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ABSTRACT

This paper presents a new hybrid approach for polyphonic Sound
Event Detection (SED) which incorporates a temporal structure
modeling technique based on a hidden Markov model (HMM) with
a frame-by-frame detection method based on a bidirectional long
short-term memory (BLSTM) recurrent neural network (RNN).
The proposed BLSTM-HMM hybrid system makes it possible to
model sound event-dependent temporal structures and also to per-
form sequence-by-sequence detection without having to resort to
thresholding such as in the conventional frame-by-frame methods.
Furthermore, to effectively reduce insertion errors of sound events,
which often occurs under noisy conditions, we additionally imple-
ment a binary mask post-processing using a sound activity detection
(SAD) network to identify segments with any sound event activity.
We conduct an experiment using the DCASE 2016 task 2 dataset to
compare our proposed method with typical conventional methods,
such as non-negative matrix factorization (NMF) and a standard
BLSTM-RNN. Our proposed method outperforms the conventional
methods and achieves an F1-score 74.9 % (error rate of 44.7 %)
on the event-based evaluation, and an F1-score of 80.5 % (error
rate of 33.8 %) on the segment-based evaluation, most of which
also outperforms the best reported result in the DCASE 2016 task 2
challenge.

Index Terms— Polyphonic sound event detection, BLSTM-
HMM, Sound activity detection, Hybrid system

1. INTRODUCTION

The goal of sound event detection (SED) is to identify the begin-
ning and end of sound events and to identify and label these sounds.
SED has great potential for use in many applications such as life-log,
monitoring, environmental understanding, and automatic control of
devices in a smart home. Improvements in machine learning tech-
niques have opened new opportunities for progress in this challeng-
ing task. SED has thus been attracting more and more attention, and
research in the field is becoming more active. Notably, some chal-
lenges such as the Detection and Classification of Acoustic Scenes
and Events (DCASE) challenge [1, 2] have recently been held.

SED can be divided into two scenarios, monophonic and poly-
phonic. In monophonic SED, the maximum number of simultane-
ous active events is assumed to be one. On the other hand, in poly-
phonic SED, there can be any number of simultaneous active events.
Polyphonic SED is a more realistic and difficult task than mono-
phonic SED because in real-world situations, it is likely that several

sound events will happen simultaneously, resulting in multiple sound
events overlapping.

The most typical approach to SED is to use a hidden Markov
model (HMM), where an emission probability distribution is rep-
resented by Gaussian mixture models (GMM-HMM), with mel
frequency cepstral coefficients (MFCCs) as features [3, 4]. In the
GMM-HMM approach, each sound event as well as silent regions
is modeled by an HMM, and the maximum likelihood path is deter-
mined using the Viterbi algorithm. However, this approach shows
limited performance, and requires heuristics such as the number of
simultaneous active events to perform polyphonic SED. Another ap-
proach is to utilize non-negative matrix factorization (NMF) [5–8].
In the NMF approaches, a dictionary of basis vectors is learned
by decomposing the spectrum of each single sound event into the
product of a basis matrix and an activation matrix, then combining
the basis matrices of all sound events. The activation matrix at test
time is estimated using the combined basis vector dictionary, and
used either for estimating sound event activations, or as a feature
vector further passed to a classifier. These NMF-based methods
show good performance, however, they do not take advantage of
time axis information, and it is necessary to find the optimal number
of bases for each sound events.

More recently, methods based on neural networks have also
achieved good performance for SED [9–15]. In these neural net-
work approaches, a single network was typically trained to be able to
deal with a multi-label classification problem for polyphonic sound
event detection. Furthermore, some studies [10, 12, 13, 15] have
utilized recurrent neural networks (RNN), which are able to take
into account correlations in the time direction. Although these ap-
proaches provide good performance, they perform frame-by-frame
detection and do not have an explicit duration model for the output
label sequence, and a threshold value for the actual outputs needs to
be carefully decided in order to achieve the best performance.

In this study, we propose a hybrid system of HMM and bidi-
rectional long short-term memory RNN (BLSTM-HMM1) system,
where the output duration is controlled by an HMM on top of
a BLSTM network, and extend the use of the hybrid system to
polyphonic SED and, more generally, to the multi-label classifica-
tion problem. Our approach not only allows to take advantage of
time axis information and to introduce an explicit duration control,
but also alleviates the need for thresholding and data dependent

1We submitted an initial version of this BLSTM-HMM system to the
IEEE AASP Challenge DCASE 2016 [16]. We here further investigate the
effect of the HMM transition probability, and propose an improved post-
processing based on the SAD network, which achieved significant improve-
ment from [16].



