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ABSTRACT
We present an advanced dialog state tracking system designed for
the 5th Dialog State Tracking Challenge (DSTC5). The main task
of DSTC5 is to track the dialog state in a human-human dialog. For
each utterance, the tracker emits a frame of slot-value pairs consid-
ering the full history of the dialog up to the current turn. Our system
includes an encoder-decoder architecture with an attention mecha-
nism to map an input word sequence to a set of semantic labels, i.e.,
slot-value pairs. This handles the problem of the unknown alignment
between the utterances and the labels. By combining the attention-
based tracker with rule-based trackers elaborated for English and
Chinese, the F-score for the development set improved from 0.475
to 0.507 compared to the rule-only trackers. Moreover, we achieved
0.517 F-score by refining the combination strategy based on the topic
and slot level performance of each tracker. In this paper, we also
validate the efficacy of each technique and report the test set results
submitted to the challenge.

Index Terms— Dialog state tracking, attention model, sequence-
to-sequence learning, encoder-decoder, long short-term memory

1. INTRODUCTION

Recently, spoken dialog systems have been widely used for many
human-machine interfaces such as smart phones and car navigation
systems. Spoken language understanding (SLU) technology, which
predicts the intention of spoken user utterances, is a key component
of dialog systems [1, 2]. SLU is usually designed as a system that
converts a word sequence automatic speech recognition (ASR) result
to a semantic representation that can be interpreted by a dialog man-
ager. The semantic representation can be a concept tag for each utter-
ance such as a dialog act and a set of slot-value pairs such as named
entities and the category classes they belong to. To tackle SLU
problems, classifier-based approaches are often trained using on a
large amount of labeled data from the target domain. Support vec-
tor machines (SVMs), convolutional neural networks (CNNs), and
recurrent neural networks (RNNs) have been applied to utterance-
level tagging, which is purely an utterance classification problem
[3, 4, 5]. Furthermore, contextual information such as previous ut-
terances, topic, and speaker are also considered using long short-
term memory (LSTM) RNNs and role-dependent LSTMs [6, 7]. For
named entity or slot-value extraction, we can also apply classifiers
for labeling each word in a given utterance. Conditional random
fields (CRFs) and LSTM RNNs are available for this type of se-
quence labeling problem.

However, the classifier approaches mentioned above can only
deal with relatively simple tasks, where the user’s goal is clear and

most dialogs are accomplished within a few turns. A sufficient
amount of labeled data training must be available. A dialog system
capable of responding in a human-like way must be capable of un-
derstanding ambiguous and complicated user goals, and be able to
cope with users’ changing goals over the course of a long dialog. In
this case, the SLU problem is not well-defined.

Dialog state tracking [8] is an SLU technique intended to im-
proved understanding for such extended dialogs. For this task, we
need a good semantic representation of dialog states and a better
way to predict the state at each moment of a given conversation. The
4th and 5th Dialog State Tracking Challenges (DSTC4 and DSTC5)
[9, 10] are based on human-human dialogs.

The training data for DSTC4 and DSTC5 consists of dialogs
which are divided into sub-dialog segments, each segment consist-
ing of one or more spoken utterances. In the training data, all of the
utterances in a segment are tagged with an identical set of slot-value
pairs. The main goal of DSTC4 and DSTC5 is to design a tracker
system to predict a set of slot-value pairs for each sub-dialog seg-
ment using the transcript (or the translated result in DSTC5) and the
dialog context prior to the current utterance. Since the explicit align-
ment between slot-value pairs and individual utterances is not avail-
able in the training phase, the tracker needs to have a mechanism
to acquire such alignments through the training step. Furthermore,
since slot values do not appear exactly in the utterances as defined
in the ontology database, the tracker needs to acquire different ways
of expressing each slot value from training data. It is also necessary
to include slot values from the dialog history, when the values are
not present but are implied by demonstrative adjectives or pronouns
in the current segment. In DSTC4, most classifier-based approaches
performed poorly while elaborated rule-based trackers showed sub-
stantially better performance. Accordingly, there is much room for
improvement in solving this task using machine learning approaches.

