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1 Introduction

It is generally considered that the magnitude part of
an STFT spectrogram is a reliable cue to build an in-
tuition of what a signal resynthesized from that spec-
trogram will sound like. Spectrogram reading and algo-
rithms for sound reconstruction from magnitude spec-
trograms are striking illustrations of this idea, and one
might be tempted to think that, whatever the phase
combined with a given magnitude, the worse that could
happen when resynthesizing a signal through inverse
STFT is to obtain a noisy version of the sound that
the intuition hints at.

We show in this paper that it is not the case: while
results meeting the intuition can indeed be obtained
by minimizing what we call the “inconsistency” of a
spectrogram, we investigate in this paper what happens
when inconsistency is maximized instead of minimized,
and explain how the same magnitude spectrogram can
lead, depending on the phase it is combined with, to ex-
tremely diverse resynthesized sounds, some of them very
far from what one would expect.

2 Consistency and intuition

Let (Am,n)0≤m≤M−1,0≤n≤N−1 ∈ CMN denote an ar-
ray of real non-negative numbers, where m will corre-
spond to the frame index and n to the frequency band
index. A classical task [1] is to estimate a real-valued
time-domain signal x such that the magnitude of its
STFT is closest to A in a least-squares sense, as this
signal would thus sound close to what one would intu-
itively expect for a hypothetical sound with STFT mag-
nitude given by A. Equivalently [2], this problem can
also be formulated as that of estimating a phase ϕ such
that H = Aejϕ is “as consistent as possible”, where
we call “consistent spectrograms” the elements of CMN

which can be obtained as the STFT spectrogram of a
time-domain signal. The lack of consistency, or incon-
sistency, of any array H is numerically characterized by
the quantity I(H) = ∥G(H) − H∥, i.e., the L2 norm
between H and the complex spectrogram of the signal
resynthesized from H by inverse STFT, denoted as

G(H) = STFT(iSTFT(H)).

Note that it will always be assumed that the synthesis
window in the inverse STFT is equal to the STFT anal-
ysis window, up to the normalization required to obtain
perfect reconstruction.

Obtaining a sound which corresponds to one’s intu-
ition given an STFT magnitude A thus corresponds to
minimizing the inconsistency measure I(Aejϕ) with re-
spect to ϕ. A simple algorithm to perform this minimiza-
tion was derived by Griffin and Lim [1], and consists in

iteratively updating the phase estimate ϕ(k) at step k
by replacing it with the phase of the STFT of its inverse

STFT, ∠G(Aejϕ
(k)

), while keeping A fixed. Fast approx-
imations based on time-frequency domain computations
were considered in [3].
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3 Maximizing inconsistency

We are interested here in what happens when incon-
sistency is maximized. We shall find convenient to intro-
duce the notation F(H) = H − G(H). Under the above
assumption for the analysis and synthesis windows, the
operators F and G can be shown to be orthogonal pro-
jections on complementary subspaces of CMN , such that,
for all H,

∥H∥2 = ∥G(H)∥2 + ∥F(H)∥2. (1)

Maximizing the inconsistency ∥F(H)∥ is thus equivalent
to minimizing ∥G(H)∥. The extreme case will be that
of spectrograms that can be obtained as H = F(S) for
some S: they will indeed verify H = F(H) as F is a pro-
jection, and thus ∥G(H)∥ = 0. These spectrograms will
thus be resynthesized through inverse STFT as silence,
as already noted in [2]. What happens is that the con-
tributions of neighboring frames in such spectrograms
perfectly cancel in the overlap-add procedure.

Note that for a rectangular analysis window and 50 %
or 75 % overlap between frames, the STFT spectrogram
of any sound can be trivially modified to resynthesize to
silence while keeping the same magnitude: it suffices to
add π to the phase of every other frame. This is how-
ever not true in general for other windows or overlap
ratio, and we shall now derive an algorithm to maxi-
mize inconsistency with a given magnitude spectrogram
A. In the same way as we can show that minimization
of ∥F(Aejϕ)∥ (i.e., maximization of ∥G(Aejϕ)∥) can be

performed through the updates ϕ(k+1) ← ∠G(Aejϕ
(k)

),
we can show that maximization of ∥F(Aejϕ)∥ can be
performed through the updates

ϕ(k+1) ← ∠F(Aejϕ
(k)

). (2)

Assuming the algorithm converged or was stopped af-
ter K iterations, we consider the complex spectrogram
S̃ = F(AejϕK ). This spectrogram is very close to AejϕK

by construction, and in particular its magnitude Ã is
very close to A. Furthermore, it also verifies G(S̃) = 0.
We thus built a complex spectrogram whose magnitude
is very similar to A but which resynthesizes to silence
through inverse STFT.

