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Abstract. This paper presents a new statistical model for speech sig-
nals, which consists of a time-invariant dictionary incorporating a set of
the power spectral densities of excitation signals and a set of all-pole
filters where the gain of each pair of excitation and filter elements is al-
lowed to vary over time. We use this model to develop a combined blind
separation and dereverberation method for speech. Reasonably good sep-
arations were obtained under a highly reverberant condition.
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1 Introduction

When a set of observed data is considered to be a random sample drawn from a
population that follows a particular family of probability distributions, we often
refer to the distribution family as a statistical model. In this paper, we present
a new statistical model of speech signals, suitable for applying to blind signal
processing problems.

The aim of blind source separation (BSS) or blind dereverberation is to de-
tect each source component from observed signals captured by one or several
microphones without using any information about the transfer characteristic of
the path from each source to each microphone. We thus usually make some as-
sumption about the sources and then formulate an optimization problem based
on a criterion that measures the consistency with the assumption. One approach
to formulating the problem would be to define a likelihood function of a source
signal by employing a statistical model assumption. When choosing which sta-
tistical model to invoke, it is important to take account of whether it agrees
well with the actual behaviors of the source of interest and whether it leads to
a mathematically tractable form of the optimization problem.

Let us now briefly review the BSS problem. BSS algorithms derived from a
convolutive mixture model in the time domain such as [1] are fine for short mix-
ing filters, but when it comes to realistically long filters, they can be unrealizable
because of computational requirements. In the STFT domain where the frame
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size is assumed to be sufficiently larger than the filter length, a convolutive mix-
ture signal can be approximated by an instantaneous mixture in the frequency
domain, thus allowing for an efficient implementation of BSS algorithms [2]. How-
ever, when reverberation comes into play, the filter length can often be larger
than the frame size and so the above approximation becomes relatively less ac-
curate. According to several studies such as [3], reverberation can be modeled
fairly well as a convolution for each frequency-band in the STFT domain. There-
fore, under highly reverberant conditions, we can expect a convolutive mixture
model in the time-frequency domain [4] to be a better approximation.

We consider the situation where we observe signals emanating from M sources
and captured by M microphones. Let Y l

k,n be the STFT of the signal observed
at the l-th microphone and Y k,n = (Y 1

k,n, · · · , Y M
k,n)T be a set of observed data,

where k and n are the frequency and time indices, respectively. We use Sk,n =
(S1

k,n, · · · , SM
k,n)T to denote a set of M source components. In this paper, we use

a separation system that has a multichannel finite-impulse-response form in the
time-frequency domain such that:

Sk,n =
nk∑

τ=0

W k,τY k,n−τ , (1)

where W k,τ , 0≤τ≤nk are matrix coefficients of size M×M . Let us assume that
Sm

k,n is a random variable and that Sm
k,n and Sm′

k′,n′ are statistically independent
when (k, n, m) �= (k′, n′, m′). The definition of the probability density function
(pdf) for Sm

k,n, denoted by fSm
k,n|θm(sm

k,n|θm), is the main subject of the following
section. This pdf corresponds to a statistical model of the m-th source signal
and θm is the set of parameters characterizing its distribution. Once we define
its specific form, the joint pdf of Y := {Y k,n}k,n can be written in terms of
fSm

k,n|θm( · |θm) explicitly as

fY |Θ(Y |Θ) =
∏

k

| detWk,0|
∏

t,m

fSm
k,n|θm

(
S̄m

k,n|θm
)
, (2)

where S̄m
k,n is the m-th element of the separated signal vector, given by

∑
τ W k,τ

Y k,n−τ . The joint pdf fY |Θ(Y |Θ) is the likelihood of the unknown variables
Θ := {{θm}m, {W k,τ}k,τ} given observation Y , which is an objective function
for achieving separation and dereverberation in a joint manner, as with [4].

