splines Linear interpolation
Erase-25ms Male 0.9 0.0

Female 0.2 0.0
Total 0.5 0.0

Erase-50ms Male 1.5 0.5
Female 1.0 0.5
Total 1.2 0.5

Erase-75ms Male 4.0 1.3
Female 3.0 0.5
Total 3.5 0.9

Erase-100ms Male 7.6 4.2
Female 6.2 1.6
Total 6.9 2.9

30 ms to 50 ms are already considered very long gaps in the audio restoration
literature (Esquef and Biscainho, 2006; Godsill and Rayner, 1998; Maher, 1994).

7.4. Preliminary experiment on F0 interpolation
We first performed a preliminary experiment based on the reference F0 and

the reliability mask derived in de Cheveigné and Kawahara (2002). The reliabil-
ity mask was used to determine the voiced regions of the speech utterance, and a
global contour over the whole utterance was derived by interpolating the values
of the F0 reference which were both inside the reliability mask and outside the
erased segments of the data. We used both linear interpolation and cubic spline
interpolation. We then computed the gross error rates of the interpolated F0

values inside the gaps (by construction the values outside the gaps are equal
to the reference and thus no error can occur there). Results for the incomplete
data sets can be seen in Table 2. Spline interpolation does not perform as well
as linear interpolation due to the large variations that can occur depending on
the slope of the contour at the beginning or end of a voiced region. This is
precisely what the Markovian prior in HTC’s F0 contour model aims to avoid.

7.5. Accuracy on complete data
We first used the classical HTC formulation on complete data, using the new

spline update equations. Here, only step 2 of the algorithm devised in 6.2 is
thus used (iteration of equations (33) and (34)).

The results can be seen in Table 3, with for comparison the results obtained
with HTC using the former spline update equations as well as the ones obtained
with the state-of-the-art algorithm YIN (de Cheveigné and Kawahara, 2002).
We note that we obtained 2.1 % gross error rate for YIN using the code made
available by its authors, as opposed to 1.3 % reported in the original paper.
We can see that HTC with the newly proposed spline update equations now
performs comparably to YIN.

27



Table 3: Gross error rates for F0 estimation on complete data (clean single-speaker speech)

Method Gross error (%)
YIN Male 3.2

Female 1.0
Total 2.1

HTC (former spline update) Male 3.2
Female 3.7
Total 3.5

HTC (proposed spline update) Male 1.1
Female 1.3
Total 1.2

7.6. Accuracy on incomplete data
The wavelet transforms were performed on the truncated waveforms of the

data sets introduced above. The regions D \ I which are to be considered
missing in the spectrogram were defined as the frames corresponding to the
erased parts of the waveform. The influence of the erased portion is larger
for low frequencies, but we neglect this and consider missing a whole frame
regardless of the frequency bin.

In such situations where part of the data is irrelevant, one might think that
algorithms which perform F0 estimation more locally should be used, using
interpolation between the preceding and following voiced portions to obtain F0

values inside the gap. If the estimation can be accurately performed outside
the gaps, such a method should lead to very good results, as we saw in 7.4.
However, one needs to note that if such algorithms are used, a robust Voice
Activity Detection (VAD) must be performed as well to determine which points
should be used in the interpolation. A poor VAD accuracy could lead to very
bad results in the interpolation process, as unreliable values for the F0 could
be used as base points for the interpolation, leading to wrong results on the
whole interpolation region. To illustrate this and as a comparison with HTC,
we used the algorithm YIN to perform F0 estimation outside the gaps, and used
a linear interpolation to obtain values inside the gaps, using the closest voiced
regions outside the gaps as boundaries. The positions of the gaps were given,
and the voiced regions were determined using the aperiodicity measure given by
YIN, with a threshold of 0.2. The results given here were obtained using linear
interpolation, but cubic spline interpolation gave similar results.