Let us look at the example of a speech signal s by a
female speaker sampled at 16 kHz. The magnitude A
of its complex STFT spectrogram S = Aejϕ, computed
using a sine window with window length 512 and 75 %
overlap between frames, is shown in Fig. 1 (all figures
show the magnitude to the power 0.3 for better visi-
bility). The above algorithm based on iterative STFT
computations is initialized using approximate methods
similar to those described in [3], and stopped after 200

iterations. It outputs a spectrogram Ãejϕ̃ which resyn-
thesizes to silence and whose magnitude is very close to
that of the original sound. The signal-to-distortion ra-
tio (SDR) between these two magnitude spectrograms,
which corresponds to the SDR between the original sig-
nal and the signal reconstructed from Ã combined with
the original phase, is +77 dB. Reconstructing the sound
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Fig. 1 Magnitude spectrogram of a speech utterance.

which “intuitively” corresponds to Ã, i.e., estimating the
phase which minimizes inconsistency, leads as expected
to a signal whose magnitude spectrogram is very close to
that of the original sound, with an SDR of +31 dB. De-
pending on the phase information, the same magnitude
spectrogram can thus lead to a very good reconstruction
of a particular sound as well as silence. We can actually
go further, as we now explain.

4 Phase-controlled sound transfer

Let X = Bejψ be the complex STFT spectrogram of
a (different) signal x with the same length as the signal
s considered above. The STFT analysis conditions are
also assumed to be identical. We consider the family of
complex spectrograms

S̃λ = Ãej∠(S̃+λX) (3)

parameterized by λ ≥ 0. Note that no information con-
cerning X appears in the magnitude part of S̃λ. The
perceived quality of the sound reconstructed from S̃λ
dramatically depends on the value of λ:

• For λ = 0, S̃0 = S̃ resynthesizes to silence.

• For λ ≫ 1, we get S̃λ ≈ Ãej∠X ≈ Aejψ, i.e., S̃λ is
close to the spectrogram formed by the magnitude
of the first sound and the phase of the second sound.
In general, this will lead to a resynthesized signal
sounding like a noisy version of the first sound: the
influence of the magnitude is greater as generally
expected.

• For 0 < λ≪ 1, we have

S̃λ = S̃ + λX + O(λ2).

To show this, we first rewrite S̃λ as

S̃λ =
|S̃|

|S̃ + λX|
(S̃ + λX).

As S̃ = F(S) and X = G(X) (as a consis-
tent spectrogram) respectively lie in the images
of F and G, which are orthogonal projections on
complementary subspaces, S̃ and X are orthogo-
nal. In particular, the denominator |S̃ + λX| will
only lead to second and higher order terms in λ.
As S̃ will perfectly cancel out in the resynthesis,
the signal reconstructed from 1

λ
S̃λ will be close to

x, the second signal. Note that the result holds
strictly only in regions where Ã > 0.

Summarizing the above results, we see that for large
contributions of the phase of x, the resynthesized sig-
nal will tend to sound like the sound s. On the other
hand, theoretically, the smaller (while staying strictly
positive) the contribution of the phase of the sound x

on S̃λ, the closer (up to rescaling) the resynthesized sig-
nal will sound to x.
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Fig. 2 Evolution of the SDR w.r.t. λ.
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Fig. 3 Magnitude spectrogram of the reconstructed rock
music signal.

Of course, in practice, dynamic range issues kick in
for very small values of λ due to machine precision. As
an example, we consider for the second sound x an ex-
cerpt of rock music. The evolution of the SDR of the
reconstruction of x according to the value of λ is shown
in Fig. 2, computed both on the signals themselves and
on their magnitude spectrograms (i.e., assuming equal
phase). For λ = 3 × 10−4, for example, the signal SDR
is +6.0 dB, while the magnitude SDR is +9.0 dB. Per-
ceptually, the reconstruction is very good. The magni-
tude spectrogram of the reconstructed signal is shown
in Fig. 3. We stress again that the information about x
in S̃λ only appears in the phase part. Reconstruction of
the rock music is performed through subtle combinations
of the speech magnitude, including the faint background
noise before and after the utterance, controlled by phase.

5 Conclusion

We showed that, while inconsistency minimization
with a given magnitude spectrogram leads to recon-
struction of a sound corresponding to intuition, inconsis-
tency maximization leads to resynthesized signals with
very low energy. We devised a method to build highly-
inconsistent spectrograms with a given magnitude and
explained how a unique magnitude spectrogram can lead
to resynthesized signals close to virtually any sound only
through phase manipulation.
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