It has been shown that the speech production system can be well modeled
on a frame-by-frame basis by a linear system comprising a glottal excitation
input and a vocal-tract resonance filter that respectively determine the degree
of periodicity and the phoneme of the voice. One of the most frequently used
models for short-term speech signals is the autoregressive (AR) model, which
models the signal as the output of an all-pole system. [5] was among the first
to propose a BSS system in which a Gaussian AR source model is incorporated
in fSm

k,n|θ(sm
k,n|θm), where a complex spectrum at each frame is assumed to be a

set of random samples drawn from a different AR system with a Gaussian white
noise input. This type of statistical model for STFT spectrograms of speech has



Statistical Model of Speech Signals 247

later been shown to work successfully for BSS in highly reverberant environments
[4]. The objective of this paper is to investigate the possibility to improve the
performance of this state-of-the-art BSS system [4] by replacing the Gaussian
AR source model with the speech model we proposed previously [6], which will
be reviewed in the next section.

2 Proposed Statistical Model of Speech

The white noise assumption as regards the excitation inputs underlying the stan-
dard AR model is known to not hold especially for voices with high fundamental
frequencies (F0s). This is because when F0 increases the spacing between the
harmonics of the excitation spectrum increases correspondingly, thus departing
from a white (flat) spectrum. Rather than fixing the characteristics of the excita-
tion input, we would therefore, if possible, like to estimate them in the same way
as the vocal-tract characteristics. However, if we simply treat both of the char-
acteristics as separate variables for each frame, it would no longer be possible
to determine these characteristics uniquely since there are an infinite number of
combinations giving the same filter output. Some additional constraint is needed
to avoid this indeterminacy.

There are a wide variety of regularities in speech that can be exploited to
constrain speech models. For example, it may be reasonable to assume that ev-
ery short-term signal of a speech utterance can be represented by a combination
of elements drawn from two dictionaries, one consisting of a small number of
vocal-tract characteristics, and the other of a small number of excitation char-
acteristics. This is because the phoneme number and periodicity range of speech
during an entire utterance are both usually limited. We thus assume here that
speech signals have been generated by a compound linear system composed of
the direct product of a limited set of time-invariant excitation characteristics and
a limited set of time-invariant vocal-tract characteristics where each output as-
sociated with an excitation and filter element pair is activated by a time-varying
gain. A signal at a particular frame is thus assumed to be characterized by the
volume levels of all the filter outputs. Note that since the dictionary elements
are in general unknown, they need to be estimated in a data-driven manner.

In this section, we focus on a particular source and so the index m will be
omitted for simplicity of notation. We start by modeling an output signal char-
acterized by a particular excitation and filter element pair. Let us assume that
a signal in the n-th frame, {xn[t]}Kt=1, is a sampled sequence drawn from the
P -order AR process with a set of AR parameters common over n such that

xn[t] =
P∑

p=1

apxn[t− p] + εn[t], (3)

where εn[t] is an excitation input signal that is assumed to be a zero-mean
stationary Gaussian noise. Its autocorrelation function, νn[t], is constant up to
the gain over all the frames such that νn[t] = Unh[t]. Un is assumed to be the
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energy of εn[t] within the frame. We note here that εn[t] is not restricted to
being white noise. Let xn = (xn[1], · · · , xn[K])T ∈ R

K and its discrete Fourier
transform (DFT) be Xn = (X1,n, · · · , XK,n)T ∈ C

K . Then, according to Eq. (3),
Xn follows a multivariate complex Gaussian distribution Xn ∼ NC(0, Λn), with
a diagonal covariance matrix Λn = diag

(
λ1,n, · · · , λK,n

)
whose elements are

λk,n =
HkUn

|A(ej2πk/K)|2 , (4)

A(z) = 1− a1z
−1 − · · · − aP z−P , (5)

where k is the frequency index and j is the imaginary unit. {Hk}Kk=1 is the DFT
of {h[k]}Kk=1, which represents the power spectral density (PSD) of the excitation
source signal εn[t] (namely, the spectral fine structure), which can have any shape
and is not necessarily flat. On the other hand, 1/|A(ej2πk/K)|2 corresponds to a
spectral envelope expressed as the PSD of the all-pole transfer function.

