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ABSTRACT

The recently-proposed deep clustering algorithm introduced sig-
nificant advances in monaural speaker-independent multi-speaker
speech separation. Deep clustering operates on magnitude spectro-
grams using bidirectional recurrent networks and K-means cluster-
ing, both of which require offline operation, i.e., algorithm latency is
longer than utterance length. This paper evaluates architectures for
reduced latency deep clustering by combining: (1) block processing
to efficiently propagate the memory encoded by the recurrent net-
work, and (2) teacher-student learning, where low-latency models
learn from an offline teacher. Compared to our best performing
offline model, we only lose 0.3 dB SDR at a latency of 1.2 seconds
and 0.7 dB SDR at a latency of 0.6 seconds on the publicly available
wsj0-2mix dataset. Moreover, by providing a detailed analysis of the
failure cases for our low-latency speech separation models, we show
that the cause of this performance gap is related to frame-level per-
mutation errors, where the network fails to accurately track speaker
identity throughout an utterance.

Index Terms— cocktail party problem, speaker-independent
speech separation, deep clustering, low-latency, chimera network

1. INTRODUCTION
The “cocktail party problem,” i.e., speaker-independent multi-talker
speech separation has long been known as challenging task in the
speech processing community [1]. Before the deep clustering algo-
rithm [2] was proposed, most speech separation approaches focused
on multiple microphone scenarios [3, 4], speaker-dependent mod-
els [5, 6] or tasks with limited vocabulary and grammar [7]. The
main hurdle for single-channel speech separation is the “permuta-
tion problem” where the correspondence between the outputs of an
algorithm and the true sources is an arbitrary permutation.

In order to solve the permutation problem, deep clustering
avoids estimating the target class directly, instead computing a high-
dimensional embedding for each time-frequency (T-F) bin. A deep
neural network learns the embeddings such that they are close to
each other when they belong to the same speaker and far apart oth-
erwise. At test time, the speaker assignment of each T-F bin can
be determined by clustering the embeddings with an algorithm such
as k-means. In [8], a more direct optimization is proposed where
embedding estimation and clustering are combined using end-to-end
training. A key property of this approach is that the same networks
can be used with any number of sources.

Mask inference learning (MI) is an alternative approach, which
estimates the target class for a fixed number of sources directly.
This approach was first used in [2] as a baseline method, using a
combination of long short term memory (LSTM) recurrent neural
networks (RNNs). The segment-level permutation-free objective is

used in [9]. In [10], bi-directional LSTMs (BLSTMs) and segment-
level permutation-free training were adopted, where it was shown to
perform nearly as well as deep clustering.

In the framework of deep learning, multitask learning is known
as a powerful approach and its advantage is confirmed in graphical
modeling [5], spectral clustering [11], and computational auditory
scene analysis (CASA) [12]. Deep clustering and MI were combined
in [13] in the sense of multitask learning and this architecture is re-
ferred to as a chimera network. In this approach, the deep clustering
loss functions as a regularizer for mask inference achieving superior
performance, and avoiding the need to run a clustering algorithm at
inference time.

Unfortunately, the best performing deep clustering, mask in-
ference, and chimera models are based on bidirectional recurrent
networks (e.g., BLSTM), which require running a forward and
backward pass over an entire utterance before separation results
are obtained. This high-latency operation is unacceptable in many
applications, e.g., as a front-end for speech recognition systems,
however, simply replacing an offline BLSTM with a forward-only
LSTM leads to unacceptable performance degradation. A trade-off
between latency and separation performance can be achieved with
the latency-controlled BLSTM (LC-BLSTM) [14,15], a block-based
BLSTM where the input is cut into overlapping blocks and the la-
tency is reduced to the block-size. While LC-BLSTM demonstrated
promising results in a speech enhancement (i.e., separating speech
from non-stationary background noise) task, its performance in
multi-speaker separation is yet to be investigated.

Another, possible approach to closing the performance gap
between BLSTM networks and low-latency LSTM/LC-BLSTM
networks is to use teacher-student learning (also known as distil-
lation [16]). In our case, a low-latency student network is trained
to match the hidden layer outputs of a pre-trained offline BLSTM
teacher. In this study, we propose several low-latency chimera
network variations, and our contributions can be summarized as
follows: (1) evaluating LC-BLSTM architectures for speech separa-
tion, (2) investigating teacher-student learning for speech separation,
and (3) a detailed analysis of the errors made by low-latency speech
separation systems. Through experiments with the publicly avail-
able wsj0-2mix dataset in Section 5 we show that an LC-BLSTM
with teacher-student learning can achieve performance comparable
to that of an offline BLSTM with most of the remaining performance
gap due to frame-level permutation errors where the network fails to
accurately maintain speaker identity over the course of an utterance.

