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ABSTRACT

The design of effective algorithms for single-channel analysis of
complex and varied acoustical scenes is a very important and
challenging problem. We present here the application of the re-
cently introduced Harmonic-Temporal Clustering (HTC) frame-
work to single channel speech enhancement, background retrieval
and speaker separation. HTC processing relies on a precise para-
metric description of the voiced parts of speech derived from the
power spectrum. We explain the positioning of the algorithm in-
side the Computational Acoustic Scene Analysis (CASA) area,
describe the theoretical background of the method, show through
preliminary experiments its basic feasibility, and discuss potential
improvements.

1. INTRODUCTION

The design of an effective method for the analysis of complex and
varied acoustical scenes is a very important and challenging prob-
lem. Many applications, such as automatic speech recognition
(ASR) or speaker identification, would for example benefit from
the ability of such a system to reduce acoustic interferences which
often occur simultaneously with speech in real environments. Be-
ing able to locate and extract a portion of an acoustical scene, or
on the contrary to cancel it, would also lead to very appealing ap-
plications such as instrument separation inside a multipitch track,
background music recovery or voice activity detection (VAD).

Although there exist general methods for signal separation or
enhancement in multisensor frameworks, based for example on in-
dependent component analysis or spatial filtering, single-channel
solutions are necessary for many applications, such as in telecom-
munication, analysis of monaural CD recordings, automatic news
search or background music determination in television programs,
for example. Implementing the single-channel separation prob-
lem in computers has proven to be extremely challenging. How-
ever, human listeners are able to concentrate on listening to a spe-
cific target sound without difficulty even in the situation where
many speakers are talking at the same time, and they are are able
to do so even in monaural situations. This fact has persuaded
many scientists that the human auditory system has a significant
ability to actively recognize the external environment, in other
words to perform an auditory scene analysis (ASA) and has been
attracting interest since Bregman’s book was published [1]. In
[1], Bregman has shown through experiments the psychological
evidences that the auditory system segregates the acoustic signal
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into spectrogram-like pieces, called auditory elements, which are
grouped into auditory streams according to several grouping cues.
Recent efforts are being directed towards the reproduction of this
ability of the auditory system in computers, in a framework called
“Computational Auditory Scene Analysis (CASA)” [2, 3, 4, 5].
The main focus of today’s CASA research is to develop a source
separation method based upon the grouping cues suggested by
Bregman. More specifically, the main purpose is to extract useful
features (for example, the fundamental frequency F0) or to restore
the target signal of interest by performing the segregation process
and grouping process through a computational algorithm.

Many methods utilizing the grouping cues have been proposed
(see [5] for a list of references), in most of which the grouping
process is usually implemented in two steps. Instantaneous fea-
tures are first extracted at each discrete time point, which corre-
sponds to the grouping process in the frequency direction, and
a post-processing is then performed on these features to reduce
errors and/or obtain continuous tracks, through hidden Markov
model (HMM), multiple agents, or some dynamical system such
as Kalman filtering, corresponding to the grouping process in the
time direction. Considering that from an engineering point of view,
it should be more efficient to perform the analysis in both time and
frequency directions simultaneously, we formulated a unified es-
timation framework “Harmonic-Temporal Clustering” (HTC) for
the two dimensional structure of time-frequency power spectra [5],
in contrast to the conventional strategy.

In our previous works [5, 6], we presented an F0 estimation
algorithm based on HTC for both music and speech. We present
here the next step in the application of HTC, single-channel speech
signal processing for speech enhancement, background retrieval,
and speaker separation. We use the estimated HTCmodels to build
masking functions which we apply to the power spectra to extract
speech, retrieve the background and separate two speakers.

2. INTRODUCTION OF HTC

We briefly introduce here the HTC framework. More details on the
theory, the implementation and the performance of F0 estimation
through HTC can be found in [5, 6, 7].

2.1. General HTC method

Consider the wavelet power spectrum W (x, t), where x is log-
frequency and t is time, of a signal recorded from an acoustical
scene. The problem is to approximate it as well as possible as
the sum of K parametric source models qk(x, t;Θ), where Θ is
the set of model parameters, modeling the power spectrum of K
“objects” each with its own F0 contour μk(t).
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As described in [5], each source model is expressed as a Gaus-
sian Mixture Model with constraints on the characteristics of the
kernel distributions: supposing there is harmonicity with N par-
tials modeled in the frequency direction, and that the power enve-
lope is described using Y kernel functions in the time direction,
we can rewrite each source model as

qk(x, t;Θ) =

NX
n=1

Y −1X
y=0

Skny(x, t;Θ), (1)

with kernel densities Skny(x, t;Θ) which are assumed to have the
following shape:

Skny(x, t;Θ) � wkvknukny

2πσkφk
e
− (x−μk(t)−log n)2

2σ2
k

− (t−τk−yφk)2

2φ2
k ,

(2)
where the parameters wk, vkn and ukny are normalized to unity.
A graphical representation of a HTC source model qk(x, t;Θ) can
be seen in Fig. 1.