We can now construct a “composite” autoregressive model by extending the
above model. The composite autoregressive system is assumed to consist of a
dictionary of I excitation PSDs and a dictionary of J all-pole filters. Subse-
quently, we use superscripts i and j to denote the indices of the excitation PSDs
and the all-pole filters, respectively, and we denote the ith excitation PSD and
the jth all-pole transfer function by Hi

k and 1/Aj(ej2πk/K). The system is able
to generate I × J different voice components each of which is characterized by
combining elements drawn from the respective dictionaries. If we assume that
only one of the I × J voice components is active at each frame, the source
pdf can be defined using a Gaussian scaled mixture model [7]. By contrast, we
assume that all the voice components are always active with different volume
levels. Let U i,j

n denote the volume level of the {i, j}-th voice component at the
n-th frame. By following the discussion above, the DFT of the {i, j}-th voice
component at the nth frame, Xi,j

n = (X i,j
1,n, · · · , X i,j

K,n)T, follows a multivariate
complex Gaussian distribution NC(0, Λi,j

n ) with a diagonal covariance matrix
Λi,j

n = diag
(
λi,j

1,n, · · · , λi,j
K,n

)
whose elements are

λi,j
k,n =

Hi
kU i,j

n

|Aj(ej2πk/K)|2 , (6)

Aj(z) = 1− aj
1z

−1 − · · · − aj
P z−P . (7)

If we now assume that X1,1
n , · · · , XI,J

n are mutually independent, it follows that

Sn =
∑

i

∑

j

Xi,j
n ∼ NC

(
0, Φn

)
, Φn =

∑

i

∑

j

Λi,j
n , (8)

where Sn ∈ C
K denotes the DFT of the speech signal at the n-th frame. The

statistical model, fSk,n|θ(Sk,n|θ), is thus given concisely as

fSk,n|θ(Sk,n|θ) =
1

πφk,n
exp

(
−|Sk,n|2

φk,n

)
, (9)
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where θ contains all the unknown parameters of the present system: θ :=
{
Hi

k, aj
p,

U i,j
n

}
i,j,p,k,n

. The diagonal element of Φn, i.e. φk,n, corresponds to the PSD of
the output signal produced by the present system such that

φk,n =
∑

i

∑

j

Hi
kU i,j

n

|Aj(ej2πk/K)|2 . (10)

It is important to note that in the special case where J = 1 and P = 0, the PSD
φk,n reduces to the form of matrix multiplication φk,n =

∑
i Hi

kU i,1
n and Eq. (9)

thus reduces to the likelihood function under the statistical interpretation of
non-negative matrix factorization (NMF) given in [8]. This fact suggests that
the present entire BSS system is structurally related to multichannel NMF [9].

3 Optimization Process

Given a set of observed STFT components Y , we want to find the estimate of
Θ = {{θm}m, {W k,τ}k,τ} that maximizes the posterior density fΘ|Y (Θ; Y ) ∝
fY |Θ(Y ; Θ) fΘ(Θ), or equivalently, the log posterior density

L(θ) := log fY |Θ(Y |Θ) + log fΘ(Θ). (11)

Eq. (11) can be iteratively increased by using a coordinate descent method in
which each iteration comprises the following three maximization steps: (S1)
θm ← argmaxθm L(θ) for all m, (S2) Wk,0 ← argmaxWk,0

L(θ) for all k,
and (S3) {Wk,τ}nk

τ=1 ← argmax{Wk,τ}nk
τ=1

L(θ) for all k. If we were able to ob-
tain an estimate of the PSD of each source, namely φm

k,n, we could invoke [4]
to perform (S2) and (S3). Therefore, obtaining the update formula of (S1) will
suffice to complete the derivation of the entire optimization process. It should
be noted that (S1) amounts to maximizing

∑

k,n

log fSm
k,n|θm(S̄m

k,n|θm) + log fθm(θm) (12)

with respect to θm where S̄m
k,n is the m-th vector element of

∑
τ Wk,τY k,n−τ . As

this maximization is carried out for each m separately, the index m is omitted
again in the following.