Results for HTC and YIN are given in Table 4, with gross error rates for
the whole file as well as for the erased segments only. We can see that the
performance of HTC degrades as the gaps become longer. HTC performs better
than the algorithm based on YIN for the total accuracy as well as for the
accuracy inside the gaps with 25 ms and 50 ms erased segments, while the
algorithm based on YIN performs better inside the gaps with 75 ms and 100 ms
erased segments but is still outperformed on the total error.
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Table 4: Gross error rates for F0 estimation on incomplete data with HTC and YIN (clean
single-speaker speech). The results for YIN are indicated in parentheses.

Data set Error in the gaps (%) Total error (%)
Erase-25ms Male 6.0 (12.0) 3.9 (10.0)

Female 4.6 (4.7) 3.1 (3.3)
Total 5.3 (8.3) 3.5 (6.5)

Erase-50ms Male 8.8 (14.2) 4.2 (9.5)
Female 6.9 (5.7) 2.7 (3.2)
Total 7.9 (9.9) 3.4 (6.3)

Erase-75ms Male 14.1 (15.5) 4.5 (9.5)
Female 13.4 (6.4) 4.1 (3.3)
Total 13.7 (10.9) 4.3 (6.3)

Erase-100ms Male 22.1 (19.2) 7.0 (10.3)
Female 19.5 (7.4) 5.6 (3.6)
Total 20.9 (13.5) 6.3 (6.9)

These results raise several remarks. We note first that the accuracy of YIN
on the whole waveform is stable as gaps become longer while decreasing inside
the gaps, meaning that it tends to increase outside the gaps. Although this may
first sound surprising, it is related to the fact that interpolation is performed
by using as anchors the closest regions outside the gaps with a sufficiently low
aperiodicity measure; the presence of gaps will thus influence the interpolation
process and the F0 estimates around them. But as gaps become longer, the
results inside and outside become less dependent: each gap inducing a loss of
information which influences a small neighborhood through interpolation, many
small gaps are likely to harm the estimates outside the gaps more than a few
long ones. On the other hand, HTC is influenced in a different way by the
length of the gaps. Results outside the gaps are stable, while accuracy inside
the gaps decreases faster than for YIN when gaps become too long. One reaches
here the limits of the above-mentioned “prediction power” of the model inside
the gaps, and its degree of freedom becomes too high to systematically converge
to a relevant solution. This problem could be coped with by investigating the
introduction of more complex pitch contour models which try to encompass
the long-term dynamics of the F0, such as the Fujisaki model (Fujisaki and
Nagashima, 1969) for example, or more complex priors on the spline contours,
although in both cases one faces the risk of making the optimization intractable.

Altogether, the results show that HTC’s F0 estimation accuracy, while de-
grading in extreme cases, is very good even in the presence of long gaps, and
that, although other F0 estimation algorithms could be used as well, it is not
obvious, regardless of their performance on complete data, whether they can
be turned into effective algorithms on incomplete data, due in particular to the
importance of a robust VAD for the interpolation to be effective.
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8. Conclusion

We presented a computational framework to model auditory induction, i.e.,
the human auditory system’s ability to estimate the missing parts of a con-
tinuous auditory stream briefly covered by noise, by extending acoustical scene
analysis methods based on global statistical models such as HTC and NMF2D to
handle unobserved data. We related the method to the EM algorithm, enabling
the use of priors on the parameters. We illustrated on a simple example how
the proposed framework was able to simultaneously perform acoustical scene
analysis and gap interpolation in a musical piece with NMF2D, and how a ro-
bust F0 estimation could be performed on incomplete data with HTC. While we
assumed here that the gap locations were known, future work will investigate
their joint estimation together with the model parameters and the missing data,
in a similar way to Barker et al. (2005) for missing-feature speech recognition.
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Appendix A. Derivation of the Q-function of Section 3.2