In this paper, we present our tracker system for the DSTC5 main
task. DSTC5 is similar to the previous challenge, DSTC4 [9], but
the training data are spoken in English while the development and
test data are spoken in Chinese. Machine translation results from
English-to-Chinese and Chinese-to-English systems are also pro-
vided in the training data and development/test data, respectively.
To achieve a high performance for DSTC5, first we examine rule-
based trackers for English and Chinese, which are similar to the best
system in DSTC4 [11]. Secondly we investigate machine learning
approaches, where we evaluate utterance classification methods us-
ing context-sensitive LSTM RNNs [6],

After that we propose an encoder-decoder-based tracker with an
attention mechanism to map an input word sequence to a set of se-
mantic labels, i.e., slot-value pairs, considering the dialog history.



This model handles the problem of the unknown alignment between
the utterances and the labels. Finally we combine the attention-based
tracker with rule-based trackers elaborated for English and Chinese.
In the experiments, we compare the performance scores of different
trackers and their combinations, and report the final test-set results
we submitted to the challenge.

2. TASK AND SYSTEM

This section summarizes the dialog state trackers we built at Mit-
subishi Electric Research Laboratories (MERL) and Mitsubishi
Electric Corporation (MELCO) for DSTC5. First we review the
main task of DSTC5 and clarify the problems to be solved in this
task. Then, we introduce the system architecture consisting of
multiple trackers based on rules and machine learning.

2.1. DSTC5 main task

The goal of the DSTC5 main task is to track dialog states for sub-
dialog segments. A tracker has to predict a set of slot-value pairs
which best matches the content of the current segment, in the context
of the dialog history up to and including the current turn.

Unlike DSTC4 which handled English-only dialogs, DSTC5
aims at cross-language dialog state tracking, using English dialogs
as training data and Chinese dialogs as development data. The
test set for the challenge is also in Chinese. This scenario simu-
lates building a tracker in a target language with given resources
in a source language and their translations generated by machine
translation to the target language.

The training and development sets contain manual annotations,
which represent the segment boundaries, topic, and dialog state of
each segment, and the speaker, transcription, and translation of each
utterance. The dialog state is given as a set of slot-value pairs in
a frame structure. All the slots and values used for annotations are
defined in an ontology database provided by the organizer. Details
are given in [10].

A dialog state tracker has to output the predicted dialog state for
every utterance in a given dialog session. While all the transcripts
and segment information from the beginning of the session to the
current turn can be used, no information from the future turns is
allowed to be used to analyze the state at a given turn. Although
the fundamental goal of this tracking is to analyze the state for each
sub-dialog level, the execution should be done at the utterance level
regardless of the speaker from the beginning to the end of a given
session in sequence. In a real deployment, it would be very useful to
predict the parts of the dialog state as early as possible, so DSTC5
includes a task that evaluates the capabilities of trackers based on
utterance level predictions.

Compared to well-defined SLU tasks, we need to consider the
following problems.

(1) Slot values do not appear exactly in the utterances as defined in
the ontology database. The ontology defines topical concepts
and entity names with only their canonical forms, and does not
contain any information about how they can be expressed by
humans in a spoken dialog. For example, value “Pricerange”
for slot “INFO” is implied by the utterance “how much does
it cost in that hotel?”. Value “Singapore Changi Airport” for
slot “FROM” is implied by “how do you plan to travel from the
airport to your hotel?” Accordingly, this is different from named
entity recognition tasks based on word sequence labeling. The
tracker needs to match many spoken forms to each slot-value
pair.
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Fig. 1. The MERL/MELCO system for DSTC5

(2) Slot values are often implicitly represented by the speaker. In
this case, the value is usually mentioned with a demonstrative
adjective or pronoun in the current segment, but the actual name
of the value exists in the previous segments. For example, the
utterance “I think it’s very romantic when we go there.” has slot-
value pair “PLACE: Siloso Beach”. But the keyword “Siloso
Beach” actually appeared four segments earlier. The tracker
needs to include the implicit slot values from the dialog history.

(3) Zero or more slots and values are assigned to each sub-dialog.
Each frame can be filled with multiple slots and each slot can
be filled with multiple values. This is not a simple classification
problem based on one-to-one mapping. We need to consider
one-to-many mapping.

