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ABSTRACT

We present in this paper a novelF0 contour estimation method
based on a parametric description of the wavelet power spec-
trum of speech that accounts for its structure simultaneously
in time and frequency directions. We model the speech spec-
trum as a sequence of spectral clusters governed by a smooth
common F0 contour expressed as a spline curve. The har-
monic and temporal structure of these clusters and their com-
mon F0 contour are estimated simultaneously. Through ex-
perimental comparisons with existing methods, we show that
our algorithm is competitive on clean single-speaker speech,
and that it outperforms existing methods both in the presence
of noise and for the estimation of multiple F0 contours of co-
channel concurrent speech.

Index Terms— acoustic scene analysis, multi-pitch esti-
mation, harmonic-temporal structured clustering (HTC), noisy
speech, spline F0 contour

1. INTRODUCTION

The design of an algorithm for the robust estimation of the F0

contour of harmonic signals such as speech is a challenging
problem which has been widely investigated [2, 3] but not yet
solved satisfactorily. An algorithm that would perform with
high accuracy in a wide range of background noises (white
noise, pink noise, noise bursts, music, other speech...), and
which would extract simultaneously the F0 contours of sev-
eral concurrent voices would have a very broad range of ap-
plications in computational auditory scene analysis (CASA),
speech recognition, prosody analysis, speech enhancement or
speaker identi cation. Several algorithms already exist that
deal with the tracking of multiple F0s (see for example [4, 5]
and references therein), often relying on an initial frame-by-
frame analysis followed by post-processing to reduce errors
and obtain a smooth F0 contour, for example using hidden

This paper is a condensed version of the article [1] submitted for publi-
cation in IEEE Transactions on Audio, Speech and Language Processing.

Markov models (HMM) (see [4] for a review). Here we pro-
pose to perform estimation and model-based interpolation si-
multaneously, through a parametric model of the time and fre-
quency shape of the spectral envelope of speech, based on a
multi-pitch analysis method initially developed for feature ex-
traction of music signals, the Harmonic-Temporal structured
Clustering (HTC) method [6].
We will rst give an overview of our method in Section 2,

then show its accuracy and wide applicability through various
experiments in Section 3.

2. FORMULATION OF THE MODEL

2.1. General HTC method

Consider the wavelet power spectrum W (x, t), where x is
log-frequency and t is time, of a signal recorded from an
acoustical scene. The problem is to approximate it as well as
possible as the sum ofK parametric source models qk(x, t;Θ),
whereΘ is the set of model parameters, modeling the power
spectrum ofK “objects” each with its own F0 contour μk(t).
As described in [6], each source model is expressed as a

Gaussian Mixture Model with constraints on the characteris-
tics of the kernel distributions: supposing there is harmonicity
with N partials modeled in the frequency direction, and that
the power envelope is described using Y kernel functions in
the time direction, we can rewrite each source model as

qk(x, t;Θ) =
N∑

n=1

Y −1∑
y=0

Skny(x, t;Θ), (1)

with kernel densities Skny(x, t;Θ)which are assumed to have
the following shape:

Skny(x, t;Θ) � wkvknukny

2πσkφk
e
− (x−μk(t)−log n)2

2σ2
k

− (t−τk−yφk)2

2φ2
k ,

(2)
where the parameters wk, vkn and ukny are normalized to
unity. A graphical representation of a HTC source model
qk(x, t;Θ) can be seen in Fig. 1.
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Fig. 1. Pro le of a HTC source model qk(x, t;Θ)

2.2. Speech modeling

In the following, in order to model the spectrum of a speech
utterance, we will make several assumptions.
First, we suppose that the F0 contour is smooth and de-

ned on the whole interval: we will not make voiced/unvoiced
decisions, and F0 values are assumed continuous. Previously,
HTC was applied to musical signals with piece-wise constant
F0 contours. For speech, it is necessary to model continu-
ously varying contours. For that, we chose to use cubic spline
functions as a general class of smooth functions, so as to be
able to deal in the future with a wide variety of acoustic phe-
nomenons (background music, phone ringing, etc). More-
over, their simple algebraical formulation is convenient for
the optimization of the model.
The analysis interval is divided into subintervals [ti, ti+1[

which are assumed of equal length. The parameters of the
spline contour model are then the values zi of the F0 at each
bounding point ti. The values z′′i of the second derivative
at those points are given by the expression z′′ = Mz for a
certain matrix M which can be explicitly computed of ine,
under the hypothesis that the rst-order derivative is 0 at the
bounds of the analysis interval. This can be assumed without
loss of generality if we place the interval bounds outside the
region where there is speech. One can then classically ob-
tain a simple algebraic formula for the contour μ(t;z) on the
whole interval. For t ∈ [ti, ti+1[:

μ(t;z) � 1
ti+1 − ti

(
zi(ti+1 − t) + zi+1(t − ti) (3)

− 1
6 (t − ti)(ti+1 − t)

[
(ti+2 − t)z′′i + (t − ti−1)z′′i+1

])
.