We compute here the explicit form of the Q-function Q(Θ, Θ̄) involved in the
application of the EM algorithm to the ML problem introduced in Section 3.2
in which the data are supposed to have been generated independently at each
x from a probability distribution of an exponential family Fϕ with expectation
parameter g(x,Θ). In the following, we will denote by νx,ϕ,Θ(z) the density of
this probability distribution, which can be written as explained in 3.1 directly
using the corresponding Bregman divergence:

νx,ϕ,Θ(z) = e−dϕ(z,g(x;Θ))bϕ(z). (A.1)

As the data are supposed to have been generated independently at each
x from the probability distribution with density νx,ϕ,Θ(z), observed and unob-
served data are in particular independent conditionally to Θ, and the Q-function
can be written as follows:

Q(Θ, Θ̄) = E(logP (h|Θ))
P (h|f, ¯Θ)

+ E(logP (f |Θ))
P (h|f, ¯Θ)

=
∫

Rn\I
E(logP (h(x)|Θ))

P (h(x)| ¯Θ)
dx

+
(∫

P (h|f, Θ̄)
)∫

I

logP (f(x)|Θ) dx

=
∫

Rn\I

∫
ν
x,ϕ,

¯Θ(z) log νx,ϕ,Θ(z) dz dx+
∫
I

logP (f(x)|Θ) dx
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=
∫

Rn\I

∫
ν
x,ϕ,

¯Θ(z)
(

log bϕ(z)− dϕ(z, g(x;Θ))
)
dz dx

+
∫
I

(
log bϕ(f(x))− dϕ(f(x), g(x;Θ))

)
dx

= −
∫

Rn\I

∫
ν
x,ϕ,

¯Θ(z)dϕ(z, g(x;Θ)) dz dx

−
∫
I

dϕ(f(x), g(x;Θ)) dx+ C1(f, Θ̄), (A.2)

where C1(f, Θ̄) does not depend on Θ. If we now rewrite dϕ(z, g(x;Θ)) as

dϕ(z, g(x;Θ)) = dϕ(g(x; Θ̄), g(x;Θ))
+ ϕ(z)− ϕ(g(x; Θ̄))− ⟨z − g(x; Θ̄);∇ϕ(g(x;Θ))⟩,(A.3)

we can simplify the first term in Eq. (A.2):∫
ν
x,ϕ,

¯Θ(z)dϕ(z, g(x;Θ)) dz

=
(∫

ν
x,ϕ,

¯Θ(z) dz
)
dϕ(g(x; Θ̄), g(x;Θ))

− ⟨
∫

(z − g(x; Θ̄))ν
x,ϕ,

¯Θ(z) dz;∇ϕ(g(x;Θ))⟩+ C2(f, Θ̄)

= dϕ(g(x; Θ̄), g(x;Θ)) + C2(f, Θ̄),

where C2(f, Θ̄) does not depend on Θ. To lead the calculation above, we used
the fact that the mass of a probability distribution of an exponential family
with expectation parameter g(x; Θ̄) is 1 and its mean is g(x; Θ̄):∫

ν
x,ϕ,

¯Θ(z) dz = 1, (A.4)∫
zν
x,ϕ,

¯Θ(z) dz = g(x; Θ̄). (A.5)

We then obtain for the Q-function

Q(Θ, Θ̄) = −
∫

Rn\I
dϕ(g(x; Θ̄), g(x;Θ)) dx

−
∫
I

dϕ(f(x), g(x;Θ)) dx+ C(f, Θ̄)

= −L+(Θ, g(x; Θ̄)) + C(f, Θ̄), (A.6)

where C(f, Θ̄) again does not depend on Θ.

Appendix B. Derivation of the spline parameter update equations
in HTC

Appendix B.1. Spline contour
The analysis interval is divided into subintervals [ti, ti+1) of equal length ϵ.