2.2. Speech modeling
In order to model the spectrum of a speech utterance, we make
several assumptions. First, we suppose that the F0 contour is
smooth and defined on the whole interval: we will not make
voiced/unvoiced decisions, and F0 values are assumed continu-
ous. Previously, HTC was applied to musical signals with piece-
wise constant F0 contours. For speech, it is necessary to model
continuously varying contours. For that, we chose to use cubic
spline functions as a general class of smooth functions. To model
the variation over time of the shape of the spectral envelope, the
speech segment is modeled as a succession in time of slightly over-
lapping source models sharing a common F0 contour. In the single
speaker case, all the source models inside the HTCmodel share the
same F0 contour: μk(t) = μ(t), ∀k, while for multiple speakers,
according to the number of F0 contours that we want to estimate,
we group source models into subsets sharing a common F0 con-
tour. As the structure is assumed harmonic, the model takes ad-
vantage of the voiced parts of the speech utterance.

It is shown in [5] and [6] that prior distributions can be intro-
duced on the parameters, and that the HTCmodel can be efficiently
optimized using an EM-like algorithm to minimize the “distance”
between the parametric HTC model and the observed spectrogram
measured by the I-divergence between them.
2.3. Noise Modeling
We introduce a noise model to cope with the broadband back-
ground noise which can be a disturbance in the process of clus-
tering the harmonic portions of speech. The idea to design this
model was that detecting the harmonic parts of the spectrogram in
a noisy background corresponds to searching for thin and harmon-
ically distributed “islands” which emerge from a “sea” of noise.
We thus chose to model the noise using a mixture of Gaussian
distributions with large fixed variance and with centers fixed on a
grid, the only parameters being the mixing weights and the ratio
of noise power inside the whole spectrogram. The noise model pa-
rameters are optimized simultaneously with the other parameters
in the same EM-like framework [6].

3. SPECTROGRAMMODIFICATION

Speech enhancement, background retrieval and speaker separation
can be performed very simply through HTC, based on the classic
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Figure 1: Profile of a HTC source model qk(x, t;Θ)

idea of masking function, often used in CASA oriented methods.

3.1. Ratio of HTC models

When the noise to be cancelled is broadband, an estimation of
the spectrogram where the interference has been cancelled can be
obtained from the original spectrogram by looking, at each point
(x, t), at the proportion of the “clean” part inside the whole para-
metric model. In the same way, in the multiple speakers case, when
several speech models are used simultaneously, the ratio of one
speech model inside the whole at each time-frequency bin can be
used as a mask. This corresponds to the E-step in the EM algo-
rithm. In the course of the optimization of the model, it is actu-
ally on this “cleaned” part of the spectrogram that the F0 contour
estimation is performed, during the M-step, enabling the F0 esti-
mation to perform well even in very noisy environments or within
multiple speakers [6].

3.2. Direct use of HTC models

However, when the noise to be cancelled is not a broadband noise,
we can expect that the noise model will not be able to cope totally
with the background noise. It might thus as well happen that the
total power of the noise model is very low in absence of broadband
noise, and using the ratio of speech model in the whole would then
make less sense, as this ratio would almost always be close to 1,
thus leading to a very ineffective mask. Introducing noise mod-
els to cope with more types of background noise could be a way
to deal with that problem, but it is limited by several problems:
background noises could be of infinitely many kinds, and the mul-
tiplication of models would lead to a larger computation cost, and
might also conflict with the estimation of the speech model. It
might thus be simpler and more effective to look directly at the
estimated speech model itself to build a masking function. The
speech model has been designed to encompass the acoustic char-
acteristics of speech, and has by construction a harmonic structure.

To use the speech model as a mask, we use a “filtered” version
of the speech model which broadens its peaks:

Q̃(x, t) =
1

1 + ( ε
Q(x,t)

)p
, (3)

where Q is the speech model, normalized such that its maximum
is 1, ε a small constant, typically between 10−3 and 10−1, and p a
constant which tunes the broadening of the peaks.

The interference can also be retrieved using a masking func-
tion obtained through HTC. We simply consider 1 − Q̃, where Q̃
is defined as in (3), as a mask function to apply to the noisy spec-
trogram to retrieve the interference part from the mixture.