2. DEEP CLUSTERING FOR SPEECH SEPARATION
We use as our basic architecture for single-channel speech separation
the chimera++ network introduced in [13], illustrated in Fig. 1(a).
The chimera++ architecture, adapted from [17], uses a shared se-
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Fig. 1. (a) Teacher chimera network, (b) Student chimera network

quence of BLSTM layers followed by a deep clustering head and a
mask-inference (MI) head. The network is trained in a multi-task
fashion, where the loss function is defined as a weighted sum of a
deep clustering loss LDC and an MI loss LMI as follows:

Lchi = αLDC + (1− α)LMI, (1)

where α denotes a weight.
The deep clustering head computes a unit-length embedding

vector vi ∈ R1×D for the i-th time-frequency (T-F) element
Xi = Xt,f corresponding to T-F indices t and f . Similarly,
yi ∈ R1×C is a one-hot label vector representing which source
in a mixture dominates the i-th T-F unit. Vertically stacking theN
T-F bins, we form the embedding matrix V ∈ RN×D and the
label matrix Y ∈ RN×C . In this case, YY> is considered as a
binary affinity matrix that represents the cluster assignments in a
permutation-independent way. Following [13], we use the whitened
k-means variant of the deep clustering objective, which gave best
performance for speech separation:

LDC,W = ‖V (V >V )−
1
2 − Y (Y >Y )−1Y >V (V >V )−

1
2 ‖2F, (2)

where || · ||2F denotes the Frobenius norm. We also follow [13] in
discounting the influence of low-energy T-F bins by using magnitude
ratio weights applied to the embedding and label matrices.

The MI head, which directly estimates masks to be applied to the
mixture, uses a logistic sigmoid activation as in [13] and is trained as
in [10, 13] using a truncated version of the phase-sensitive spectrum
approximation (PSA) loss [18], referred to as truncated PSA (tPSA),
and defined using the L1 norm:

LMI,tPSA,L1 = min
π∈P

∑
c

∥∥∥M̂c ◦ |X|

− T
|X|
0

(
|Sπ(c)| ◦ cos(θX − θπ(c))

) ∥∥∥
1
, (3)

where P is the set of permutations on {1, . . . , C}, |X| and θX the
mixture magnitude and phase, M̂c the c-th estimated mask, |Sc|
and θc the magnitude and phase of the c-th reference source, and
Tba(x) = min(max(x, a), b) denotes truncation to the range [a, b].

3. LATENCY-CONTROLLED BLSTM
BLSTMs are not practical for low-latency applications. Indeed, as
illustrated on the left-hand side of Fig. 2, the forward LSTM operates
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Fig. 2. Illustrations of BLSTM and LC-BLSTM

from the first frame to the last frame of the input and the backward
LSTM operates from the last frame to the first frame of the input.
The output of each direction is concatenated and used as an input of
the next layer. Therefore, one needs to wait until the BLSTM sees a
whole utterance.

In order to cope with such issues, latency-controlled BLSTM
(LC-BLSTM) networks were proposed for automatic speech recog-
nition in [14, 19]. We here consider their application to speech
separation, as an alternative to the low-latency approximations to
BLSTM considered in [15] for speech enhancement. The LC-
BLSTM architecture is illustrated in the right-hand side of Fig. 2. In
LC-BLSTM, the input utterance is cut into non-overlapping blocks
of fixed length Nm called the main block. Each main block has a
sub block of fixed lengthNs, which is appended to the right context.
The forward LSTM now operates from the first frame of a main
block to the last frame of its sub block. The memory cell of the last
frame of the main block is handed over to the next main block. The
backward LSTM operates from the last frame of the sub block to
the first frame of the main block, and its memory cell is always ini-
tialized with 0. The outputs of sub blocks are propagated to the last
LC-BLSTM layer but are not propagated to the linear layer in Fig. 1.
Also, the gradients from the sub blocks are not back-propagated. If
Ns is set to 0, LC-BLSTM is equivalent to a block BLSTM where
each block operates independently.

4. TEACHER-STUDENT DEEP CLUSTERING

In order to improve the performance of low-latency models involving
stacks of either LSTM or LC-BLSTM layers in place of the BLSTM
stack, we consider applying teacher-student learning to deep cluster-
ing based speech separation. The procedure is illustrated in Fig. 1.
A BLSTM-chimera network as presented in Sec. 2 is used as the
teacher. As the student, we use either a stack of LSTM layers,
which enables frame-wise operation, or a stack of LC-BLSTM lay-
ers, which enables block-wise operation. The teacher network is first
trained using Eq. (1). The student network is then optimized under
the following equation:

Lstu = αLDC + (1− α)LMI + βLdiff, (4)

where Ldiff denotes a distance between the weights of the final hid-
den layer of the teacher and student networks, and β a weight for



that distance. We consider here two variants for the teacher-student
distance:

Ldiff,Lp = ||htN − hsN ||pp, p ∈ {1, 2}, (5)

where htN and hsN denote the output of the final layer of the teacher
and the student recurrent network, respectively. In the above equa-
tions, htN and hsN should have the same number of units. If the
number of units is different, a projection layer to expand or contract
that number can be used.