log fSk,n|θ(S̄k,n|θ) is equal up to constant terms to the goodness of fit between
|S̄k,n|2 and φk,n defined by the Itakura-Saito divergence. We are thus led to
obtain a PSD model with as small a reconstruction error as possible. On the
other hand, as with the sparse coding concept [10], we would like to keep the
voice components as sparse as possible. The prior term log fθ(θ) can be used to
promote the sparseness of U i,j

n . In the subsequent analysis, for convenience we
use an exponential prior (a folded Laplacian prior) defined over U i,j

n ≥ 0

fθ(θ) =
∏

i,j,n

α exp(−αU i,j
n ), (13)
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which promotes sparsity when α is large. Maximizing Eq. (12) thus combines
the goals of a small reconstruction error and sparseness. As a consequence, the
more frequently a certain spectral fine/envelope structure emerges in |S̄k,n|2, the
more likely it is to be captured in the excitation/filter dictionary.

Although it is difficult to obtain a closed-form solution for maximizing Eq. (12),
we can develop a computationally efficient scheme for its estimation based on
the Generalized Expectation-Maximization (GEM) algorithm. When applying
the GEM algorithm to the current “partial” MAP estimation problem (that is,
(S1)), the first step is to define the “complete data”. As the “observed” source
component S̄k,n is assumed to contain I × J concurrent voice components, a
natural choice for the complete data is the corresponding hidden components,
that is, Xk,n = (X1,1

k,n, · · · , XI,J
k,n )T with X i,j

k,n ∼ NC(0, λi,j
k,n). From Eq. (8),

the many-to-one relationship between Xk,n and S̄k,n is described as S̄k,n =
1TXk,n with 1 = (1, · · · , 1)T. In Sec. 2, we have already assumed that X i,j

k,n

is independent of all other X i′,j′
k′,n′ , so the log-likelihood of the complete data

X := {Xk,n}k,n is

log fX|θ(X |θ) = −
∑

k,n

[
log detπΛk,n + tr

(
Λ−1

k,nXk,nXH
k,n

)]
, (14)

where Λk,n = diag
(
λ1,1

k,n, · · · , λI,J
k,n

)
. Taking the conditional expectation of Eq. (14)

given S̄k,n and θ = θ′ and then adding log fθ(θ) to both sides, we obtain

Q(θ, θ′) = log fθ(θ)−
∑

k,n

[
log detπΛk,n

+ tr
(
Λ−1

k,nE
[
Xk,nXH

k,n|Sk,n = S̄k,n, θ = θ′
])]

, (15)

where E
[
Xk,nXH

k,n|Sk,n = S̄k,n, θ = θ′
]

= Λ′
k,n −Λ′

k,n1
(
1TΛ′

k,n1
)−1

1TΛ′
k,n +

|S̄k,n|2Λ′
k,n1

(
1TΛ′

k,n1
)−1(

1TΛ′
k,n1

)−1
1TΛ′

k,n. Writing it in an element-wise ex-
pression, we obtain

Q(θ, θ′) c=−
∑

k,n

∑

i,j

[
log Hi

kU i,j
n +

Ψ i,j
k,n|Aj(ej2πk/K)|2

Hi
kU i,j

n

]
− α

∑

n

∑

i,j

U i,j
n , (16)

where Ψ i,j
k,n represents the PSD estimate of the {i, j}th voice components,

Ψ i,j
k,n =

λ′i,j
k,n

φ′
k,n

(
φ′

k,n − λ′i,j
k,n +

λ′i,j
k,n

φ′
k,n

|S̄k,n|2
)
. (17)

The notation c= denotes equality up to constant terms. By setting the partial
derivatives of Q(θ, θ′) with respect to Hi

k and U i,j
n at zero, we obtain the following

update formulae for Hi
k and U i,j

n
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Hi
k =

1
NJ

∑

n

∑

j

Ψ i,j
k,n|Aj(ej2πk/K)|2/U i,j

n , (18)