To model the variation over time of the shape of the spec-
tral envelope, the speech segment is modeled as a succession
in time of slightly overlapping source models sharing a com-
mon F0 contour. Each has a pattern of harmonic amplitudes
that is xed over time (this is expressed by assuming that
ukny = uky,∀n), but the transitions between successive mod-
els allow the source to vary in spectral shape as well as F0.
In the single speaker case, all the source models inside the
HTC model share the same F0 contour: μk(t) = μ(t),∀k,
while for multiple speakers, according to the number of F0

contours that we want to estimate, we group source models
into subsets sharing a common F0 contour. As the structure is
assumed harmonic, the model takes advantage of the voiced

parts of the speech utterance. The analytical expression (3) of
the spline F0 contour is plugged into (2).
It is shown in [6] and [1] that prior distributions can be

introduced on the parameters, and that the HTC model can be
ef ciently optimized using an EM-like algorithm to minimize
the “distance” between the parametric HTC model and the
observed spectrogram measured by the I-divergence between
them.
An example is presented in Fig. 2, based on the Japanese

sentence “Tsuuyaku denwa kokusai kaigi jimukyoku desu”
uttered by a female speaker. TheF0 contour estimated through
our method is reproduced on both the observed and modeled
spectrograms (after 30 iterations of the estimation algorithm)
to show the accuracy of our algorithm.

2.3. Noise Modeling

We introduce a noise model to cope with the broadband back-
ground noise which can be a disturbance in the process of
clustering the harmonic portions of speech. The idea to de-
sign this model was that detecting the harmonic parts of the
spectrogram in a noisy background corresponds to searching
for thin and harmonically distributed “islands” which emerge
from a “sea” of noise. We thus chose to model the noise using
a mixture of Gaussian distributions with large xed variance
and with centers xed on a grid, the only parameters being the
mixing weights and the ratio of noise power inside the whole
spectrogram. Optimization of the noise model parameters is
performed simultaneously with the optimization of the other
parameters in the same EM-like framework [1].
An estimation of the spectrogram where the noise has

been canceled can be obtained from the original spectrogram
by looking, at each point (x, t), at the proportion of the “clean”
part inside the whole parametric model. In the course of the
optimization of the model, it is on this “cleaned” part of the
spectrogram that the F0 contour estimation is performed, en-
abling our F0 estimation algorithm to perform well even in
very noisy environments, as we will show in the next section.
2.4. Parametric representation and potential applications

We would like to stress the fact that our algorithm not only
estimates the F0 contour, but also gives a parametric repre-
sentation of the voiced parts of the spectrogram. This can be
useful especially in the analysis of co-channel speech by mul-
tiple speakers, as one can get a parametric representation of
the harmonic parts of the separated spectrograms of each ut-
terance, which could be used to cluster the spectrogram of the
mixed sound and separate the speakers, as well as for noise
canceling, as we mentioned above.

3. EXPERIMENTAL EVALUATION

In the following experiments, for each input signal the power
spectrumW (x, t)was calculated using a Gabor wavelet trans-
form. For the precise settings used in each of these experi-
ments, we shall refer to [1].
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(a) Observed spectrogram and estimated F0 contour (b) Modeled spectrogram and F0 contour

Fig. 2. Comparison of observed and modeled spectra (“Tsuuyaku denwa kokusai kaigi jimukyoku desu”, female speaker).

3.1. Single-speaker F0 estimation in clean environment

We evaluated the accuracy of the F0 contour estimation of
our model on a database of speech recorded together with a
laryngograph signal [7], consisting of one male and one fe-
male speaker who each spoke 50 English sentences for a to-
tal of 0.12h of speech, for the purpose of evaluation of F0-
estimation algorithms. We used as ground truth the F0 esti-
mates and the reliability mask derived by de Cheveigné et al.
[3]. Deviations over 20% from the reference were deemed to
be gross errors.
The results can be seen in Table 1, with for comparison the

results obtained by de Cheveigné et al. [3] for several other al-
gorithms. References and details concerning these algorithms
can be found in [3]. We can see that our model’s accuracy for
clean speech is comparable to the best existing single speaker
F0 extraction algorithms designed for that purpose.

3.2. Single F0 estimation on speech mixed with white and
pink noise

We performed F0 estimation experiments on speech to which
a white noise, band-passed between 50Hz and 3300Hz, was
added, with SNRs of 0dB, −2dB and −10dB. The database
mentioned above [7] was again used, and the white noise
added was generated independently for each utterance. We
also performed experiments with pink noise, band-passed be-
tween 50Hz and 3300Hz, with a SNR of−2dB. The spectrum
of pink noise is closer to that of speech than white noise. The
noise model was used.
As a comparison, we present results obtained on the same

database using YIN [3] and the algorithm of Wu, Wang and
Brown [5] (referred to as the WWB algorithm), speci cally
designed for F0 tracking in a noisy environment, and that can
also handle the estimation of two simultaneousF0s. Although
its parameters can be tuned on new databases to obtain the
best performances, they are claimed to work ne in the ver-
sion made available on the Internet (trained on a corpus [8]
that we will use later), which we used for the experiments.