5. EXPERIMENTS

5.1. Experimental Conditions

We evaluate the proposed algorithms on the publicly available
wsj0-2mix corpus [2], which is widely used in speaker-independent
speech separation works. It contains 20,000, 5,000, and 3,000 two-
speaker mixtures in its 30 h training, 10 h validation, and 5 h test
sets, respectively. The speakers in the validation set are seen during
training, while the speakers in the test set are completely unseen.
The SNR of each mixture is randomly chosen between 0 dB and
10 dB. All data were downsampled to 8 kHz before processing
to reduce computational and memory costs. For the spectrogram
analysis, the window length is 32 ms and the hop size is 8 ms. The
square root Hann window is employed as the analysis window and
the synthesis window is designed accordingly to achieve perfect
reconstruction after overlap-add. A 256-point DFT is performed to
extract 129-dimensional log magnitude input features.

All the speech separation systems evaluated in this paper are
based on the chimera network architecture. Although the model is
trained in a multi-task fashion, we only use the MI loss during vali-
dation for model selection. At run time, we use the output from the
MI branch as the masks for separation. We use four recurrent layers
and apply a dropout of 0.3 to the output of each layer except the last
one [13, 20]. The networks are trained from scratch on 400-frame
segments, and each segment is trained independently. The run-time
separation is always performed on the entire utterance. In the case
of training LC-BLSTM networks, the block-wise operation is con-
ducted within each segment. The Adam algorithm [21] is used for
optimization of the networks. All systems are implemented using the
Chainer deep learning toolkit [22]. We enhanced the magnitude only,
and the noisy phase is used directly for time-domain re-synthesis.

5.2. Experimental Results

Table 1 compares the offline BLSTM network, with several LSTM
network variations in terms of scale-invariant SDR [23]. The LSTM-
chimera with 1,200 units performs best and is used in subsequent
experiments. For Teacher-Student learning, a BLSTM with 1,200
units (600 units in each direction) is used as the teacher and a 1,200
unit LSTM is the student. From Table 1 we see a performance gap
between BLSTM and LSTM of more than 2 dB, and no improvement
from Teacher-Student learning.

The SDR results for LC-BLSTM-chimera are shown in Table 2
where (Nm, Ns) denote the number of frames in the main-block
and sub-block, respectively. In the case of 150 frames latency (1.2
s), LC-BLSTM with (Nm, Ns) = (100, 50) obtains the best per-
formance, and we note the effectiveness of overlapping blocks since
(Nm, Ns) = (100, 50) performs better than (150, 0). In the case
of 75 frames latency (0.6 s), (Nm, Ns) = (50, 25) performed better
than (75, 0) by 0.3 dB.

Table 1. SDR [dB] results for teacher-student LSTMs
Method #units TS-cost β SDR
BLSTM 1,200 Teacher 0 11.0
LSTM 1,000 - 0 8.7
LSTM 1,200 - 0 8.7
LSTM 1,400 - 0 8.6
TS-LSTM 1,200 L1 0.001 8.6
TS-LSTM 1,200 L1 0.01 8.7
TS-LSTM 1,200 L1 0.1 8.6
TS-LSTM 1,200 L2 0.001 8.7
TS-LSTM 1,200 L2 0.01 8.7
TS-LSTM 1,200 L2 0.1 8.4

Table 2. SDR [dB] results for LC-BLSTMs
Method (Nm, Ns) SDR
BLSTM - 11.0
LC-BLSTM (150, 0) 10.2
LC-BLSTM (100,50) 10.5
LC-BLSTM (50,100) 10.5
LC-BLSTM (75, 0) 9.9
LC-BLSTM (50,25) 10.2
LC-BLSTM (25,50) 10.1

Table 3 compares several configurations of LC-BLSTM-chimera
with teacher-student learning (TS-LC-LSTM) where a BLSTM with
1,200 units is used as the teacher and LC-BLSTM with (Nm, Ns) =
(100, 50) or (50, 25) is used as the student. Unlike, the LSTM re-
sults of Table 1 we observe some SDR improvements from Teacher-
Student learning in the LC-BLSTM cases. Specifically, we note
maximum improvements of 0.2 dB for 150 frames (1.2 s) of latency,
and 0.1 dB improvement for the 75 frame (0.6 s) case.