αU i,j
n

2 + KU i,j
n −

∑

k

Ψ i,j
k,n|Aj(ej2πk/K)|2/Hi

k = 0, U i,j
n ≥ 0 (19)

By setting the partial derivatives of Q(θ, θ′) with respect to aj
1, · · · , aj

P at zero,
we obtain the Yule-Walker equations

rj
p =

P∑

q=1

aj
qr

j
p−q (p = 1, · · · , P ), (20)

where rj
p is defined by the inverse DFT of the average spectral envelope over all

the voice components with index j such that

rj
p =

∑

k

∑

n,i

Ψ i,j
k,n

H ′i
kU ′i,j

n

epj2πk/K . (21)

The update formula for the autoregressive parameters of the jth all-pole filter
can therefore be calculated using the well-known Levinson-Durbin algorithm.

Here it is important to note that when a sparse constraint comes into play,
there is a need for some constraint on the scales of the factorized elements in
order to avoid an indeterminacy in the scaling. We thus adopt a simple procedure
that consists of calculating Eq. (18) and then projecting it onto the unit norm
space: Hi

k ← Hi
k/

∑
k′ Hi

k′ .

4 Experimental Results

We present here the separation results we obtained with the present BSS algo-
rithm. All of the examples use the same two-input four-output impulse response,
which was measured in a varechoic chamber where the reverberation time was
0.5 sec. With this impulse response, we mixed two speech signals into four mix-
tures. The two speech signals of female speakers, taken from the ATR speech
database, were sampled at 16 kHz and band limited to the 50 Hz to 7 kHz
frequency range. The input Signal-to-Interference ratios (SIRs) are shown in
Tab. 1. Time-frequency representations were obtained using the polyphase fil-
terbank analysis with a frame length of 32 ms and a hop size of 8 ms. The filter
length nk was set as follows: nk = 25 for Fk < 0.8; nk = 20 for 0.8 ≤ Fk < 1.5;
nk = 15 for 1.5≤ Fk < 3; nk = 10 for Fk ≥ 3, where Fk is the frequency in kHz
of the k-th frequency bin. The AR order P was set at 12, and α at 10K. The
iterative algorithm comprising (S1)–(S3) was run for 3 iterations. For each step
of (S1), the GEM algorithm was run for 100 iterations.

We tested the performance of the present method with different I and J
settings. Tab. 2 lists the SIRs obtained with the proposed method for various
settings of I and J , along with those obtained with the baseline methods, where
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Table 1. Input SIRs (dB)

Channel
Source #1 #2 #3 #4

#1 -0.6 -0.3 -0.1 0.6

#2 0.6 0.3 0.1 -0.6

Table 2. Output SIRs (dB) for various settings

I = 2 I = 5 I = 10 Base- Base-
Source J =12 J =15 J =8 J =10 J =8 J =12 line1 line2

#1 18.0 16.8 19.9 18.5 17.7 17.6 11.6 17.2

#2 11.7 10.9 14.1 13.9 13.6 14.5 11.0 13.9

Baseline1 and Baseline2 refer to Sawada’s method [11] and Yoshioka’s method
[4], respectively. For Baseline1, we performed time-frequency analysis with a
frame length of 256 ms and a hop size of 64 ms. For Baseline2, the frame length
and the hop size were set at 16 ms and 8 ms. The best SIR result by the present
method was obtained when I and J were set at 5 and 8, which significantly
outperforms both of the baseline methods. The results are very preliminary and
they need to be confirmed by a more thorough analysis in the future.

5 Conclusion

This paper described a statistical model called the “composite autoregressive
system”, which consists of a time-invariant dictionary incorporating a set of
PSDs of excitation signals and a set of all-pole filters. Under this model, speech
signals are assumed to be characterized by the volume levels of the excitation
and filter element pairs, that vary over time. We proposed to use this model
to develop a combined blind separation and dereverberation method for speech
and reasonably good separations were obtained for four mixtures of two speech
signals under a reverberant condition.
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