Fig. 1: System overview

processing. Furthermore, to effectively reduce insertion errors of
low-volume sound events, which are often observed under noisy
conditions, we additionally propose to perform binary mask post-
processing using a sound activity detection (SAD) network which
determines whether a segment is silent or contains an active sound
event of any type, inspired by the well-known benefits of voice
activity detection in speech recognition.

2. PROPOSED METHOD

2.1. System Overview

An overview of our proposed system, separated into training and
test phases, is shown in Fig. 1, In the training phase, we extract the
feature vectors and perform Cepstral Mean Normalization (CMN)
for each training sample (Section 2.2). Using the obtained feature
vectors, we train a BLSTM-HMM hybrid model (Section 2.3), and a
sound activity detection (SAD) network (Section 2.4).

In the test phase, we extract the feature vectors from an input au-
dio sample, and then perform CMN. The feature vectors are used as
input into both the BLSTM-HMM and SAD networks. The BLSTM-
HMM determines whether each sound event is active or not, while
the SAD network estimates a binary mask which indicates global
sound event activity, i.e., whether one or more sound events, what-
ever their types, are active in a given segment. Finally, we apply
this binary mask to the activations of each sound event as estimated
by the BLSTM-HMM (Section 2.4), and perform some more post-
processing (Section 2.5).

2.2. Feature Extraction

The input signal is divided into 25 ms windows with 40 % overlap,
and we compute 100 log-mel filterbank features for each window
(we use more bands than usual since high frequency components
are more important than low frequency ones for SED). After that,
we perform cepstral mean normalization (CMN) for each piece of
training data, thus obtaining the input feature vector xt at frame t.
These operations are performed using HTK [17].

2.3. BLSTM-HMM

We utilize the BLSTM-HMM hybrid model to capture sound event-
dependent temporal structures and also to perform sequence-by-

Fig. 2: HMM structure

sequence detection without the thresholding as used in conventional
frame-by-frame methods. We extend the hybrid model, which
handles a multi-class classification problem in general, in order to
handle a multi-label classification problem for polyphonic SED. In
order to do this, we build a three state left-to-right HMM with a
fourth non-active state for each sound event. The structure of our
HMM is shown in Fig. 2, where n = 0, n = 5 and n = 4 repre-
sent the initial state, final state, and non-active state, respectively.
Notice that the non-active state only pertains to the absence of ac-
tivity of that particular event, and does not indicate whether other
events are active or not. In this study, the transition probabilities are
learned from the sequences of training data using the Viterbi training
algorithm.

In the BLSTM-HMM hybrid model, the BLSTM-RNN is used
to calculate the HMM state posterior P (sc,t = n|xt), where
c ∈ {1, 2, . . . C} is the sound event index, n ∈ {1, 2, . . . , N}
the HMM state index, and sc,t the HMM state of event c at time t.
From the HMM state posterior, the HMM state emission probability
P (xt|sc,t = n) can be obtained using Bayes’ theorem as follows:

P (xt|sc,t = n) =
P (sc,t = n|xt)P (xt)

P (sc,t = n)
, (1)

where the factor P (xt) is irrelevant in the Viterbi computations.
The structure of the network is shown in Fig. 3 (a). This network
has three hidden layers which consist of a BLSTM layer with 1,024
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Fig. 3: Network structures

nodes, a projection layer with 512 nodes, and C × N output layer
nodes. A softmax operation is used to ensure that the values of the
posterior P (sc,t|xt) sum to one for each sound event c in frame t,
as follows:

P (sc,t = n|xt) =
exp(ac,n,t)∑N

n′=1 exp(ac,n′,t)
, (2)

where a represents the activation of the output layer node. The net-
work is optimized by back-propagation through time (BPTT) with
Stochastic Gradient Descent (SGD) and dropout using cross-entropy
as shown by the following multi-class, multi-label objective func-
tion:

E(Θ) =

C∑
c=1

N∑
n=1

T∑
t=1

yc,n,t ln(P (sc,t = n|xt)), (3)

where Θ represents the set of network parameters, and yc,n,t is the
HMM state label obtained from the maximum likelihood path at
frame t. (Note that this is not the same as the multi-class objec-
tive function in conventional DNN-HMM.) The HMM state prior
P (sc,t) is calculated by counting the number of occurrences of each
HMM state. However, in this study, since our synthetic training data
does not represent the actual sound event occurrences, the prior ob-
tained from occurrences of HMM states has to be made less sensi-
tive. Therefore, we smooth P (sc,t) as follows:

P̂ (sc,t) = P (sc,t)
α, (4)

where α is a smoothing coefficient. In this study, we set α to 0.01.
Finally, we calculate the HMM state emission probability using Eq. 1
and obtain the maximum likelihood path using the Viterbi algorithm.

2.4. SAD Network

A common problem when performing polyphonic SED under noisy
conditions is the decrease in performance due to insertion errors,
where the background noise is misinterpreted as low-volume sound
events. To solve this problem, we propose to perform binary mask-
ing using a sound activity detection (SAD) network. The SAD net-
work identifies segments in which there is some sound event activ-
ity, whatever their type, similarly to voice activity detection (VAD)

Table 1: Experimental conditions

Sampling rate 44,100 Hz
Window size 25 ms
Shift size 10 ms
# training data 4 s × 100k samples
# development data 120 s × 18 samples
# evaluation data 120 s × 54 samples
# sound event classes 11
Learning rate 0.0005
Initial scale 0.001
Gradient clipping norm 5
Batch size 64
Time steps 400
# epochs 20

in the field of speech recognition. In this study, we train the network
in Fig. 3 (b) as SAD network. This network has three hidden layers
which consist of a BLSTM layer with 512 nodes, a projection layer
with 256 nodes, and a single output layer node. The SAD network is
optimized using BPTT with SGD and dropout under the following
sigmoid cross-entropy objective:

E(Θ) =

T∑
t=1

yt ln(ỹt) + (1− yt) ln(1− ỹt), (5)

where yt is the reference data indicating presence or absence of
sound events and ỹt the SAD network output.

We use a threshold of 0.5 to convert the SAD network outputs
into a binary mask M, and apply it to the activations Ac of each
sound event c predicted by the BLSTM-HMM, as follows:

Ãc = M�Ac. (6)

Note that the same binary mask M is applied to the activation of
each sound event, and that the binary mask only has an effect on the
insertion of sound events, not on the substitution or deletion of sound
events.

2.5. Post-processing

After masking, we perform three kinds of post-processing: 1) ap-
plying a median filter with a predetermined filter span, 2) filling up
gaps which are shorter than a predetermined number, 3) removing
events which are too short in duration. We set the median filter span
to 170 ms (= 17 frames), the acceptable gap length to 1 s (= 100
frames), and the minimum duration threshold of each sound event to
half of the minimum duration for that sound event as calculated from
training data.

3. EXPERIMENTS

3.1. Experimental Conditions

We evaluate our proposed method by using the DCASE 2016 task 2
dataset [2]. The dataset includes a training set consisting of 20 clean
audio files per event class, a development set consisting of 18 syn-
thesized audio files of 120 sec in lengths, and an evaluation set con-
sisting of 54 synthesized audio files of the same length as the devel-
opment set files. The number of sound event classes in the dataset



Table 2: Experimental results

Event-based (dev / eval) Segment-based (dev / eval)

F1 [%] ER [%] F1 [%] ER [%]

NMF (Baseline) 31.0 / 24.2 148.0 / 168.5 43.7 / 37.0 77.2 / 89.3

BLSTM-RNN 69.9 / 60.1 73.2 / 91.2 87.2 / 77.1 25.8 / 44.4

+ post-processing 81.5 / 71.2 35.7 / 50.9 89.3 / 79.0 20.3 / 36.8

+ SAD binary masking 82.2 / 73.7 34.0 / 45.6 89.5 / 79.9 19.8 / 34.3

BLSTM-HMM 77.4 / 67.9 46.5 / 64.3 87.7 / 78.8 23.3 / 40.3

+ trans. learning 80.0 / 71.0 38.6 / 55.1 88.8 / 79.6 20.4 / 37.4

+ post-processing 81.3 / 71.7 35.2 / 52.3 89.1 / 79.5 19.4 / 36.7

+ SAD binary masking 82.6 / 74.9 32.7 / 44.7 89.7 / 80.5 18.3 / 33.8

is 11. The development set is synthesized using the training set, and
the evaluation set is synthesized using unknown samples.