In all cases, the modified power spectrogram is coupled with
the phase of the noisy spectrogram to obtain an estimation of the
denoised complex spectrogram. An inverse transform is then used
to synthesize the denoised signal back.
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Table 1: SNR results (dB) for the enhanced speech.
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9

Mixture -3.27 -4.08 10.20 4.39 4.05 -5.83 1.90 6.57 10.53 0.75
Hu-Wang 16.34 7.83 16.71 8.32 10.88 14.41 16.89 11.97 14.44 5.27

p = 1, ε = 0.005 -3.98 -0.54 15.11 6.63 4.90 -5.76 1.91 7.01 10.65 0.69
p = 1, ε = 0.1 -6.04 5.61 11.39 7.79 6.69 -5.31 4.20 7.66 9.86 -0.47
p = 2, ε = 0.1 -6.51 7.61 9.56 7.24 6.53 -5.57 4.72 7.06 8.68 -0.98

3.3. STFT and Wavelet Spectrograms

The HTC models are optimized to fit the wavelet power spectrum
of an utterance. The basic idea to synthesize an enhanced or de-
noised speech, is, as described above, to modify the wavelet power
spectrum and use an inverse wavelet transform. So far, a Gabor
transform has been used for HTC analysis in [5] and [6], and a first
option is to perform the analysis-synthesis with this transform. As
argued in [7], the HTC framework is naturally designed to fit a
power spectrogram obtained with a constant-Q filterbank based on
an analyzing wavelet whose Fourier transform is of the form

Ψ(ω) = Ψ∗(ω) =

8><
>:

exp

 
−
`
log ω

´2
4σ2

!
(ω > 0)

0 (ω � 0)

. (4)

One can thus also try to perform the analysis-synthesis with this
analysing wavelet.

But as the models obtained on the wavelet spectrogram have
parametric expressions, it is also possible to generate masking
functions in the linear-frequency domain, and simply use STFT
and inverse STFT, for example by overlap-add method, to gener-
ate a modified speech or background. Although this process is
expected to lead lower-quality results than wavelet-based synthe-
sis due to misfitting between the analysis and synthesis methods,
it is much faster, and still gives interesting preliminary results on
the basic performance of the method.

3.4. Relation to adaptive comb filtering methods

Comb filtering first requires a robust F0 estimation, and according
to [4], suffers from the fact that it retains too much interference
as it passes through all frequency components close to the multi-
ples of target F0. The HTC frameworks, on the opposite, features
an embedded estimation of the F0, and estimates separately the
powers and shapes of the harmonics. HTC also estimates the pa-
rameters simultaneously in the time and frequency directions, thus
integrating continuity in the model and making it more robust, on
the contrary to comb filtering methods. In the multiple speaker
case especially, if the speech of two speakers are harmonically re-
lated, a comb filter method will inevitably fail, while HTC can still
perform well, as shown in Section 4.3.

4. EXPERIMENTS

We performed three types of experiments to confirm the basic ef-
fectiveness of our method for speech enhancement, background
retrieval and speaker separation, using STFT spectrograms. We
used the SNR as a quantitative measure of the performance of our
algorithm, and tested different settings for the mask functions. We
shall stress the fact that the SNR, although it is an easy-to-compute
objective value, may not give a full idea of the performance of
a CASA system, and may especially differ significantly from a
perceptive evaluation. The human ear tends to prefer a stronger

masking, even if it introduces artifacts or slightly modifies speech,
which is not advantageous in an SNR way.

4.1. Speech enhancement

We used a corpus of 100 mixtures of voiced speech and interfer-
ence [2], commonly used in CASA research. There are 10 inter-
ferences: n0, 1-kHz pure tone; n1, white noise; n2, noise bursts;
n3, “cocktail party” noise; n4, rock music; n5, siren; n6, trill tele-
phone; n7, female speech; n8, male speech; and n9, female speech.
The results are shown in Table 1, for different mask settings on var-
ious types of interferences. Each value in the table represents the
average SNR for one interference mixed with 10 target utterances.
Mixture designates the Signal-to-Interference Ratio in the origi-
nal mixture, and Hu-Wang stands for the state-of-the-art algorithm
presented in [4]. The HTC enhanced speech is generated using
Eq. (3) with p and ε as indicated in the first column. 40 iterations
of HTC were performed, and the parameters were as in [6], with
a speech model and a noise model, apart from the number of har-
monics considered, which was set to 40. We note that according
to the type of interference, different settings lead to better results.
This is due to the fact that these settings change the sharpness of
the peaks of the mask, introducing a trade-off between Signal-to-
Interference Ratio (SIR) and Signal-to-Artifact Ratio (SAR). Ac-
cording to the acoustical properties of the interference to reduce, it
is thus possible to use different values for the parameters.