(4) There is no explicit alignment given between slot-value pairs
and individual utterances. An identical set of slot-value pairs
are assigned to each utterance in a sub-dialog segment. There
is no information about which slot-value pair is derived from
which utterance or keyword. The tracker needs to infer such
alignments to predict the slot-value pairs correctly.

(5) There is insufficient data provided for DSTC5. The size of the
training data annotated for DSTC5 is not sufficient to train large-
scale machine learning-based models. Because the training data
does not cover all slot values in the ontology database, a lot
of unseen slot values need to be predicted for the development
and test sets. It is allowed to use external data in addition to
the provided data, however, external data does not contain any
annotations corresponding to DSTC5.

2.2. The MERL/MELCO System

Figure 1 shows our DSTC5 tracking system. We use a combina-
tion of three types of trackers: rule-based trackers, an LSTM+Fuzzy
match tracker, and an attention-based tracker, where there are sepa-
rate English and Chinese versions of the rule-based tracker.

The input data are given at the utterance level or sub-dialog
level. In the case of sub-dialog level, the range of input is limited
up to the current utterance because we cannot use future informa-
tion. The English and Chinese rule-based trackers and LSTM+Fuzzy
match tracker process each utterance considering the history while
the attention-based tracker processes a partial or whole sub-dialog
segment at once. At the m-th turn of segment n, the system com-
bines the slot-value pairs predicted by the four trackers and outputs
the final result Yn,m. We explain each tracker and the combination
strategy in the following sections.
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Fig. 2. Architecture of rule-based tracker

3. RULE-BASED TRACKERS

Our rule-based trackers make use of several techniques similar to
the best system of DSTC4 [11]. Figure 2 illustrates the architec-
ture of our rule-based trackers. The trackers include a set of rules
for coreference resolution, synonym-based matching, and slot value
carry-over.

Let Xn,m be the m-th utterance in the n-th sub-dialog segment.
Xn,m is first processed with a coreference resolution module, which
replaces demonstrative expressions in Xn,m with the entity names
of slot values from the dialog history. The output of coreference
resolution, X ′n,m, is then used for pattern matching with synonyms
defined in the synonym list. The synonym list has a set of synonym
patterns for each slot-value pair, which can be written in the form
of regular expressions. If a synonym pattern matches X ′n,m, the
slot-value pair that the synonym matches is added to Vm, which is
the set of slot-value pair candidates. In the step of slot value carry-
over, a subset of the set of slot-value pairs predicted for the previous
utterance, Yn,m−1 (or Yn−1,Mn if m = 1, where Mn denotes the
number of utterances in the (n − 1)-th segment), is selected and
processed, leading to a set of slot-value pairs Cn,m. Then Cn,m

is added to Vm to obtain a prediction result Yn,m for the current
utterance Xn,m.

Most of the rules are initially generated automatically from the
ontology database. After that, they are refined manually by analyz-
ing the errors generated by the system for the training data. The
following subsections describe each module of the rule-based track-
ers.

3.1. Coreference resolution

Coreference resolution is the task of finding all expressions that re-
fer to the same entity in a text [12]. It is an important step for many
higher level NLP tasks such as document summarization [13], ques-
tion answering [14], and information extraction [15]. For dialog
state tracking, it can be used to solve the problem (2) mentioned
in Section 2.1. However, publicly available tools for coreference
resolution [16] perform poorly on the DSTC5 data since they are
built based on well-written text and not applicable to the machine-
translated conversational-style text of DSTC5. Accordingly, we take
the same approach as [11], in which we use a set of templates to
decide which mention is referring to which slot value in the dialog
history.

The following examples show how our templates are defined:

" (the|this|that|these|those|your|my|our) hotel" : {
"type" : "HOTEL",
"slot" : ["PLACE"]

}
"(?<! is|are) (here|there) (?!is|’s|are|’re)" : {
"type" : "*",
"slot" : ["TO", "FROM", "PLACE", "STATION"]

}

The first example indicates that when the regular expression (the first
element) has matched to the utterance, the system searches for a
value with type “HOTEL” and filling a “PLACE” slot in the his-
tory. If there are multiple entities that satisfy the rules, the system
basically chooses the most recent one. Then, the matched phrase
in the utterance is replaced with the value name. For example, an
utterance “The hotel looks great.” may be converted to “Hilton Sin-
gapore Hotel looks great.” The second example indicates that when
the regular expression has matched with “here” or “there”, the sys-
tem searches for a value with any type filling a “TO”, “FROM”,
“PLACE”, or “STATION” slot in the history. To avoid matching
with non-mention phrases such as “there is ..” and “are there ...?”,
positive/negative look-behind/look-ahead patterns are allowed to be
used in the regular expression. We made 64 templates for English
and Chinese trackers, respectively.