5.3. Failure Analysis

The recent study in [24] demonstrated that when separating speech
from noise, the drop in performance between offline and zero-
latency models was quite small, and performance equal to the offline
model was achieved with only 0.2 s of latency. However, as shown in
Section 5.2, even with 1.2 s of latency we still suffer a 0.3 dB drop
in SDR. Similarly, TasNet [25], another recent speech separation
algorithm, reported a performance drop of 3.8 dB between causal
and non-causal models on the wsj0-2mix dataset. In this section we
investigate why future context is so critical for speech separation.

Figs. 3 to 5 display scatter-plots for the BLSTM, LSTM, and TS-
LC-BLSTM, respectively, where color indicates density. We note,
that the shape of the scatter-plots for SDR improvement values above

Table 3. SDR [dB] results for teacher-student LC-BLSTMs
Network TS- (Nm, Ns)
Architecture cost β (100, 50) (50, 25)
BLSTM Teacher - 11.0
LC-BLSTM - 0 10.5 10.2
TS-LC-BLSTM L1 0.001 10.6 10.3
TS-LC-BLSTM L1 0.01 10.7 10.3
TS-LC-BLSTM L1 0.1 10.5 10.1
TS-LC-BLSTM L2 0.001 10.7 10.3
TS-LC-BLSTM L2 0.01 10.7 10.3
TS-LC-BLSTM L2 0.1 10.6 10.3



Fig. 3. SDR scatter-plot for BLSTM

Fig. 4. SDR scatter-plot for LSTM

Fig. 5. SDR scatter-plot for TS-LC-BLSTM, with parameters
(Nm, Ns) = (100, 50), L2, β = 0.01

Fig. 6. SDR scatter-plot for LSTM with oracle frame permutation

Table 4. SDR [dB] results with and without oracle permutations
Architecture (Nm, Ns) Chimera mask Oracle perm.
BLSTM - 11.0 11.8
LC-BLSTM (100,50) 10.5 11.7
TS-LC-BLSTM (100,50) 10.7 11.9
LC-BLSTM (50,25) 10.2 11.8
TS-LC-BLSTM (50,25) 10.3 11.8
LSTM - 8.7 11.2
TS-LSTM - 8.7 11.3
IRM (Oracle) - - 12.7
IBM (Oracle) - - 13.5

10 dB are quite similar in all cases. However, the number of fail-
ure cases, defined here as SDR improvements below 0 dB are much
larger for the LSTM case of Figure 4 than for the BLSTM and TS-
LC-BLSTM cases. A major difference when separating overlapping
speech signals as apposed to separating speech from noise is that dur-
ing training we must attempt to solve the permutation problem, i.e.,
the correspondence between estimated and true sources. We typ-
ically solve this problem at the utterance-level, however as shown
in [26] improvements can be observed when attempting to solve for
the ideal permutation at the frame-level. To determine whether per-
mutation errors are the cause of the failure cases shown in Figs. 3 to
5 we use the ground-truth separated signals to compute oracle per-
mutations at the frame-level for the LSTM network output shown in
Figure 6. We see that even when the LSTM has no future context,
correctly solving the permutation problem eliminates all of the fail-
ure cases below 0 dB. Intuitively, what is happening in these failure
cases is that the network is getting confused and switching between
speakers in the middle of an utterance. While having no future con-
text certainly leads to a greater number of failure cases (Figure 4),
even the offline BLSTM makes some permutation errors (Figure 3).

Table 4 compares performance of the LSTM algorithms pro-
posed in this paper, assuming access to oracle permutations. For
reference the ideal ratio mask (IRM) and ideal binary mask (IBM)
are also shown in Table 4. Notably, the SDR difference between
the BLSTM and LSTM chimera output is 2.3 dB, but reduced to 0.6
dB with frame-level oracle permutations. We also note that the (50,
25) LC-BLSTM (0.6 s latency) is able to perform at a level con-
sistent with the offline BLSTM, further confirming our hypothesis
that correcting frame-level permutation errors is key for improving
low-latency speech separation and should be a main focus of future
works on the topic.

6. CONCLUSION

This paper proposed architectures for low-latency single-channel
speech separation. By replacing the latency bottleneck BLSTM with
the block-based LC-BLSTM, and using teacher-student learning,
the SDR on the wsj0-2mix dataset was improved from 10.2 dB to
10.7 dB in the case of 1.2 s latency, and from 9.9 dB to 10.3 dB in
the case of 0.6 s latency when compared with non-overlapping block
BLSTM processing. Furthermore, we showed that the backward
context in the BLSTM is important to solving the frame permutation
problem. While our proposed techniques mitigate these permuta-
tion errors to a certain extent, future efforts will focus on directly
tackling this issue. Other topics of future work include applying
teacher-student learning to recent speech separation systems such as
convolutional-TasNet [25] and evaluating low-latency approaches
with the end-to-end phase reconstruction proposed in [27, 28].
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