Table 1. Gross error rates for several F0 estimation algo-
rithms on clean single speaker speech
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error (%)

19.016.815.8 9.2 6.8 12.8 1.9 1.7 3.6 3.2 1.4 3.5

We obtained good results, presented in Table 2, showing
the robustness of our method on noisy speech, when noise
is not harmonic. YIN and the WWB algorithm were both
outperformed, although we should note again that their code
was used as is, whereas ours was developed with the task in
mind. Thus, this comparison may not do them full justice.

3.3. Validation on a corpus of speech mixed with a wide
range of interferences

In order to show the wide applicability of our method, we
also performed experiments using a corpus of 100 mixtures of
voiced speech and interference [8], commonly used in CASA
research. The results we present for the WWB algorithm dif-
fer from the ones given in [5] as the criterion we use is dif-
ferent. To be able to compare it with our method, which does
not perform a voiced-unvoiced decision, we do not take into
account errors on the estimation of the number of F0s, but
only look at the accuracy of the output of the F0 determina-
tion algorithm. Moreover, we focus on the F0 estimation of
the main voiced speech, as we want here to show that our al-
gorithm robustly estimates the F0 in a wide range of noisy
environments. The ten interferences are grouped into three
categories: 1) those with no pitch, 2) those with some pitch
qualities, and 3) other speech. The reference F0 contours for
the ten voiced utterances were built using YIN on the clean
speech and manually corrected.
The noise model was used for HTC, and the results are

presented in Table 3. One can see that our algorithm again
outperforms YIN and the WWB algorithm in all the interfer-
ence categories.
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Table 2. Accuracy (%) of the F0 estimation of single speaker speech mixed with white and pink noises
HTC (YIN,WWB)

White noise Pink noise
SNR=0dB SNR=-2dB SNR=-10dB SNR=-2dB

Female speaker 95.8 (83.5, 56.1) 96.3 (77.8, 48.8) 88.2 (36.7, 09.0) 91.9 (46.1, 44.6)
Male speaker 92.1 (82.5, 69.3) 92.2 (77.2, 59.2) 79.7 (41.5, 19.2) 74.0 (58.1, 37.6)
Total 94.0 (83.0, 62.5) 94.3 (77.5, 53.8) 84.1 (39.0, 13.9) 83.2 (51.9, 41.2)

Table 3. Accuracy (%) of the F0 estimation of voiced speech
with several kinds of interferences

HTC WWB YIN
Category 1 99.7 90.8 93.1
Category 2 98.6 96.1 75.7
Category 3 99.5 97.8 87.1

Table 4. F0 estimation of concurrent speech
Gross error threshold 20% 10%

HTC WWB HTC WWB
Male-Female 93.3 81.8 86.8 81.5
Male-Male 96.1 83.4 87.9 69.0
Female-Female 98.9 95.8 95.6 90.8
Total 96.1 87.0 90.2 83.5

3.4. Multi-pitch estimation

We present here results on the estimation of the F0 contour
of the co-channel speech of two speakers speaking simultane-
ously with equal average power. We used again the database
mentioned above [7], and produced a total of 150 mixed ut-
terances, 50 for each of the “male-male”, “female-female”
and “male-female” patterns. Our algorithm is used with two
spline F0 contours.
The evaluation was done in the following way: only times

inside the reliability mask of either of the two references were
counted; for each reference point, if either one of the two
spline F0 contours lied within a criterion distance of the refer-
ence, we considered the estimation correct. We present scores
for two criterion thresholds: 10% and 20%. For comparison,
tests using the WWB algorithm were also performed. Results
summarized in Table 4 show that our algorithm outperforms
the WWB algorithm on this experiment.

4. CONCLUSION AND FUTUREWORK

We introduced a new model describing the spectrum as a se-
quence of spectral cluster models governed by a common F0

contour function, with smooth transitions in the temporal suc-
cession of the spectral structures. The model enables an ac-
curate estimation of the F0 contour on the whole utterance by
taking advantage of its voiced parts in clean as well as noisy

environments. We performed several experiments to evaluate
the accuracy of our method. On single speaker clean speech,
we obtained good results which we compared with existing
methods speci cally designed for that task. On co-channel
concurrent speech, single speaker speech mixed with white
noise, pink noise, and on a corpus of single speaker speech
mixed with a variety of interfering sounds, we showed that
our algorithm outperforms existing methods.
We are currently working on using the precise parametric

expression and clustering of the spectrogram we obtained for
noise canceling, speech enhancement and speech separation.
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