3.2. Synonym matching

We use a synonym list to increase the matching possibility for each
slot value. When we only use the list of value names defined in
the ontology file, the recall rate is very low even though we use a
fuzzy string match technique. By expanding the expressions that
can be uttered by speakers for each value, we can increase the recall
rate without decreasing the precision rate. This technique alleviates
problem (1) in Section 2.1.

Our rule trackers use a synonym list written as in the following
example:

"112 Katong": {
"PLACE": [
[[" one twelve "], 2],
[[" one twelve ", " katong "], 3],
[[" one twelve katong "], 4],
[[" one one two "], 4],
[[" one one two ", " katong "], 5]]

}

The value “112 Katong” is the name of a shopping mall that can
fill a “PLACE” slot if one of the synonyms in the list matches
the utterance. Since numbers such as “112” can be expressed in
different ways, the synonym list contains “one twelve” and “one
one two”. A synonym pattern can have multiple phrases, where
the pattern is considered to be matched only if all the phrases
have matched to the utterance. For example, the second pattern
[" one twelve ", " katong "] matches utterances that
include both phrases “one twelve” and “katong” in either order.
For each synonym pattern, we also define a score that is used to
decide the priority. We usually set the score based on the matching
length. In the matching process, matches with higher scores are take
priority over those with lower scores, and already matched portions
in the utterance are not used for other pattern matches. This avoids
detecting multiple values from the same portion of the utterance.

The initial list of synonyms is automatically generated from the
ontology database, where we extract unigrams, bigrams, trigrams
and separated word pairs from the word sequence of each slot value
name defined in the ontology. Before extracting these patterns, we



normalize the English text into lowercase and convert Arabic numer-
als and symbols into English words (e.g., “313@” becomes “three
one three at”). To avoid conflicts during pattern matching, we ex-
clude any pattern that matches any slot value other than its own slot
value. We also exclude patterns consisting only of common words,
where the common word set is obtained from a large text corpus us-
ing TF-IDF measure or frequency of each word in the corpus. After
that, these synonym patterns are refined manually through a cycle
of tracking the training data and modifying the synonym patterns by
analyzing frequent errors (both false positives and false negatives).

Our Chinese rule-based tracker was built in the same manner. Fi-
nally, 12,727 English synonyms and 17,196 Chinese synonyms were
prepared for 1,690 values in the ontology.

3.3. Slot value carry-over

The rule-based tracker keeps detected slot-value pairs until the end
of the current segment, and carries some specific slot-value pairs
beyond the segment boundary to the next segment. We decide which
slot-value pairs should be kept based on the topics of the previous
and current segments and each slot type. The most likely slot for
each triplet (previous topic, current topic, previous slot) is chosen
based on the number of occurrences in the training data, where the
value of the previous slot is given to the most likely slot when the
previous topic changes to the current topic.

For example, carry-over rule

(SHOPPING,TRANSPORTATION, PLACE)→ TO

indicates that if the previous topic is “SHOPPING”, the current topic
is “TRANSPORTATION”, and a value such as “City Square Mall”
exists in a “PLACE” slot of Yn−1,Mn , then a slot value pair “TO :
City Square Mall” is added to Cn,1 at the beginning of the current
segment. This mechanism also helps to alleviate problem (2) men-
tioned in Section 2.1.

4. LSTM+FUZZY MATCH TRACKER

The LSTM+Fuzzy match tracker has a two-pass process, in which
the first pass predicts only slot types using an LSTM RNN, and the
second pass detects slot values for the slot type candidates predicted
in the first pass, where word and character based fuzzy string match-
ing is used to detect the values.

For the first pass, we use an LSTM RNN depicted in Fig. 3. The
network has an input layer that takes each input word, a projection
layer that reduces the word vector in a low-dimensional space, a hid-
den layer with recurrent connections that keeps context information,
and an output layer that estimates posterior probabilities of output
labels. In the hidden layer, we use a set of LSTM cells instead of
regular network units.