For this study, we chose to further split the training data to build
an open condition development set, which is lacking in the original
dataset: we randomly selected 5 samples per event from the training
set, and generated 18 samples which have 120 s length to be sim-
ilar to the DCASE 2016 task 2 development set. These generated
samples are used as development data to check the performance in
open conditions. We used the remaining 15 samples per class to
build our own training data. Instead of simply using the correspond-
ing original training data, which is too small for training an RNN
with sufficient depth, we performed training data augmentation by
synthetically generating our own training data using the clean sound
event samples and background noise as follows: 1) generate a si-
lence signal of a predetermined length, 2) randomly select a sound
event sample, 3) add the selected sound event to the generated si-
lence signal at a randomly selected location, 4) repeat Steps 2 and 3
a predetermined number of time, 5) add a background noise signal at
a predetermined signal to noise ratio (SNR). We set the signal length
to 4 seconds, the number of events to a value from 3 to 5, the number
of overlaps to a value from 1 to 5, SNR to a value from -9 dB to 9
dB, and finally synthesize 100,000 samples (= 111 hours).

Evaluation is conducted in two regimes, event-based (onset-
only) and segment-based evaluation, where the F1-score (F1) and
the error rate (ER) are utilized as evaluation criteria (see [18] for
more details). All networks are trained using the open source toolkit
TensorFlow [19] with a single GPU (Nvidia Titan X). Details of the
experimental conditions are shown in Table 1.

3.2. Experimental Result

To confirm the performance of our proposed method, we compare
it with two conventional methods, NMF (DCASE 2016 task 2 base-
line) and standard BLSTM-RNN. NMF is trained on 15 clean sam-
ples per class using the DCASE 2016 task 2 baseline script [2].
BLSTM-RNN has the same network structure as in Fig. 3 (a) with
the exception that the output layer is replaced by C nodes with sig-
moid activation function, one node for each of the C sound events.
Each node’s output yc ∈ [0, 1] is binarized to determine event ac-
tivity. We set the threshold to 0.5, i.e., sound event c is considered
active if yc > 0.5, and inactive otherwise.

Experimental results are shown in Table 2. Our proposed system
outperformed conventional methods on both of evaluation criteria,

and this is the best performance in the DCASE 2016 task 2 challenge
[2] except for segment-based error rate. From these results, we can
see that the it is important for polyphonic SED to capture the sound
event-dependent temporal structures.

Next, we focus on the effect of transition probability and post-
processing. In the study [16], we used a fixed transition probabil-
ity because we expected the emission probability calculated by the
BLSTM to be dominant regarding the decision of the maximum like-
lihood path. However, the results of the current study show that even
if we use a hybrid model of neural network and HMM, performance
can be improved by using an appropriate transition probability. Our
results also show the effectiveness of the proposed post-processing
for both BLSTM-RNN and BLSTM-HMM, which we did not per-
form in [16]. The most effective form of post-processing is the re-
moval of events which have too short duration for their particular
type, because each sound event typically has a characteristic dura-
tion which is different from that of other events. These observa-
tions point to the importance of explicit duration control (e.g., hid-
den semi-Markov model (HSMM) [20, 21]).

Finally, our results confirm the effectiveness of our proposed
SAD masking for both BLSTM-RNN and BLSTM-HMM, espe-
cially on the reduction of the error rate for the evaluation set. This is
because the background noise in the evaluation set is noisier than in
the development set, therefore leading to many insertion errors.

4. CONCLUSION

In this study, we proposed a new method for polyphonic SED based
on a hybrid bidirectional long short-term memory/hidden Markov
model system (BLSTM-HMM) combined with a sound activity de-
tection (SAD) network. The BLSTM-HMM not only provides an
explicit duration model for output labels, but also alleviates the need
for thresholding, which outperformed conventional methods on both
of evaluation criteria. Furthermore, binary masking using an SAD
network prevents the decrease in performance caused by insertion
errors under noisy conditions, which improved the performance of
all experimental configurations.

In future work, we will investigate the reason for decreased per-
formance in the segment-based evaluation for BLSTM-HMM, the
use of a more flexible duration control model such as HSMM, and
the application of our proposed method to a real-recording dataset.
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