For n1, n2, n3 and n4, the results are promising, with results
close to the Hu-Wang algorithm for the first three. It is so far
less effective on the other interferences. For n0 and n5, which are
interferences with a strong localized signal overlapping with har-
monics of the speech utterance, our method failed as the speech
model mistook the interference for a harmonic and rose the power
of the corresponding Gaussian functions. This should be dealt with
in the future, for example by using a stronger constraint on the
power of the harmonics and on the shape of the power envelope in
the time direction. The analysis of SIR and SAR results tends to
show that our algorithm reduces the interference very effectively,
but creates artifacts. The question whether these artifacts are per-
ceptually significant or not should be further investigated, as is the
improvement of the quality of the synthesized speech, especially
using inverse wavelet transforms. We shall note in particular that,
contrary to the algorithm by Hu and Wang, our method does not
seem to generate musical noise.

4.2. Speech cancellation for background enhancement

The HTC framework can be used not only for speech enhance-
ment, but also for speech cancelling and background retrieval, as
explained in section 3.2. There are very interesting potential ap-
plications to this task, such as the retrieval of speech in the back-
ground, or background music retrieval. This last issue is of partic-
ular importance: in an acoustical scene where someone is speak-
ing with music playing in the background, being able to “clean”
the background music from the speech would ease the automatic
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Table 2: SNR results (dB) for the retrieved background.
n3 n4 n7 n8 n9

Mixture -4.39 -4.05 -6.57 -10.53 -0.75
p = 3, ε3 = 5.10−4 0.90 -0.01 -2.99 -4.85 -6.44
p = 3, ε3 = 2.10−3 0.39 0.28 -2.62 -5.12 -5.36

recognition of copyrighted material inside television programs for
example. Another interesting application is the automatic cancel-
lation of the vocal part inside a music piece to produce karaoke
accompaniments at lower cost and from the real song, thus with a
better quality than the usual MIDI accompaniments.

The results for the interferences which retrieval is of potential
interest for applications are presented in Table 2. Mixture desig-
nates the Interference-to-Signal Ratio in the original mixture. To
our knowledge, no results by previous methods are available on
this task. Background is retrieved through Eq. (3) with p and ε
as indicated. A substantial increase in SNR could be obtained for
n3, n4, n7 and n8. For an interference constituting of other speech
with close average power such as n9, we will see in the next section
that using two speech models leads to better results.

4.3. Speaker Separation

By using two speech models, we showed in [6] that the F0 con-
tours of concurrent speech by two speakers with close average
power can be effectively estimated through HTC. As explained
in Section 3.1, the speech of each speaker can be reconstructed
using the proportion of its model in the whole. We performed a
separation experiment on two mixtures. On the first one, v0n9
from Cooke’s database, we obtained an improvement from an ini-
tial SNR of 0dB to 6dB for both speakers. This is a very difficult
task as the harmonics of the speakers almost constantly overlap.
The clean spectrograms of the utterances v0 (male speaker) and n9
(female speaker) can be seen in Fig. 2 and Fig. 3 respectively, and
their mixture in Fig. 4. The corresponding spectrograms extracted
using HTC from the mixture v0n9 can be seen in Fig. 5 and Fig. 6
respectively. An exponent 0.3 was used as non-linear scaling for
the figures. The second mixture constitutes of a male Japanese
speaker uttering “aoi” and a female Japanese speaker uttering “oi
wo ou”, the female speaker being 5dB stronger. We obtained an
improvement from the initial−5dB to+3dB for the male speaker,
and from the initial +5dB to 9.3dB for the female speaker.

5. CONCLUSIONS

We presented several applications of the HTC framework for sin-
gle channel speech signal processing problems and showed its
basic effectiveness for tasks as various as speech enhancement,
speech cancellation for background retrieval, with potential ap-
plications in background music retrieval, and speaker separation.
Future works include the improvement of the quality of the out-
put sound by using wavelet transforms instead of STFT ones, a
thorough study of the performance of HTC compared to previous
works, both on voiced speech and on data containing unvoiced
speech, the use of auditory-based distortion measures and an eval-
uation through subjective listening tests.
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Figure 2: Clean spectrogram of speaker v0
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Figure 3: Clean spectrogram of speaker n9
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Figure 4: Spectrogram of the mixture v0n9
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Figure 5: Estimated spectrogram of speaker v0
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Figure 6: Estimated spectrogram of speaker n9
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