Considering a sequence of M utterances, (um)m=1,...,M , we
denote each utterance’s word sequence as (wm,t)t=1,...,Tm and its
output label as ym. Since multiple slot types can be assigned to each
utterance in DSTC5, we consider as output label the concatenation
of the multiple slot types into one label, e.g., “INFO” and “PLACE”
slot types are converted to “INFO+PLACE”.

The input vector xm,t is prepared as

xm,t = Onehot(wm,t), (1)

where word wm,t in vocabulary V is converted by 1-of-N coding
using function OneHot(w), i.e. xm,t ∈ {0, 1}|V|.

The input vector is projected to the D dimensional vector

x′m,t =Wprxm,t + bpr (2)
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Fig. 3. LSTM RNN.
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and fed to the recurrent hidden layer, where Wpr and bpr are the
projection matrix and the bias vector.

At the hidden layer, activation vector hm,t is computed using
LSTM cells according to [17][18].

hm,t = LSTM(hm,t−1, x
′
m,t) (3)

The output vector is computed at the end of each utterance as

pm = softmax(WHOhm,Tm + bHO), (4)

whereWHO and bHO are the transformation matrix and the bias vec-
tor to classify the input vector into different categories. softmax() is
a softmax function that converts the classification result into label
probabilities, i.e., pm ∈ [0, 1]|L|,

∑
o∈L pm[o] = 1, where L de-

notes the label set, and pm[o] indicates the component of pm for
label o, which corresponds to label probability P (o|hm,Tm). The
estimated label for utterance m is obtained as

ŷm = argmax
o∈L

pm[o]. (5)

To inherit the context information from the previous utterances,
the hidden and cell activations at the beginning of each utterance
are initialized with those at the final position Tm−1 of the previous
utterance, i.e.,

hm,0 = hm−1,Tm−1 , cm,0 = cm−1,Tm−1 , (6)

where m > 1, h1,0 = c1,0 = 0, and cm,t denotes the cell activation
vector.

Figure 4 illustrates a propagation process of the context-sensitive
slot-type prediction. Words are sequentially fed to the LSTM and an
output label corresponding to a set of slots is generated at the end of
the utterance, where the symbol “EOS” marks the end of a sentence.
This model considers the entire context from the beginning of the
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dialog, and the label probabilities can be inferred using not only the
sentence-level intentions but also the dialog-level context.

In the second pass, the tracker uses fuzzy matching to detect val-
ues for the slots predicted in the first pass. The second pass employs
the character-level fuzzy matching from the official baseline tracker
and a word-level fuzzy matching. We set two thresholds, one for the
edit distance of character-level matching and one for the percentage
of words of the slot value which appear in the target utterance.

5. ATTENTION-BASED TRACKER

This section proposes a dialog state tracker based on attention mod-
els to handle the problem of the unknown alignment between the
utterances and the labels. The model predicts each output label by at-
tending to salient phrases relevant to the label in the input sequence.
This means that the model also predicts the alignment by the atten-
tion mechanism to choose correct labels.

Figure 5 shows the proposed tracker, where the word sequence
from the beginning of the sub-dialog segment is the input and the
slot-value pair sequence assigned to the segment is the output. The
architecture of the network is based on the attention-based encoder
decoder [19]. Although this model considers the whole prior con-
text of the dialog, the attention mechanism is limited to the current
sub-dialog segment. For DSTC5, a set of slot-value pairs for each
segment is converted to a sequence in the alphabetical order, but we
give a constraint to the model so that it does not output the same
label twice in the sequence.

In the encoder, we use a bidirectional LSTM. Let h(f)
n,j and h(b)

n,j

be the forward and backward hidden activation vectors, respectively.
We can consider both contexts by concatenating the forward and
backward activation vectors as

hn,j =

[
h
(f)
n,j

h
(b)
n,j

]
. (7)

The attention mechanism is realized by using attention weights
to the hidden activation vectors throughout the input sequence. Ac-
cordingly, important phrases are emphasized with these weights to
predict the next output label.