The parameters of the spline contour model are then the values zi of the F0 at
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each bounding point ti. Assuming that the second derivative vanishes at the
bounds of the analysis interval leads to the so-called natural splines. Under this
assumption, one can explicitly compute offline a matrix M linking the values
z′′i of the second derivative of the contour at ti with the values zi, such that
z′′ = Mz. An analytical expression for the contour µ(t; z) as a concatenation
of third order polynomials can then be classically obtained. For t ∈ [ti, ti+1):

µ(t;z) , 1
ti+1 − ti

(
zi(ti+1 − t) + zi+1(t− ti)

− 1
6
(t− ti)(ti+1 − t)

[
(ti+2 − t)z′′i + (t− ti−1)z′′i+1

])
. (B.1)

One can notice that the expression of µ(t; z) is actually linear in z:

µ(t; z) = A(t)⊤z (B.2)

where A(t) is a column vector such that, for t ∈ [ti, ti+1),

A(t) =
1

ti+1 − ti

(
(ti+1 − t)ei + (t− ti)ei+1

− (t− ti)(ti+1 − t)
6

[
(ti+2 − t)M⊤

i + (t− ti−1)M⊤
i+1

])
(B.3)

where M j denotes the j-th row of the matrix M and ej denotes the j-th vector
of the canonical basis. We note furthermore that A(t) = ∇z µ(t; z).

Appendix B.2. Optimization of the objective function
During the M-step of the EM algorithm, one wants to minimize J (Θ) =

I++(W, V̂ ,Θ, m̂)− logP (Θ) with respect to Θ. We can compute the gradient
with respect to z:

∇zJ =−
∫∫

D

∑
k,n,y

ℓkny(x, t)
σ2
k

(x− µ(t, z)− log n)A(t) dx dt−∇z logP (Θ)

=−
∫∫

D

∑
k,n,y

ℓkny(x, t)
σ2
k

(x−A(t)⊤z − log n)A(t) dx dt−∇z logP (Θ)

where ℓkny(x, t) = mkny(x, t)Z(x, t). Note that the term
∫∫
D
Q(x, t;Θ) dx dt

in (28) does not contribute to the gradient w.r.t. z as the spline parameters do
not influence the normalization of the model.
Let

ϕ(t) =
∫ ∑

k,n,y

ℓkny(x, t)
σ2
k

(x− log n) dx,

γ(t) =
∫ ∑

k,n,y

ℓkny(x, t)
σ2
k

dx.
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Then

∇zJ = −
∫
ϕ(t)A(t) dt+

(∫
γ(t)A(t)A(t)⊤ dt

)
z −∇z logP (Θ).

One can then obtain the Hessian matrix:

HzJ =
∫
γ(t)A(t)A(t)⊤ dt−Hz logP (Θ). (B.4)

If one uses a Markov assumption on the spline parameters with Gaussian
distributions for the state transitions, the prior distribution becomes

P (z) = P (z0)
|z|∏
j=1

P (zj |zj−1),

with z0 following a uniform distribution and

P (zj |zj−1) =
1√

2πσs
e
−

(zj−zj−1)2

2σ2
s .

Then

∇z logP (Θ) = − 1
σ2
s


1 −1 0−1 2 −1

. . . . . . . . .
−1 2 −10 −1 1

z

= Hz logP (Θ)z. (B.5)

Putting to 0 the gradient w.r.t. z, one can find the update equation for z:

z = (HzJ )−1

∫
ϕ(t)A(t) dt. (B.6)

The convexity can be studied by looking at HzJ in Eq. (B.4). The first
term is indeed non-negative, as γ(t) ≥ 0,∀t. For the second term, coming from
the prior distribution, we recognize a tridiagonal matrix, for which the principal
minors can be easily calculated. If T = (tij) is a tridiagonal matrix and αn its
n-th principal minor, then

αn = tn,nαn−1 + tn,n−1tn−1,nαn−2. (B.7)

In our case, we see that the principal minors of Hz logP (Θ) are all non-positive.
The matrix −Hz logP (Θ) is thus positive semi-definite. Altogether, HzJ is
at least positive semi-definite, and the update (B.6) thus corresponds to a min-
imum.
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