Let αn,i,j be an attention weight between the i-th output label
and the j-th input word in the n-th segment. A summary vector of
the n-th segment for the i-th output is obtained as a weighted sum of
hidden activation vectors, i.e.,

gn,i =

Ln∑
j=1

αn,i,jhn,j . (8)

The decoder network is an Attention-based Recurrent Sequence
Generator (ARSG) [19] that generates an output label sequence with
summary vectors gn,i. The network also has an LSTM network,
where the decoder state can be updated as

sn,i = LSTM(sn,i−1, yn,i, gn,i), (9)

where LSTM() represents a function of LSTM layer in the decoder
network. Then, the output label probability is computed as

pn,i = softmax(WSOsn,i−1 +WGOgn,i + bSO) (10)

and the output label is decided by

ŷn,i = argmax
o∈L

pn,i[o]. (11)

The attention weights are computed in the same manner as [20]

αn,i,j =
exp(en,i,j)∑Ln

k=1 exp(en,i,k)
(12)

and
en,i,j = wᵀ tanh(Wsn,i−1 + V hn,j + b), (13)

where w and b are vectors, W and V are matrices, and en,i,j is a
scalar.

In the training phase, we feed in an entire sub-dialog segment at
once and compute the cross-entropy loss over the output sequence,
where we exclude output labels that already appeared in the se-
quence from the softmax and cross-entropy computation. In the test
phase, we make a partial sub-dialog segment from the beginning
of the segment to the current utterance and feed it to the network.
By adding the current utterance to the previous partial segment, we
can repeatedly obtain utterance-level input and output. We apply the
beam search to generate the output label sequence.

6. TRACKER COMBINATION

This section describes tracker combination methods. There are many
ways to decide which tracker fills each slot. The first approach is to
make a union of slot types obtained from multiple trackers, and fill
each slot in the union with a value (or values) from one tracker. In
the first approach, four trackers overwrite the values of each slot
in a predefined order. According to our preliminary experiments, a
better tracker should be positioned later in the ordered trackers. This
means that slot values are always overwritten by a better tracker if it
has values for the slot.

The second approach is to filter out unreliable slots from each
tracker and combine the remaining slot-values in the same manner as
the first approach. We found that the multiple trackers have different
performances depending on topic and slot. The rule-based trackers
have better performances in slot types with concrete values such as
“PLACE” and “STATION” while the attention-based tracker has a
better performance in slot types with abstract values such as “INFO”
and “TYPE OF PLACE.” This means that we can select for each
tracker unreliable slot types where it poorly predicts the slot values,
using the training and development data.

7. EXPERIMENTS

We evaluated four trackers and their combination using the DSTC5
data sets. Frame level accuracy and precision, recall, and F1-score
of slot-value pairs were computed for the tracker’s output. These
performance measures were obtained for two evaluation schedules,



Table 1. Evaluation results for development set
Schedule 1 Schedule 2

tracker accuracy precison recall F1-score accuracy precison recall F1-score
(a) Baseline EN 0.0411 0.1769 0.1105 0.1360 0.0543 0.2536 0.1431 0.1830
(b) Rule EN 0.0589 0.5217 0.2793 0.3638 0.0995 0.5117 0.3129 0.3883
(c) Rule ZH 0.0909 0.4831 0.3243 0.3881 0.1312 0.5040 0.3845 0.4362
(d) LSTM+Fuzzy EN 0.0471 0.3851 0.1785 0.2439 0.0543 0.3522 0.2168 0.2684
(e) Attention EN 0.0616 0.4629 0.2079 0.2869 0.0633 0.4698 0.2229 0.3024
(f) Union(b,c) 0.1000 0.4758 0.3773 0.4209 0.1312 0.4967 0.4560 0.4754
(g) Union(d,b,c) 0.0918 0.4423 0.3878 0.4132 0.1086 0.4605 0.4765 0.4683
(h) Union(e,b,c) 0.0968 0.4582 0.4570 0.4570 0.1312 0.4816 0.5358 0.5073
(i) Filter(e,b,c) 0.1014 0.4484 0.4653 0.4567 0.1403 0.4917 0.5460 0.5174

Table 2. Evaluation results for test set
Schedule 1 Schedule 2

entry tracker accuracy precison recall F1-score accuracy precison recall F1-score
1 (f-) 0.0583 0.4008 0.2776 0.3280 0.0765 0.4127 0.3284 0.3658
2 (i-) 0.0407 0.3554 0.3267 0.3405 0.0413 0.3569 0.3575 0.3572
3 (i) 0.0515 0.3682 0.3735 0.3708 0.0635 0.3768 0.4140 0.3945
4 (i’) 0.0552 0.3717 0.3583 0.3649 0.0681 0.3806 0.4026 0.3913
5 (h) 0.0454 0.3473 0.3677 0.3572 0.0559 0.3510 0.4043 0.3758

in which Schedule 1 evaluates the performance at utterance level
while Schedule 2 evaluates the performance at sub-dialog level. See
details of the data sets and the evaluation procedure in [10].

We built rule-based trackers for English and Chinese, where
Jieba [21] was used to segment each Chinese utterance into words.
The LSTM and attention models were implemented using Chainer
[22]. In the training phase of the LSTM and attention models, we
initialized the projection layer Wpr with the 50 dimensional word
vectors obtained by word2vec [23], where the wikipedia text of
Singapore-related keywords were used for training the word2vec.
In the case of the attention model, we limited the output labels into
the most common 200 labels in the training data, because slot-value
pairs do not appear sufficiently in the training data. The 200 labels
cover 80% of slot-value pairs in the training set and 78% in the
development set. The number of hidden units was set to 50 in all the
LSTM layers of the attention model.

7.1. Evaluation with development set

Table 1 shows the results for the development set. (a) Baseline EN
indicates the official baseline tracker for English. (b) Rule EN and
(c) Rule ZH correspond to our English and Chinese rule-based track-
ers, respectively. The rule-based systems substantially outperformed
the official baseline system that used only fuzzy string matching
with the slot values. The Chinese tracker showed better performance
than the English one in most measures. This is because the devel-
opment set is originally Chinese and the tracker was not directly
affected by translation errors. (d) LSTM+Fuzzy EN represents the
LSTM+Fuzzy match tracker for English. The LSTM tracker did not
perform well for DSTC5.

(e) Attention EN indicates the proposed attention-based tracker.
It yielded a better performance than the LSTM+Fuzzy tracker. Al-
though it did not outperform the rule-based trackers, the attention
model approach is still promising because the model was trained
only with the training data without any information from the ontol-
ogy or any manual refinement. Furthermore, the combination of the
attention model with the rule-based trackers, i.e., tracker (h), signif-
icantly improved the performance over the rule-only tracker combi-

nation (f). Finally, we achieved 0.517 F-score for the development
set using the filter-based combination (i).

7.2. Final test set results

Table 2 shows the test set results we submitted to DSTC5. Entry 1
corresponds to the rule-only tracker combination (f-). Entry 2 (i-)
is a filter-based combination. After submitting both of these entries,
we improved the Rule ZH system (c), so we have marked both of
these systems with a - symbol to indicate that they do not correspond
exactly to the improved systems f and i in Table 1. Entries 3-5 used
the improved Rule ZH system.

Entry 3 is the filter-based combination (i) of the two rule track-
ers and the attention-based tracker. Entry 3 yielded the best F1-score
for the test set. Entry 4 (i’) is a filter-based combination but which
minimizes the effect of translation errors by fixing Chinese transla-
tions in the ontology. This system gave almost the same performance
as Entry 3. Entry 5 used the union combination of trackers (h). In
both the development and test sets, the filter-based combination is
better than the union-based combination. Compared to the results
from other teams, our trackers are in the second place out of the nine
teams’ submissions measured by any evaluation metric.

8. CONCLUSIONS

We designed a dialog state tracking system for DSTC5 that com-
bines an encoder-decoder architecture including an attention mech-
anism with rule-based trackers elaborated for English and Chinese.
By refining the combination strategy based on the topic and slot level
performance of each tracker, we achieved 0.517 F-score on the de-
velopment set. For the test set, we obtained 0.395 F-score with the
combined tracker, which is in the second place out of the nine teams.

Our results show that adding a modern neural network compo-
nent to a dialog tracker can improve performance, even given very
limited training data. Such a system could be deployed as an initial
prototype and data collection tool, leading to expanded training data
and improved performance.
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